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Abstract—In physical and technical applications, an important task is to process experimental curves
measured with large errors. Such problems are solved by applying regularization methods, in which
success depends on the mathematician’s intuition. We propose an approximation based on the double
period method developed for smooth nonperiodic functions. Tikhonov’s stabilizer with a squared sec-
ond derivative is used for regularization. As a result, the spurious oscillations are suppressed and the
shape of an experimental curve is accurately represented. This approach offers a universal strategy for
solving a broad class of problems. The method is illustrated by approximating cross sections of nuclear
reactions important for controlled thermonuclear fusion. Tables recommended as reference data are
obtained. These results are used to calculate the reaction rates, which are approximated in a way con-
venient for gasdynamic codes. These approximations are superior to previously known formulas in the
covered temperature range and accuracy.
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1. PROBLEM
Important physical experiments are sometimes performed beyond the capabilities of experimental

equipment. Systematic and random errors can be so large that the collection of experimental points pro-
duced by different authors looks like a cloud spreading around some curve. A typical example is presented
in Fig. 1, which shows the cross section of the nuclear reaction  as a function of energy in
specific coordinates. The data obtained by the various authors differ as much as sixfold! However, this is
a major reaction in controlled thermonuclear fusion, so such curves have to be processed.

Usually, physicists follow two approaches. Firstly, relying on the physical interpretation of the prob-
lem, they choose specific variables in which the curve would have the simplest shape. Secondly, they try
to approximate the curve by an analytical dependence with only a few fitting parameters. The values of
these parameters are determined by the least squares method. Success in this approach depends on how
well the approximating formula is guessed.

If the fitting parameters are much fewer than the number of experimental points and an acceptable
approximation accuracy is reached, then the approximating formula can be viewed as successful. Espe-
cially valuable are formulas reproducing well-known physical dependences. In this case, we can hope for
an approximation by a few parameters. However, such formulas are rarely proposed. If an approximation
requires parameters that are comparable in number with the experimental points, then the form of the for-
mula is regarded as unsuccessful and the approximation will hardly be reliable. Moreover, its extrapolation
beyond the original interval can lead to large errors.

In our approach [1], instead of choosing an approximating formula, we represent the solution in the
form of a specific trigonometric series, i.e., the double period method is used. To avoid spurious oscilla-
tions caused by large errors in experimental points, the method is supplemented with Tikhonov’s regular-
izer involving only a squared second derivative. This approach is rather simple and yields nice curves
admitting extrapolation beyond the original interval. It can be used as a reliable tool when attempts to con-
struct a good physically interpretable approximating formula fail.
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The method is illustrated as applied to four major nuclear reactions used to compute controlled ther-
monuclear fusion.

2. REGULARIZATION OF THE DOUBLE PERIOD METHOD

2.1. Double Period Method

Suppose that we are given a large array of experimental points: arguments  and functions ,
 ( ), where  are absolute measurement errors. According to the problem,  is a smooth

function with not very large highest derivatives, but the measurement errors  can be large.

To approximate smooth nonperiodic functions by Fourier series, it is convenient to use the double
period method (see [2, 3]). For notational simplicity, a linear transformation is applied to the argument

, so that  and . On the interval , we consider the zero Fourier har-
monic and  pairs of sine-cosine harmonics. They are supplemented with  harmonics of doubled
period  that are not included in the fundamental period. These harmonics are added not in sine-
cosine pairs, but rather individually, so that their number  can be of any parity.

The function  is approximated by a sum of harmonics of the fundamental and double periods. For
uniformity, we use the notation

(1)

The coefficients  are chosen so as to obtain the best approximation of  in the  norm.

