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Abstract—A numerical-analytical iterative method is proposed for solving generalized self-adjoint reg-
ular vector Sturm–Liouville problems with Dirichlet boundary conditions. The method is based on
eigenvalue (spectral) correction. The matrix coefficients of the equations are assumed to be nonlinear
functions of the spectral parameter. For a relatively close initial approximation, the method is shown
to have second-order convergence with respect to a small parameter. Test examples are considered,
and the model problem of transverse vibrations of a hinged rod with a variable cross section is solved
taking into account its rotational inertia.
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INTRODUCTION

The interaction of distributed systems can be described by differential and integrodifferential equa-
tions, which lead to vector Sturm–Liouville problems (VSLPs) that are nonlinear with respect to the spec-
tral parameter (SP).

An accelerated convergence method for finding eigenvalues and eigenfunctions of systems described
by VSLPs with a classical SP dependence and by one-dimensional SLPs with a nonlinear SP dependence
was developed in [1–3]. A natural continuation and generalization of [1–3] is to extend the method to
problems with an arbitrary dependence of their coefficients on SP. The goal of this study is to describe
such a method and test its performance. The existence of solutions, the isolation and multiplicity of eigen-
values, and the completeness and basis properties of eigen- and associated functions are not discussed.

Numerous methods have been developed for solving and studying the classical one-dimensional prob-
lem [1, 4–8]. Much attention has been given to problems with a nonlinear SP dependence of coefficients
and with boundary conditions of various types in both one-dimensional [9–19] and vector [20, 21] setting.
The basic difference of our method (including from those based on spectral correction [22]) is that the
miss-distance (or mismatch) function is defined as the difference between the lengths of the problem’s
intervals for an eigenvalue approximation and its sought value (see below), and Newton-type spectral cor-
rection is used taking into account the error function.

By analogy with the one-dimensional version of the method for the classical SLP [23, 24], it can be
expected that the method described will be convenient in experimental studies, since the basic varying
parameter is the length of the problem’s interval, which corresponds to a particular physical quantity
(the length of a rod or string, an angular variable, etc.).
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1. FORMULATION OF THE GENERALIZED VECTOR STURM–LIOUVILLE PROBLEM

Consider the Sturm–Liouville problem: find  such that there exists a nontrivial piecewise
smooth vector function X that solves the following self-adjoint VSLP with Dirichlet conditions [25]:

(1.1)

Assume that the SP  in problem (1.1) varies within a given domain  (specifically,
), the spectrum is discrete, and the problem has a solution. Further assumptions concerning the

behavior of the coefficients are supposed to hold on some extended interval of x: , where
, . The  matrices P and R are assumed to be symmetric for all admissible values of

their arguments. Additionally, we assume that the elements of P and R are bounded for fixed , continu-

ous with respect to , and continuously differentiable with respect to  and one of the matrices  is
not singular (see below). The eigenvalues  are assumed to be continuously differentiable functions of the
length l of the problem’s interval, and the same it true for the inverse mapping .

For some auxiliary (not mandatory) stages of the algorithm described below, the matrices  and P
are required to be differentiable with respect to x, while, for the proofs of the convergence theorems, this
property is assumed to hold only for P. Additionally, we assume that the matrix functions P and R can be
locally represented in a small δ-neighborhood of each point of the admissible domain of x, λ in the form

where  is a functional matrix norm.

2. DIFFERENTIAL PROPERTIES OF THE SOLUTION AND THE EIGENVALUE

Assuming that the sought eigenfunction X is a function of x, , and l and treating l as an independent
variable parameter, we have the representation

Introducing the complete partial derivative , , , we differentiate system (1.1)
with respect to l (here, ):

(2.1)

The inner product in  is defined as  =  Then, integrating the scalar prod-
uct of Eq. (2.1) and X by parts, we express the sought quantity  as a function of  and l:

(2.2)

For  and , we have , which usually holds in applications.
Remark 1. Formula (2.2) is a generalization of the well-known expression [1, 8] for eigenvalues of clas-

sical scalar SLPs to the problems under consideration, and  can be treated as the Fréchet derivative of a
functional defined on the Banach space of solutions to problem (2.1) and acting on .

