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1. INTRODUCTION

We consider two optimal control problems for a process described by a boundary value problem for a
linear parabolic equation with a linear Robin boundary condition involving the control . One problem
is concerned with minimum-energy control. It was previously studied in various special cases (see, e.g.,
[1–3]). However, its complete solution was not obtained even in those special cases. In the other problem,
a usual quadratic functional is used as an optimality criterion. This problem has been addressed in numer-
ous publications (see, e.g., [1–3]), but it has not been studied to a full extent either.

In this work, we perform a fairly complete analysis of both problems and analyze the relation between
their solutions.

1.1. Description of the Process

Let D be a bounded domain in the -dimensional Euclidean space ,  be the boundary of D, and
. A bounded cylinder in the -dimensional Euclidean space is denoted by

, and its lateral surface, by .

On D we define the differential operator

(1)

where  and  are given functions and  is a nonnegative function. Assume that the operator  is elliptic,
i.e., the following conditions are satisfied: (i)  for all ; and (ii) there exists a positive
constant  such that

for any real numbers  ( ) satisfying .
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Assume that the surface  is continuous and piecewise smooth, the functions  and  are con-
tinuous in , and , . Let  denote the outward normal unit vector to the
boundary  of . Define

(2)

Here,  is a given nonnegative function from .
Under the indicated conditions, the boundary value problem (see [4])

(3)

has an orthonormal system of eigenfunctions  that is complete in  and  is the corre-
sponding sequence of eigenvalues such that  and  as .

Consider a thermal process described by the boundary value problem

(4)

where  is a given function and the operators  and  are defined in (1) and (2), respectively.

1.2. Weak Solutions
Definition 1. The weak solution (see [1, 4, 5]) of the boundary value problem (4) is a function

 having generalized derivatives  for all  that (i) satisfies the
identity

for all functions  and any  and (ii) obeys the initial condition  in the
sense that

for any function .
The weak solution of problem (4) can be represented in the form

(5)
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for the functions , , we obtain the Cauchy problem

Here,

(6)

Thus, the functions  in (5) are given by

(7)

2. APPLICATION OF THE MAXIMUM PRINCIPLE
2.1. Formulation of the Control Problem

Let us set up the first optimal control problem.
Problem 1. Given a process described by problem (4) and admissible controls  belonging to the

space , the task is to find a control  that minimizes the functional

. (8)

Here,  and  is a given function.
Since functional (8) is strictly convex, it is easy to show that the formulated control problem cannot

have more than one solution. The existence of at least one optimal control follows from [1].

2.2. Computation of an Increment of the Functional

Let  be an optimal control and  be an admissible increment of p. Denote by
 the solution of problem (4) at , and let  be the solution

of problem (4) at . Then the function  solves the boundary value problem

(9)

The solution of problem (9) satisfies the identity
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for all functions  and any . Here, the initial condition is understood in the sense
that  for an arbitrary function .
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In identity (10), we set  and . Then, in view of problem (9),

(11)

The increment of the functional  defined by (8) is calculated as

(12)

As  in identity (11), we use a function satisfying the condition

Then the increment of  in (12) is determined as

(13)
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In identity (14), we set , , and . Then (11) and (14) imply that

(18)

Combining (13) with (18) and using the Taylor formula yields

(19)

Define the function

.

Then it follows from (19) that

Therefore, an optimal control  minimizes the functional  if  maximizes H.
Thus, the following result is true.
Theorem 1. An admissible control  in the boundary value problem (4) minimizes functional (8)

if and only if it maximizes the function

(20)

where  is the solution of the boundary value problem (17).

2.3. Integral Equation for the Optimal Control

The optimality condition obtained above is used to construct an optimal control. For this purpose, we
first derive an integral equation for this control. Then we prove the uniqueness of its solution and, finally,
describe methods for constructing the optimal control and its approximations.

Theorem 2. Let

(21)
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Substituting function (23) into (4) yields the boundary value problem

(24)

The function  corresponding to the optimal control  is a weak solution of this
problem. Problem (24) is solved together with problem (17).

The solution of problem (24) has the form of (5), where the functions  are given by (7) and
 is the complete orthonormal system of eigenfunctions of problem (3).

To solve problem (17), the function  is represented as a series: .

In view of the obvious identity  and the terminal conditions, the following Cauchy

problems are obtained for :
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The operator  defined by the formula

is positive definite, since the equality  holds if and only if  vanishes for almost all
 from the interval .

The following result is well known in functional analysis (see, e.g., [6]).
Theorem 3. If  is a linear symmetric operator mapping an element  to an element  and 

is positive definite, then, for any function , the equation  has a unique solution  in .
Therefore, for any function  from , Eq. (22) is uniquely solvable in .

2.5. Reduction of the Integral Equation to an Infinite Linear System of Equations
Integral equation (22) can be written as
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Problem 2 was completely solved in [2]. Let us describe the main results of [2], which will be used in a
comparative analysis of the two problems considered in this paper. It was shown in [2] that the following
theorems hold for controls with minimal energy.