Here, the fundamental-period harmonics have indices  and are written as

(2)
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Fig. 1. S-factors for the reaction : the experimental values are depicted by dots, the data from Table 2, by
the thick curve; and Kozlov’s formula, by the thin curve.
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Formulas (2) involve the derivatives of these harmonics, which will be used later. The double-period
harmonics have indices  (i.e., they are written so that they follow the fundamental-
period harmonics) and have the form

(3)

Formally, the fundamental-period harmonics are sufficient for the approximation as . There-
fore, the terms with  are redundant in this case. For finite , sum (1) is not redundant. It was
shown in [2] that adding double-period harmonics is equivalent to increasing the smoothness of the peri-
odic extension of  to . Specifically, every extra double-period harmonic added increases the
smoothness of  by 1.

For larger , the expansions in terms of fundamental-period harmonics converge more quickly. For
a fixed , as , expression (1) approximates  and its  derivatives in the C norm with

 accuracy. In numerical computations, only small values of  should be used, since the condi-
tioning of the computations degrades catastrophically with increasing M. However, the values of  can
be taken large to obtain a good approximation accuracy. Of course, the total number of parameters must
satisfy .

2.2. Choosing a Regularizer

The method described above was developed for functions of continuous argument or functions given
on a uniform grid when the values of  are calculated with high accuracy. In experiments, the grid  is
highly nonuniform and can contain gaps, while the errors  are frequently large. By gaps, we mean rather
long segments of the argument on which there are no experimental points. Such data have to be approxi-
mated by applying regularization. A natural strategy is to use Tikhonov’s stabilizer [4] involving integrals
of squared derivatives of . Let us discuss which derivatives are reasonable to use.

Obviously,  and  have to be approximated with good accuracy. Therefore, they cannot be
involved in the stabilizer: this would lead to a decrease in their values and, accordingly, to a deterioration
of the approximation. However, except for radio engineering problems, physical curves are usually fairly
smooth and free of high-frequency oscillations, so that their curvature is not very large. Therefore, it is
reasonable to bound  by including it in the stabilizer. This is usually sufficient for the spurious oscil-
lations to be effectively suppressed, so that there is no need to include higher order derivatives in the sta-
bilizer.

Another practical advantage of including the second derivative is that the double differentiation of a
sine or cosine yields a function of the same type, which simplifies the algorithm.

There are two circumstances to be taken into account regarding the particular problem of approximat-
ing nuclear reaction cross sections. First, an important point is the relative (rather than absolute) accuracy
of cross section approximations, since the cross sections have a wide range of values. Second, specific vari-
ables are chosen so that  for the smallest . Therefore, the values of  and  with large
weighting factors have to be added to the stabilizer on the left boundary to ensure that the fitted curve
becomes a horizontal line. With these considerations taken into account, the least squares method yields
the formulation

(4)

where . Substituting (4) into (1), we obtain the minimization problem for the coefficients .
It is reasonable to evaluate the integral in (4) in the sense of functions of continuous argument without

using the grid . In doing this, we need to remember that each of the subsystems (2) and (3) is orthogonal,
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but they are not orthogonal to each other, although the sines of one subsystem are orthogonal to the
cosines of the other.

Remark 1. A traditional approach to regularization is that minimization problem (4) is reduced to a dif-
ferential equation for . The order of this equation is twice as high as the order of the maximum deriv-
ative included in the regularizer. This equation requires additional boundary conditions, whose number is
equal to the order of the equation. A formal statement of such conditions usually leads to a regularized
solution differing noticeably from the true one near the boundaries of the interval.

In addition, solving a boundary value problem for a high-order differential equation is a task of certain
mathematical difficulty. For this reason, high-order regularizers are rarely used in practice.

This difficulty can be naturally overcome by applying the double period method. Specifically, a high-
order regularizer can easily be used in this method without applying lowest order derivatives. Moreover,
the proximity of a regularized solution to the exact one is much easier to achieve, while the solution algo-
rithm does not become more complicated.

Remark 2. Tikhonov’s integral stabilizer ensures that the whole regularized curve overall behaves
nicely. Accordingly, it is reasonable to apply it to a broad class of real-world problems. The specific fea-
tures of the given problem (data processing in a thermonuclear experiment) are reflected by the additional
terms associated with boundary conditions. For many other problems, they are not required. In that case,
all formulas presented below can be used with .