3. CORRECTION PROCEDURE FOR EIGENVALUES AND EIGENFUNCTIONS

Let ε be a small quantity ( ) corresponding to an arbitrarily small increment of l. Then  can be
represented in the form  or, for an arbitrary point  that is ε-close to l, we

can write
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The derivative  can be found using formula (2.2) with  and .

Let  be an initial approximation. The solution is constructed using successive approximations. To
find , i.e., the generating solution of the boundary value problem satisfying system (1.1)
for  and some , we consider s Cauchy problems

(3.2)

where  is the ith basis vector and . The point  is found as the sought mth (m is, for exam-
ple, the eigenvalue index) or nearest-to-l root of the equation

(3.3)

Here, Δ is the determinant of the matrix , whose columns are the solutions of Cauchy prob-
lems (3.2). In practice,  can be found using a numerical-graphical method with simultaneously solving
these problems, where Δ is calculated at every step of the numerical integration. Assuming for simplicity

that  we obtain  = . Then, representing the eigenfunction as a linear
combination of the basis solutions , i.e.,  and considering a linear homoge-

neous system for the constants , namely, , where , we can

use some  and the vector functions  in order to express the other , :

.

Then, according to (2.2), the next approximation (improved up to an  error) is given by

(3.4)

Here,  can be calculated by integrating the scalar Cauchy problem

,  with . However, the auxiliary problem in this formu-

lation involves right-hand-side terms that are quadratic in the numerically found vector , which
requires high-order accurate integration, for example, by applying a higher order accurate scheme than
that used for solving problems (3.2). Integration by parts yields

(here, , , ). We introduce a sensitivity vector function ,  such that

(3.5)
Then expression (3.5) can be reduced to

Since X is a nontrivial function,  can be represented in the form of (3.5), where the vector function
K is the solution of the following Cauchy problem (linear with respect to K, X, and X') at ,

, and :

(3.6)

Remark 2. The requirement  (which is equivalent to the condition that  is simple) is caused by
the necessity of calculating the number of zeros of , whose sign does not change for eigenvalues of
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even multiplicity; consequently, Cauchy problems (3.2) have to be integrated to high accuracy. If these
problems are solved using a specialized numerical method that rather accurately takes into account even-
order zeros of  (e.g., by applying a method intended in the original form for calculating the number
of eigenvalues [26] or the Prüfer vector method [27, 28], both of which automatically count zeros taking
into account multiplicity, or by applying a semianalytical method of perturbing a constant reference
potential of high order [7]), then modifications of the algorithm are minimal. Specifically, the multiplicity
of  is determined by the rank of  and is equal to , and the corresponding eigen-
functions are also found as linear combinations of the constructed solutions . For example, for a mul-

tiplicity of two, ,  where  are linearly independent solu-
tions of the system of equations  =  which are expressed in terms of some , , and, with-
out loss of generality, we can set  and  for  and  and  for . Moreover, the
multiplicity of  can vary with varying  hence, a situation is possible where the mth zero of  is mul-
tiple for the given , but becomes simple for the refined .

Remark 3. In the SP-nonlinear case, it cannot be stated a priori that the number of zeros of 
increases with growing . As follows from (2.2), the number of zeros can increase or decrease depending

on the behavior of the matrix functions   and  for example, for  if  on some interval

 (which is possible, e.g., for  ), then the number of zeros increases with growing 

while, if  for  (e.g., for  ), then the number of zeros decreases with grow-
ing λ.

4. ITERATIVE PROCEDURE AND THE PROBLEM OF CONVERGENCE

To find the next approximation , we need (1) once again to find solutions of  Cauchy prob-
lems (3.4) at  (2) determine  (3) construct the eigenfunction  and (4) calculate a refined
value of  by using formula (3.4), etc.

Thus, the following assertions hold.

