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1. INTRODUCTION
In the theory of multiresolution analysis (MRA), wavelets form a basis of the set that fills the gap

between the approximating spaces on a fine and coarse grids (see [1]). In the classical case of approxima-
tions on uniform infinite in both directions grids, such a basis is generated by dilations and displacement
of a single wave function that has the shape of a short rapidly damping wavelet. Due to dilation, the wave-
lets reveal to different degrees of detail differences in the characteristics of the measured signals, and due
to displacements, they are able to analyze the signal properties at different points in the entire interval
under examination. In the analysis of time-dependent signals, the locality property of wavelets gives them
a significant advantage over the Fourier transform, which can reveal only global properties of the signal
because the basis functions of the Fourier transform (sines and cosines) have an infinite support. Since
the wavelets transform the system of basis functions with distributed parameters to a system with lumped
parameters, the wavelet basis is much more effective from the viewpoint of conditioning and convergence.
The construction of wavelets is based on the existence of scaling (or calibration) relations such that each
basis function on a coarse grid can be represented as a linear combination of the basis functions on a fine
grid. In particular, such relations are satisfied by splines, which are smooth functions composed of seg-
ments of polynomials of degree  on a sequence of embedded grids. In the case of uniform grids on the
entire number line, these relations are well known, as well as some cases of approximation on a finite inter-
val. However, the practically important case of measurements given on a nonuniform grid is less well stud-
ied. Some recommendations on deriving a system of equations for finding the scaling coefficients and
methods for its solution can be found in [2]. In [3], the problem of adding nodes one-by-one for con-
structing a telescopic wavelet expansion was studied; in [4], another version—removing nodes one-by-
one—was proposed. In [5], a special rational identity was used to obtain scaling relations for the interior
grid points only. In [6], the scaling relations for cubic splines were formally obtained for all nodes. How-
ever, no explicit expressions for the scaling coefficients were written out. In the present paper, we propose
an elementary method for solving this problem based on the use of a local approximation that is exact on
splines and on the well-known de Boor–Fix lemma [7].

The second thing underlying any wavelet transform is a set of scaling relations for wavelets. Such rela-
tions are known for orthogonal and biorthogonal wavelets, which allows one to use an infinite iterative
procedure to obtain their graphical representation but does not give an analytical expression that could be
used as a trial function, e.g., in the Galerkin type method. In contrast, the semiorthogonal [8] and non-
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orthogonal [9] wavelets are determined explicitly by linear combinations of the basis splines on the fine
grid. A distinctive feature of semiorthogonal wavelets, which is sometimes used as a basis for the corre-
sponding numerical method (see [10]) for constructing the wavelet transform, is the fact that the wavelet
expansion gives the best root-mean-square approximation of splines on the fine grid using splines on the
coarse grid. This is a considerable advantage for compressing discrete numerical data. However, this
advantage is lost when the resulting spline-wavelet expansions are differentiated. A progress in solving this
problem was achieved by constructing nonorthogonal spline-wavelets for which a greater number of
moments vanish (see [11–14]); however, the wavelet supports increase in this case. In our opinion, the
optimal solution is to use spline-wavelets that provide the best root-mean-square approximation of the
spline derivatives on the fine grid by spline derivatives on the coarse grid. First, such wavelets were studied
in the case of cubic splines (see [15, 16]), where the cubic wavelets  were found for which the
orthogonality conditions to the corresponding basis splines  with respect to the scalar product

of the second-order derivatives are fulfilled:  = 0 . It turns out that these
wavelets have a simple organization; in particular, their support is smaller than the support of the classical
semiorthogonal spline wavelets; namely, . In addition, they proved to be useful in solving dif-
ferential equations (see [17]), and they were numerically implemented in a standard program in MatLab
(see [18]). A generalization of this construct for the case of a nonuniform grid was made in [6].