2.3. Linear System

The minimization in (4) with respect to  yields a system of linear equations for determining these
coefficients. To write it, we introduce some auxiliary notation. Specifically, the following scalar products
are associated with the experimental material:

(5)

In the case of arbitrary nodes and weights (which corresponds to an actual experimental material), all
these matrix elements are nonzero, i.e., the matrix of the linear system is dense.

We also introduce scalar products of basis functions associated with the regularizer. These scalar prod-
ucts have a block matrix containing two square diagonal blocks:

(6)

It also involves two rectangular nondiagonal blocks, in which the elements corresponding to the scalar
products of a sine from one subsystem by a cosine from the other are equal to zero. These zero elements
are located in a staggered manner. Therefore, for  and , we can write
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With the use of this notation, the linear system becomes

(9)

where

(10)

(11)

(12)

2.4. Solution of the Linear System
In the approximation of functions defined with the same accuracy on a uniform grid, the scalar prod-

ucts  have a structure resembling that of the matrix . It also contains two diagonal and two
nondiagonal blocks. Moreover, the diagonal blocks are diagonal submatrices. This improves condition-
ing, so we can use even . However, if the grid  is nonuniform and  are not identical, the diag-
onal blocks are dense and the condition number degrades substantially. In this case, the computations
have to be restricted to , which is equivalent to the smoothness of the periodic extension of .
A smaller value of  does not ensure the required smoothness.

According to the properties of the least squares method, the matrix  is symmetric and positive defi-
nite. It is reasonable to solve it by Gaussian elimination without pivoting, since the pivot element is auto-
matically on the main diagonal. This algorithm is robust even for matrices  with a rather large condition
number  (up to  for 64-bit computations).

3. EXPERIMENTAL DATA
3.1. Measurements

Consider four major reactions used in the computation of controlled thermonuclear fusion:
, (13)

, (14)

, (15)

. (16)

Most of the available experimental data concerning their cross sections can be found in [5]. This data-
base relies on 90 original works and contains 2000 experimental points. Data produced by different
authors sometimes do not match well and can differ by 6 times! The author’s error estimates are sometimes
unreliable, and the approximation result depends rather strongly on .

For this reason, we performed our own critical analysis of the experiments and derived estimates for .
Specifically, measurements on targets consisting of heavy metals saturated with deuterium were assigned
large errors. In heavy metals, the incident beam loses much energy, and the actual energy at the moment
of particle collision cannot be estimated accurately. Targets consisting of pure deuterium or its compounds
with lightest elements ( , , , ) were treated as the best. The international reputation of a
laboratory and the year of performing measurements were also taken into account (for example, the Los
Alamos data obtained even in 1950 were regarded as more reliable than the latest measurements con-
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ducted in some European laboratories). A detailed analysis of each work is not presented here, since this
is of interest only to physicists specializing in the given area.

3.2. Variables

Let us describe how we chose variables. As an argument, it is convenient to use , where  is
the energy of colliding particles in the center-of-mass system. However, the reaction cross section  or
its logarithm is inconvenient when used as functions. A much more convenient variable to use is the
S-factor. It is obtained by multiplying the cross section by the Gamow factor, which takes into account the
probability of overcoming the Coulomb barrier:

(17)

where  is the reduced mass and  and  are the charges of the particles (in atomic units). The function
is defined as . Its value varies only by  units.

The resulting S-factors after processing are presented in Fig. 2. It can be seen that they are similar for
both channels of the reaction  and look like the transition from a horizontal line to a sloping one.
However, for the other two reactions, they represent a curve with a maximum. These differences are asso-
ciated with the substantially different physical mechanisms of the reactions. In the traditional physical
approach, its own approximating formula has to be chosen for each reaction, which is rather difficult. The
double period method allows us to process all these reactions in a unified manner.