Theorem 1. (i) An eigenvalue of problem (1.1) can be found with prescribed accuracy by applying the fol-
lowing iterative scheme with a quadratic error:

Here,  for the given  are calculated by solving problems of type (3.2) at the preceding
jth step.

(ii) The accuracy  ( , ) of the computed eigenvalue  is determined by a two-sided

estimate following from formula (2.2). For , , , and  (where an equality is

allowed for only one matrix), if  at the jth iteration step, then , and, if  at the kth step,

then . For , , , and  (where an equality is also allowed for only one

matrix), the reverse inequalities are valid. Namely, if  at the jth iteration step, then , and, if

 at the kth step, then  Thus, the eigenvalue lies between the calculated  and , i.e.,
 or , . If , , then the reverse inequal-

ities are valid.
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Theorem 2. According to (3.1) and (3.4), the procedure described leads to a uniform quadratic estimate with
respect to the dimensionless parameter :

(4.1)

where  is sufficiently small.
In the generic case, the coefficient d in (4.1) is uniformly bounded in terms of the matrix functions

 , and their derivatives with respect to 
Theorem 2 is proved by applying the perturbation method and majorant functions [29]. Assume that

problem (1.1) has a solution at some . Consider s Cauchy problems (3.2) at  According to the
assumptions made, the eigenvalues depend continuously on the interval length l. Therefore, there exists a
point  such that the determinant in (3.3) vanishes and there is a linear combination  of solu-
tions to these Cauchy problems for which

(4.2)

Assuming that  is close to l, we introduce the small parameter , , and make the sub-
stitution  in the original problem (1.1): Y(y) = X(yl/ξ),

Thus, we obtain the perturbed boundary value problem

(4.3)

Expanding the desired solution λ, Y of problem (4.3) in powers of  and omitting higher order terms yields
the following representations for eigenvalues and eigenfunctions:

The matrix coefficients are naturally represented in the form

(4.4)

According to (4.4), we obtain the boundary value problem

(4.5)

(for brevity, the dependence of P, R, and their derivatives on  was omitted). For the zero degree

of the small parameter, the boundary value problem coincides with (4.2), whose solution  is

known. It follows that  and  In what follows, we assume that 

To apply further expansions in powers of , find the next expansion terms , , and estimate the
remainder, we need the analyticity of the matrix coefficients in problem (4.3), which is a rather restrictive
assumption for the generic case. For this reason, after finding the zeroth expansion term , , we solve
problem (4.3) by applying perturbation theory [30], which does not require such assumptions (the method
of successive approximations [29]).
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Let  and . By analogy with (4.5), dividing through by , we obtain
(at the first and higher powers of the small parameter) an inhomogeneous boundary value problem that is
quasilinear in  and linear in , namely,

(4.6)

where  and the function F is linear in  and Lipschitz continuous in  and satisfies  and
. Considering problem (4.6) without a perturbation of order  (of ) and applying the Fred-

holm theorems [31], we conclude that a nontrivial solution of (4.6) exists if its right-hand side is orthog-
onal to the solution of the homogeneous equation (4.2), which is the given function :

(4.7)

Here, the multiplier of  is equal to  (see (3.4)). The other terms are transformed by integration
by parts:

Thus, the expression outside square brackets in (4.7) can be reduced to the desired form

Therefore, for the approximation  to the sought eigenvalue , we derive an expression equivalent to for-
mula (3.4):

The solution  of the inhomogeneous boundary value problem (4.6) with  is found in
the standard manner: replacing the boundary conditions by the initial conditions  and

, we consider s Cauchy problems. The orthogonality condition (4.7) guarantees that there
exists a linear combination  of solutions  such that the right boundary condition holds: 

Next,  is normalized so that  and we set 

Following the method of successive approximations, the found corrections  and  are
substituted into the right-hand side of Eq. (4.6):

(4.8)

The next correction approximation  is also determined using the orthogonality condition:  –
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sive approximations (4.9) converge to the unique solution ,  The radius of convergence can be
roughly estimated with the help of Shimanov’s approach [29, 33].
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Remark 4. The actual accuracy  of the computed eigenvalue depends on the accuracy of the numer-
ical method used for integrating the auxiliary Cauchy problems (3.2): if is the order of the numerical
method used to solve the Cauchy problems, then the accuracy of  is at most .