Finally, the last but not least problem in the theory of wavelets is the calculation of the coefficients of
the wavelet expansion for a given function. In the case of orthonormal and biorthogonal wavelets, the
solution is reduced to the application of averaging filters. In our opinion, this is a drawback because the
information for the calculation of each coefficient on the coarse grid is used incompletely. In contrast, the
coefficients of semiorthogonal (see [8]) and nonorthogonal (see [9]) wavelets are related by systems of lin-
ear algebraic equations; however, these systems are not guaranteed to be well conditioned. In the case of
the measurements specified on a nonuniform grid, these difficulties are aggravated by the problem of sta-
bility with respect to the location of the grid points (see [19]). In [6], it was proposed to use in the com-
putations the unique point value vanishing property of the constructed wavelets to obtain an algorithm for
the discrete wavelet transform that requires the coefficients of an interpolation spline to be computed at
each step. However, the resulting expressions turned out to be very cumbersome, and we did not found
references to using this construct in practical computations. We propose to use the odd-even splitting
technique (see [20]) based on finite implicit relating the basis functions of the set of splines on the coarse
grid, the basis functions on the fine grid, and wavelets. A similar idea of constructing intermediate implicit
finite spline schemes instead of implicit infinite (in the case of interpolation) and implicit finite (in the
case of local approximation) spline schemes was earlier used in [21] to justify computationally convenient
(decreased bandedness and diagonal dominance) spline approximation methods. In [22], the odd-even
splitting technique of the matrix of the wavelet transform was used to prove its invertibility; however, the
possibility to use this technique in practical computations was not explicitly mentioned.

2. CONSTRUCTING CUBIC SPLINE WAVELETS

Let  be the space of cubic splines that are continuous up to the third-order derivatives, inclusive, on
the interval  with the nonuniform grid of points  of size .
To obtain the basis functions in the space , one should add the fictitious grid points x–3 < 

and  to the grid  and construct the fourth-order divided difference for the

function  =  given the values of the argument t = xk – 2, xk – 1, xk,
. Then, the functions

are normalized -splines (see [23; 24, pp. 18–23]). They are spline functions of degree 3 and defect 1.
They are distinct from zero on the intervals (supports)  and are identically equal to zero outside
these intervals. In other words, the derivatives  up to the second order vanish. This requirement
imposes six conditions on the parameters of the resulting spline, and one more free parameter is deter-

mined so as to satisfy the normalization condition , . Every cubic spline
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 can be uniquely represented on the interval of the parameter  variation  by a linear com-
bination of -splines:

(1)

where  are constant coefficients.
We do not impose any continuity conditions at the endpoints of the interval under examination. This

corresponds to the fact that the basis consisting of -splines ensures a valid representation of the elements
of  only on the interval . To take into account the defect , each point of the grid  should be
assigned the multiplicity equal to the spline defect at this point and the grid points should be renumbered
taking into account their multiplicity. For the further considerations, it is convenient to choose the first
and the last grid points such that , . Then, for ,
the defined functions satisfy the homogeneous boundary conditions

Let us denote the space thus defined by . Let the grid  ( ) be obtained from  by removing
every other grid point (apart from the fictitious points). Then, the corresponding space  with the basis
functions , which are distinct from zero on the doubled supports , is embedded in .
For , the two-scale scaling relation between the basis functions in  and in  was
obtained in [5]:

(2)

where

To obtain the scaling relation between the basis functions in  and in  at the left endpoint of the
interval, we calculate the values of  at the points of the fine grid  and substitute
them into the formula (see [7, 23]) that represents the coefficients of the local approximation spline in
terms of the values of the function to be approximated at the grid points

Then, we obtain
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The representation of the rightmost wide basis function is the mirror reflection of the above represen-
tation:

(4)

where

The set of wavelets  is defined as the orthogonal complement of  of  in the Hilbert space

in which the scalar product is defined by

The characteristic property of the functions  is that  for , …, , which
immediately implies that the set of basis wavelets satisfies the following scaling relations (see [6]):

(5)

(6)

(7)

where

and

For the case of a uniform grid, such wavelets were independently defined in [25]. It is clear that the
support  of these wavelets is fairly small—it is smaller than the support of the cubic

-spline.