4. NUMERICAL RESULTS

In all computations, we used . The values of  and the regularization parameters were chosen
for each reaction separately taking into account the number of experimental points and their errors. More
specifically, the regularization parameters were selected in the standard manner so that the difference
between the regularized curve and the experiments was within the experimental errors and the curve did
not contain visually noticeable oscillations. The parameters chosen for the various reactions and the
approximation errors  in percent are given in Table 1.
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It can be seen that the total number of free parameters is less than  by a factor of 1.5 to 3 depending
on the reaction. Thus, high-frequency harmonics were used for the approximation, thereby ensuring good
accuracy. Simultaneously, the high-frequency harmonics were well smoothed by regularization, so that
the fitted curves were smooth. The numbers of harmonics were taken with a margin. Indeed, good accu-
racy is achieved for  and even for . Therefore, the large values of  in Table 1 are overcau-
tious, although the amount of computations is insignificant even in this case. All the computations are
easy to execute even on a 64-bit laptop.

The results were found to be rather sensitive to the value of . Its optimal value is small. According to
the interpretation of the problem, the parameters  and  have to be rather large, which was confirmed by
the computations. However, the sensitivity of the results to their choice was much lower.

Let us describe the final results. Table 2 and Fig. 2 present  [keV mb] as a function of  [keV]
for all four reactions. Toward lower energies, each column of the table is extended as a constant. Figure 2
clearly shows that the fitted curve for each reaction has a natural shape and does not contain spurious

I

∼ 20N ∼ 10N N

α
β γ

log S log E

Table 2. Reaction S-factors  [keV mb]

logE 
[keV] DD → pT

DD → 
n3He

DD → 
n4He

D3He → 
p4He

logE 
[keV] DD → pT

DD → 
n3He

DD → 
n4He

D3He → 
p4He

0.2 4.774 4.773 7.086 6.852 2.3 4.998 5.053 6.395 7.231
0.3 4.773 4.773 7.086 6.852 2.4 5.048 5.106 6.226 7.161
0.4 4.771 4.773 7.086 6.852 2.5 5.102 5.160 6.082 7.004
0.5 4.770 4.772 7.086 6.852 2.6 5.157 5.215 5.954 6.803
0.6 4.769 4.769 7.090 6.852 2.7 5.212 5.272 5.844 6.610
0.7 4.768 4.767 7.098 6.852 2.8 5.267 5.330 5.754 6.435
0.8 4.768 4.768 7.108 6.851 2.9 5.321 5.389 5.684 6.283
0.9 4.767 4.772 7.120 6.848 3.0 5.373 5.448 5.635 6.156
1.0 4.768 4.776 7.137 6.844 3.1 5.426 5.504 5.605 6.052
1.1 4.770 4.781 7.161 6.840 3.2 5.481 5.557 5.596 5.970
1.2 4.773 4.786 7.196 6.836 3.3 5.540 5.607 5.605 5.908
1.3 4.776 4.794 7.241 6.835 3.4 5.600 5.658 5.627 5.863
1.4 4.781 4.803 7.297 6.836 3.5 5.661 5.708 5.652 5.832
1.5 4.789 4.812 7.360 6.842 3.6 5.721 5.758 5.672 5.810
1.6 4.799 4.824 7.414 6.859 3.7 5.779 5.808 5.684 5.795
1.7 4.813 4.841 7.428 6.892 3.8 5.836 5.856 5.691 5.784
1.8 4.830 4.862 7.368 6.940 3.9 5.896 5.906 5.698 5.776
1.9 4.853 4.887 7.227 7.003 4.0 5.958 5.955 5.707 5.770
2.0 4.880 4.919 7.029 7.076 4.1 6.020 6.005 5.720 5.765
2.1 4.913 4.958 6.807 7.153 4.2 6.082 6.054 5.735 5.760
2.2 4.952 5.003 6.590 7.216

log S

Table 1. Regularization parameters in problem (4) for reactions (13)–(16)

Parameter

I 717 364 370 544
N 123 123 73 98
α 0.2 0.3 0.04 0.2
β 2000 2000 2000 2000
γ 2000 2000 2000 2000

Δ, % 1.5 1.5 2 4

→DD pT → 3DD n He → 4DT n He →3 4D He p He
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oscillations, despite the use of high-frequency harmonics. Note that, for reaction (16), there were no
experimental data in the range . Nevertheless, the fitted curve passes this segment with-
out exhibiting oscillations. This suggests that the proposed regularization procedure is of high quality. It
can be concluded that the given method provides a reliable tool for drawing a curve through gaps in exper-
imental data.