5. TEST EXAMPLES

The problem described in Sections 1–3 was computed using a C++ program. Singular value decom-
position of matrices from the GNU Scientific Library [34] was used to monitor the rank of the matrix 
and to find the constant vector . The initial grid was uniform, and the number of points in the parti-
tion of the integration interval was . On each of the grid subintervals, the Cauchy problems were
integrated using the fourth/fifth-order Runge–Kutta–Fehlberg method with automatic step size selection
implemented in RKF45 [35] with local relative and absolute errors of  and , respectively. Follow-
ing the technique described, if the sought zero satisfies , then  and if , then  (the
interval is expanded, and new integration points are added), while the step size is preserved. The point 
was determined as the root of a third-degree Lagrange interpolating polynomial constructed using four
points: two points in a uniform grid that are smaller than  and two points that are larger than . To com-
pute the eigenvalue correction term, the Cauchy problem was solved anew on the interval  together
with problem (3.6). All the examples presented below are considered on  with Dirichlet boundary
conditions.

Example 1. Consider the classical SLP for the Euler-type scalar equation  [1].

An analytical solution is sought by making the substitution :

Assume that the nth eigenvalue  differs from its estimate  by  i.e., . For
the given numerical integration method and a fixed integration grid, Table 1 presents the number M of
iterations required for achieving a relative error  in the first and fifth eigen-
values :   The table also gives the absolute error

 and the difference  for the initial  and last  approximations (i.e., 

corresponds to the mismatch of the eigenvalue approximation , and , to the mismatch of  cal-
culated at the penultimate th step of the algorithm).

Example 2. Consider a Euler-type scalar equation with a nonlinear parameter dependence:
 (see [1]).

ε2

p
λ 2( )pO h

W
ξ( )C

= 20ln

−610 −710
ξ < l ξ ≤ 20,n ξ > l ξ > 20n

ξ

ξ ξ
, ξ[0 ]

,[0 1]

−+ λ + =2'' (1 ) 0u u x

= +(1 ) pu x

( )= + γ + , = ,( ) 1 sin ln(1 ) constn n n nu x c x x c

−γ = λ − , λ = π + , = , ,…2 2 24 1/2 ln 2 1/4 1 2 .n n n n n

λn λ(0)
n ,%nm −λ = λ +(0) 2(1 10 )n n m

+ −= λ − λ λ ≤( 1) 6
rel ( )/ 10M

n n ne
= ,( 1 5)n λ ≈ . ,1 20 792288 λ ≈ . .5 513 807212

+= λ − λ( 1)
abs

M
n ne ε = − ξl l ε(0)l ε( )M l ε(0)l

λ(0)
n ε( )M l λ( )M

n
−( 1)M

−+ λ + =2'' ( ) 0u u x

Table 1

m1, % erel eabs ε(0)l ε(M)l M

1 5.4 × 10–9 1.1 × 10–7 7.0 × 10–3 –6.5 × 10–5 2

10 6.1 × 10–9 1.2 × 10–7 6.4 × 10–2 –5.5 × 10–5 3

40 7.5 × 10–8 1.6 × 10–6 2.1 × 10–1 –2.5 × 10–4 4

m5, % erel eabs ε(0)l ε(M)l M

1 6.6 × 10–7 3.4 × 10–4 6.9 × 10–3 –6.4 × 10–5 2

10 3.7 × 10–7 1.9 × 10–4 6.3 × 10–2 –2.6 × 10–5 3

40 1.6 × 10–7 8.1 × 10–5 2.0 × 10–1 9.8 × 10–7 5
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Its solution is sought in the form  In the domain of admissible values ,
the analytical solution is given by

In this example, the eigenvalues tend exponentially to 0 from the right for  and to –1 from the left for
. The problem is similar to a singular one, and its solution rapidly oscillates near  for  and

near  for , so the construction of eigenfunction even for small n is a complicated computa-
tional problem. For simplicity, our consideration is restricted to the cases , ,

, when the eigenfunction have no zeros inside the interval . The function
 is extended by a constant to . Table 2 presents the corresponding results found as

described in Example 1.