3. CONSTRUCTION OF THE WAVELET TRANSFORM

It is convenient to write the spline coefficients and the basis functions in  as 

and . Then, for every function , Eq. (1) can be rewritten in the form

. Similarly, in the space , we write the basis wavelet functions as the row matrix
. The corresponding wavelet coefficients are written in the form of the vector DL =

. For the grid  ( ), we can write the functions  and  as linear combina-
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structed from five (respectively, three) and at the endpoints of the interval from four (respectively, two)
narrow basis functions  and , where the elements of the columns of the matrix

 are composed of the coefficients of the scaling relations (2)–(4), and the elements of the columns of
the matrix  are composed of the coefficients of the scaling relations for wavelets (5)–(7).

Since any function in  can be written as the sum of a function in  and a function in , we have
the equalities

Therefore, the coefficients  of the cubic spline on the grid  can be obtained from the coefficients
 and  of the wavelet expansion on the grid  as  or, using the block

notation for matrices (see [8]), as

(8)

Here is an example of the matrix  corresponding to :
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4. AN ALGORITHM USING SPLITTING
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ing coefficients  consists of solving the system of linear equations (8). For this purpose, system (8) can
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Proof. By construction, inside the interval , on the support of each wide basis function, two wave-
lets and five narrow basis functions overlap. Therefore, upon renumbering the nodes to make them

, we can write the following finite implicit relation on the interval :

(13)

Since both sides in (13) involve cubic splines, for these sides to be identical, it is sufficient that the cor-
responding coefficients in the B-spline basis on the fine grid coincide. For calculating the unknown coef-
ficients in (13) using the scaling relations introduced above, we have for the corresponding numbers

For , the solutions to the system coincide with the coefficients of the scaling relations for the
basis spline wavelets  for ,  and  for , .

For , we try to find a system of equations relating the expansion coefficients for the even nodes
(the case when ). It is easy to verify that the system has a unique nontrivial solution for which
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Then, , , and . Furthermore, we have two scaling identities for

the basis spline wavelets  and .

Define sequences of matrices  and  whose blocks are composed, respectively, of the coefficients
of the left-hand and right-hand sides of the expansions obtained above:

As a result, we conclude that the basis functions of the space of splines on the fine grid, the basis func-
tions on the coarse grid, and the wavelets satisfy the equality

Hence, using the property of the complement of the space of wavelets, we find that

Now, we can write the solution to system (8) in matrix form as (see [20])

after splitting with respect to the even and odd nodes, we obtain the assertions of Theorem 1.
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The solvability of system (10) follows from the uniqueness of the corresponding interpolation spline
(see [24, p. 141]).

Let

where .

It is known (see [24, p. 143]) that, if , then system (10) possesses the strong diagonal
dominance property, and it is recommended to solve it using the tridiagonal matrix algorithm. Otherwise
the non-monotonic elimination method, which is valid for any well-conditioned matrix, should be used.
Unfortunately, the well conditioning of the matrix in the case  cannot be guaranteed.

For this reason, in the general case we will solve the following interpolation system for the unknowns
 ( ) (see [24, p. 100]):

(15)

Here

(16)

(17)

The matrix of system (15) possesses the diagonal dominance property (see [26]). Such matrices are
nonsingular; therefore, the system of equations for the spline coefficients on the coarse grid  always
has a unique solution. The solution to the system of equations for  is found by the tridiagonal matrix
algorithm (TDMA). After finding  the coefficients  of the spline are calculated as described above
using the local approximation formula, which is exact on the splines, but on the grid :

(18)

(19)

5. EXAMPLES OF THE CALCULATION
OF THE WAVELET DECOMPOSIYION BY HAND

5.1. The Numerical Differentiation Problem

Let , and let the discrete signal be represented by nine values of the analytic function f(x) =
 at the given points . At the points , all the homogeneous bound-

ary conditions that are required for constructing the wavelet expansion are satisfied; therefore, we can
investigate the application of the constructed algorithm for numerical differentiation. Note that, at the
first step of the wavelet expansion algorithm, the right-hand sides of Eqs. (7) may be assumed to be equal
to the values of the interpolation spline; i.e., they are equal to the values of the given function at the even
nodes of the fine grid. In reality, the data are typically noisy—they can be the values of a smoothing spline
(see [27; 24, p. 154; 3]).
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Thus, there is no diagonal dominance in the first row:

For this reason, we will use system (15), which is guaranteed to have the diagonal dominance property; for
this system, (16) and (17) have the form

First, we find the elimination coefficients ,  (the forward course of the TDMA [24, p. 337]):
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It is clear that  The other unknowns are found using the backward TDMA
formulas:

The auxiliary quantities  are found by formulas (19):

For the level , we find the coefficients  using the formulas of the local spline approximation (18):

To calculate the odd coefficients , we have to repeat the same operation for the original grid .
Then, the wavelet coefficients  are obtained by (11), (12):

Following [6], we will not encumber the presentation by constructing the wavelets of level .
We restrict ourselves to discarding three relatively small coefficients  of the wavelet expan-
sion thus compressing the input digital signal with the coefficient .

The coefficients of the approximation spline are reconstructed using the complete matrix of the direct
wavelet transform (9):
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Using the vector notation of the cubic spline, we obtain the filtered values

and the resulting values of the second-order derivative at the endpoints of the interval

which is only 1.3% less than the value 779.8 at the right endpoint obtained using the interpolation spline.
The root-mean-square deviation is

5.2. The Prediction Problem

In this section, we perform the wavelet analysis of the function  given on the interval
 at the nodes of the uniform grid . Since the homogeneous boundary conditions are

not completely satisfied ( , , , and ), we must subtract
from the given signal the values of the cubic interpolation polynomial 
before processing, where (see [24, p. 59])

After the wavelet analysis of the differences and the reconstruction of the cubic approximation spline
by the wavelet coefficients, the values of this polynomial are added to this spline. Note that there are no
computational difficulties in the case of the uniform grid; therefore, the direct matrix approach can be
used.

For the level , we find the coefficients  by solving the interpolation problem (see [24, p. 141]):
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For the level , the coefficients  are found by the forward course of the wavelet trans-
form:

In this case, all four wavelet coefficients are equally insignificant. In the backward course of the wavelet
transform, we obtain

Then, the reconstructed values of the approximation spline are

Taking into account the corrections by the values of the cubic polynomial, we obtain the filtered values
 and the resulting 

In the wavelet analysis of actual discrete signals, the homogeneous boundary conditions required for
constructing the wavelet expansion are known to be unsatisfied. Therefore, the above algorithm can be
interpreted as the solution of the problem of the point forward and backward prediction given a time series
of the measured values of the quantity to be predicted (see [28]).
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For the above example, consider an alternative hypothesis that the homogeneous boundary conditions
are fulfilled on the interval  but only the zero value of the first-order derivative at the left endpoint is
actually true; in this case, the input data are processed without corrections. For the level , we find
the coefficients :

For the level , we find the coefficients  using the forward course of the wavelet transform:

In the backward course of the wavelet transform, we can try to eliminate the minimal wavelet coeffi-
cient  and obtain in this case  The attempt to eliminate the next (in the
absolute value) wavelet coefficient  gives . The relation between the pre-
diction error and the number of discarded wavelet coefficients immediately shows that the alternative
hypothesis is not true.

If we subtract from the input data the values of the linear function  thus making an error
only in the satisfaction of the zero condition for the first-order derivative at the right endpoint, then the
algorithm yields the following results:

,

and
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the filtered values , and  The

attempt to eliminate the next (in the absolute value) wavelet coefficient  yields .
The relation between the prediction error and the number of discarded wavelet coefficients shows that this
solution is also significantly inferior to the solution obtained by substituting into the prediction all the
exact values of the function and its first-order derivative. The choice of the prediction step size and the
development of a numerical method for finding the best predicted values of the function and (or) its first-
order derivative at the points  require further studies.

6. CONCLUSIONS
The procedure for constructing the spline wavelets that are semiorthogonal with respect to the scalar

product with the derivatives proposed in this paper and the corresponding procedure for obtaining for
them implicit relations for the expansion with splitting with respect to the even and odd modes provides
new capabilities for creating computationally efficient algorithms of constructing and using spline wave-
lets on nonuniform grids. The numerical results confirm the existence of the optimal prediction values of
the constructed spline wavelets.
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