In practice, thermonuclear targets are rather frequently computed using Kozlov’s formulas [6]. For
reaction (13), this formula is presented in Fig. 1. It can be seen that, for , it agrees well with
the experiments and our curve, but its accuracy quickly degrades at high energies. For the other reactions,
the situation is similar. Therefore, the results in Table 2 can be used as reference data. They are more accu-
rate than their counterparts proposed earlier (the gain in accuracy is especially large at high energies).

5. RATES OF THERMONUCLEAR REACTIONS

5.1. Tables of Rates

Suppose that a substance is in a local thermodynamic equilibrium at temperature . Then the rate of

a thermonuclear reaction is determined by the convolution of  with the Maxwellian distribution:

(18)

The integral is numerically evaluated using high-accuracy quadrature rules with the substitution of
Fourier approximation (1).

The numerical results are given in Fig. 3 and Table 3, which present  [cm /(mol s)] as a func-
tion of  [keV]. Approximations for  can also be found in [6]. The deviations  of those quanti-
ties from our data in percent are shown in Fig. 4. It can be seen that, at low temperatures,  is at most 11%
for reactions (13) and (16), only 5–7% for (15), and reaches 20% for (14). These improvements are
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important for physical applications. Of course, for  keV, Kozlov’s formulas quickly become inac-
curate.

Thus, the above results can be used to improve the accuracy of computing thermonuclear targets in
which relatively low temperatures are primarily required. Accordingly, Table 3 can also be recommended
for using as reference data. Since quadrature (18) was calculated to high accuracy, the error in these data
is determined by the error of the original cross sections in Table 2. It can roughly be estimated as 0.007–
0.008 for both channels of the reaction  (which corresponds to 1.5%), as  for the reaction

 (i.e., 2%), and as 0.017 for  (i.e., 4%).

5.2. Gasdynamic Applications

Tables of reaction rates are inconvenient for using in gasdynamic codes. It is desirable to replace them
by approximating formulas with a few parameters. Such formulas were derived by applying the double
period method, but without regularization, since this time we approximated a smooth mathematical curve
rather than experimental points with a large scatter. The same accuracy as in Table 3 was achieved for

 and .

> 100T

±
+D D ± .0 01

+D T ± + 3D He

= 5M = 3N

Table 3. Reaction rates  [cm /(mol s)]