Theorem 4. A control with minimal energy (if any) can be represented in the form

(32)

where the constants  are defined by (6) and  ( ) solve the system of equations

(33)
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Let  denote the set of sequences  satisfying condition (34). On this set, we define the Hil-
bert space  (energy space of the operator ) by introducing the inner product and the norm

Theorem 7. If

(37)

then Eq. (35) has a unique solution in the energy space  of sequences  satisfying condition (34).
It is of interest to determine the conditions on the right-hand side  of Eq. (35) under which (35) is

unsolvable in the space  of sequences  satisfying condition (34).

Theorem 8. If the sequence  is unbounded, then Eq. (35) has no solution in the space  of
sequences  satisfying condition (34).

4. APPROXIMATE SOLUTION METHODS
All the theorems presented above were taken from [2]. They are proved by applying variational methods

of mathematical physics (see, e.g., [6]) to the linear operator equation (35) with a positive (but not positive
definite) operator. For a more complete comparative analysis of the optimal control problems under
study, we state another two theorems. They are also proved by applying variational methods (see [1,
pp. 201–202]).

Together with Eq. (35), we consider the equation

(38)

where .
Theorem 9. Under condition (37), the solution of Eq. (38) converges, as  to the solution of Eq. (35)

in the metric of the energy space .
Theorem 10. The solution of Eq. (35) is unstable in  with respect to small (in ) variations in . Specif-

ically, if the right-hand sides  and  of Eq. (35) and

(39)

satisfy condition (37), then the fact that  as  does not necessarily imply that

 as , where  and  are the solutions of Eqs. (35) and (39), respectively, in the energy
space .

However, if there exist  and  from  such that  and , then  as

 as soon as  as .

This theorem states that the constructed control with minimal energy is unstable with respect to small
variations in the objective function  in condition (31). An issue of much greater interest is to construct
an approximate solution of Eq. (35) with the help of the equation

(40)

Here, the following two cases have to be considered.
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1.  is the projection of  onto the subspace generated by the first m eigenelements of .
2.  is the same projection, but calculated with some error.

Consider the first case. Let  be the th eigenelement of the operator  (i.e., ) and  be
the one-dimensional space generated by this element. The operator  defined by the formula

 for arbitrary  is called the projector of  onto . The following properties of this oper-

ator are obvious: (a)  and (b) .

Therefore,  can be represented in the form

,

and the condition  is satisfied if

(41)

Under this condition, the solutions of Eqs. (35) and (40) are obtained in the form

The sum of the series in (41) is equal to the trace of the matrix . Therefore, in view of Remark 1, we find
that  as 

Now, let  be obtained by approximately computing the projector onto the subspace spanned by
, i.e., , where  is the projector and  is the operator determining the com-

putational error made in the construction of . If the right-hand side of Eq. (35) is also calculated with
an error , then, instead of Eq. (40), we solve the equation

(42)

Accordingly, it is natural to examine how far the solution  of this equation differs from the solution 
of Eq. (35). In doing this, we will use the following definition (see [7]).

Definition 2. The computation of solutions to Eq. (42) is called -stable if the following conditions are
satisfied: (a)  tends to zero as , which ensures the existence of an operator 
(at least, for sufficiently large ); and (b)  and  tend to zero, which ensures that

 tends to zero as well.
Below is the main result concerning this method for finding an approximate solution of the considered

equation (see [1]).

Theorem 11. A process of finding  is -stable if and only if the sequence 
is bounded.

To conclude, we analyze the relation between the optimal control problems under consideration. In the
first problem, the optimality criterion is the quadratic functional (see (8))

where  is a given function from  and  is a positive parameter. No constraints are imposed on
the state of the system at the terminal time . A unique optimal control exists and is the solution of
the integral equation (see Theorem 2)
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It can be represented in the form (see (26))

where the constants  are uniquely determined by solving the system of equations

Since  (see Theorem 2), the control  can be represented in the form

It has the same structure as the control with minimal energy (see (32)). However, the latter belongs to
 only under additional conditions (see Theorem 4). The sequence  is determined

by the system of equations

By using the notation introduced in Eq. (35), this system can be written in operator form:

(43)

here,  denotes the identity operator and  is the sequence .
Thus, for sufficiently small , Eq. (43) can be treated as an approximation to Eq. (35).
Theorem 12. If Eq. (35) satisfies the conditions of Theorem 7 and, hence, has a unique solution in the

energy space , then the solutions of Eqs. (35) and (43) satisfy the condition

Proof. The condition of the theorem implies that the solutions of the indicated equations can be rep-
resented in the form

where  ( ) is the complete orthonormal system of eigenelements of the operator  and  are
the corresponding eigenvalues. Therefore, in view of , we obtain

Let  be an arbitrarily small number. We choose  so large that
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Fixing , we choose  small enough to satisfy the inequality

,

whence .
To analyze the o-stability of finding an approximate solution of the problems in the case under consid-

eration, we use Theorem 11. Specifically, the operator  is specified as , where  is a sequence of
numbers vanishing as  (which is used in the computations).
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