logT, 
keV DD → pT

DD →
n3He

DT →
n4He

D3He →
p4He

logT, 
keV DD → pT

DD →
n3He

DT →
n4He

D3He →
p4He

–2.0 –50.402 –50.402 –50.492 –74.292 0.8 –18.749 –18.729 –16.525 –19.629
–1.9 –47.667 –47.668 –47.582 –69.633 0.9 –18.482 –18.460 –16.217 –19.120
–1.8 –45.139 –45.140 –44.891 –65.324 1.0 –18.237 –18.213 –15.947 –18.644
–1.7 –42.803 –42.804 –42.405 –61.338 1.1 –18.013 –17.987 –15.716 –18.199
–1.6 –40.645 –40.645 –40.107 –57.651 1.2 –17.807 –17.779 –15.523 –17.784
–1.5 –38.650 –38.651 –37.984 –54.241 1.3 –17.618 –17.587 –15.369 –17.401
–1.4 –36.808 –36.809 –36.022 –51.089 1.4 –17.444 –17.410 –15.249 –17.050
–1.3 –35.107 –35.108 –34.210 –48.174 1.5 –17.283 –17.246 –15.162 –16.736
–1.2 –33.537 –33.538 –32.537 –45.479 1.6 –17.134 –17.093 –15.103 –16.462
–1.1 –32.087 –32.088 –30.993 –42.989 1.7 –16.996 –16.952 –15.069 –16.228
–1.0 –30.750 –30.750 –29.567 –40.687 1.8 –16.867 –16.820 –15.057 –16.036
–0.9 –29.517 –29.517 –28.252 –38.560 1.9 –16.747 –16.697 –15.062 –15.881
–0.8 –28.379 –28.379 –27.039 –36.596 2.0 –16.635 –16.582 –15.082 –15.762
–0.7 –27.331 –27.330 –25.920 –34.781 2.1 –16.531 –16.476 –15.114 –15.674
–0.6 –26.366 –26.365 –24.888 –33.105 2.2 –16.435 –16.377 –15.156 –15.613
–0.5 –25.476 –25.475 –23.936 –31.559 2.3 –16.345 –16.286 –15.206 –15.575
–0.4 –24.657 –24.657 –23.058 –30.131 2.4 –16.263 –16.201 –15.261 –15.556
–0.3 –23.904 –23.903 –22.248 –28.815 2.5 –16.188 –16.124 –15.318 –15.552
–0.2 –23.211 –23.210 –21.501 –27.602 2.6 –16.118 –16.052 –15.378 –15.561
–0.1 –22.573 –22.572 –20.812 –26.484 2.7 –16.054 –15.987 –15.436 –15.579
0.0 –21.988 –21.985 –20.177 –25.454 2.8 –15.995 –15.928 –15.492 –15.603
0.1 –21.450 –21.445 –19.590 –24.505 2.9 –15.940 –15.875 –15.543 –15.632
0.2 –20.957 –20.950 –19.047 –23.630 3.0 –15.888 –15.826 –15.589 –15.662
0.3 –20.504 –20.495 –18.544 –22.824 3.1 –15.841 –15.783 –15.629 –15.694
0.4 –20.089 –20.077 –18.077 –22.081 3.2 –15.796 –15.744 –15.663 –15.724
0.5 –19.708 –19.695 –17.643 –21.396 3.3 –15.755 –15.709 –15.692 –15.754
0.6 –19.360 –19.344 –17.240 –20.762 3.4 –15.716 –15.677 –15.717 –15.781
0.7 –19.041 –19.023 –16.866 –20.175

log ( )K T 3
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The number of fundamental-period harmonics turned out to be nearly the same as the number of dou-
ble-period harmonics. Therefore, formula (1), in which the double-period functions follow the funda-
mental-period ones, is not very convenient. It is much more beneficial to write the result as a truncated
Fourier series on . Then the double-period functions become odd harmonics, while the fundamen-
tal-period functions become even harmonics. The final approximation in physical units without reducing
the argument to the standard interval  has the form

(19)

Here, the temperature is measured in electronvolts. For all four reactions,  and . The other
coefficients are presented in Table 4, which also lists the relative approximation errors  (%) in the C
norm. It can be seen that the mathematical accuracy of the approximation roughly agrees with the esti-
mated physical accuracy, so that  and  were chosen reasonably. For all reactions, the condition num-
ber of the linear system was , which is rather high, but quite acceptable for 64-bit computations.

Table 4 can be recommended for using in applied computations. Since the double period method
allows reasonable extrapolation beyond the fundamental period, formula (19) can be used even in the
range  (in eV).
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Table 4. Coefficients of the approximation of  by a Fourier series

ξ0 –41.898 –42.145 –42.559 –60.504
ξ1 30.017 30.484 33.312 53.039
η1 24.313 24.459 24.394 43.244
ξ2 –9.150 –9.451 –9.876 –16.233
η2 –16.995 –17.170 –16.909 –31.497
ξ3 2.140 2.265 2.501 3.980
η3 7.572 7.744 7.406 15.707
ξ4 –0.316 –0.346 –0.414 –0.749
η4 –2.540 –2.655 –2.148 –6.055
η5 0.580 0.630 0.411 1.734
ξ6 0.012 0.015 0 0.004
η6 –0.068 –0.079 0 –0.319

Δ, % 1 0.5 2.5 0.9

log ( )K T
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