Example 3. Consider an SP-nonlinear vector equation with constant coefficients and a finite number
of real eigenvalues (elementary case):

(5.1)

where  and . Adding up the equations yields a boundary value problem [36]
with the solution . The eigenvalues are the roots of the quadratic equation

. For  and  the eigenvalues are real for  Table 3 presents results

for two eigenvalues corresponding to  , ,

= λ + .( ) pu c x Λ = λ < − λ >{ 1, 0}

γ −
−

⎛ ⎞π= + λ + λ , =⎜ ⎟γ⎝ ⎠

λ = − , γ = π , λ + λ = − , = ± , ± , …1

( ) 1 / sin ln(1 / ) const,

( 1) 2 / 3 1 1 2 .

n n n n n

n
n n n

u x c x x c

e n

≥ 1n
≤ −1n = 0x > 1n

= 1x < −1n
= ±1n λ ≈ .1 0 02731

−λ ≈ − .1 1 02731 ,[0 1]
λ, = λ + 2( ) 1/( )r x x > 1x

− λ + λ = , − λ + λ = ,2 2
1 1 2 2 2 1 2 1'' ''( ) 0 ( ) 0u k k u u k k u

, >1 2 0k Λ = λ < λ > − 2 1{ 0, / }k k
= + = π1 2 sinu u u nx

λ + λ + π =2 2 2
1 2 0k k n =1 1/2k = ,2 23k ≤ .5n

= :5n ±λ = − ± − π2 2 2
5 2 2 2k k n −λ ≈ − .5 28 959847

Table 2

m1, % erel eabs ε(0)l ε(M)l M

1 5.9 × 10–7 1.6 × 10–8 –1.0 × 10–2 –1.0 × 10–2 1

10 5.2 × 10–7 1.4 × 10–8 –0.10 4.2 × 10–5 2

40 7.8 × 10–7 2.1 × 10–8 –0.40 8.4 × 10–3 2

m–1, % erel eabs ε(0)l ε(M)l M

1 3.1 × 10–7 3.2 × 10–7 –1.6 × 10–4 1.4 × 10–6 2

10 2.0 × 10–7 2.1 × 10–7 –0.12 –1.4 × 10–6 3

40 2.3 × 10–7 2.4 × 10–7 –0.7 1.5 × 10–6 5

Table 3

, % erel eabs ε(0)l ε(M)l M

1 5.4 × 10–7 1.6 × 10–5 –3.4 × 10–3 –2.1 × 10–6 4

10 1.1 × 10–7 3.1 × 10–6 –4.7 × 10–2 –4.5 × 10–7 6

40 1.5 × 10–7 4.3 × 10–6 –0.49 –6.1 × 10–7 8

, % erel eabs ε(0)l ε(M)l M

1 9.7 × 10–7 1.7 × 10–5 2 × 10–3 8.3 × 10–6 2

10 9.5 × 10–8 1.6 × 10–6 1.7 × 10–2 –2.6 × 10–7 6

30 8.8 × 10–8 1.5 × 10–6 3.4 × 10–2 –2.4 × 10–7 13

40* 1.7 × 10–7 2.9 × 10–6 –0.16 –4.3 × 10–7 7

−
5m

+
5m
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. By using this example, it is easy to demonstrate the influence exerted by the depen-
dence of the eigenvalues on the interval length  (or the point ). Obviously,

,

and  Therefore, if the sought  is sufficiently close to the critical value ,
then its insignificant variation can lead to a considerable variation in l. For example, for , we
have  and . If , then , , the correc-
tion term is , and the next approximation is  (for the accepted
accuracy, the values produced by the program for system (5.1) are , ,

, and  respectively), i.e.,  lies farther away from the sought 
and leaves the domain of admissible SP values, so problem (5.1) has no solutions. Note that this behavior
is not typical for most physical problems, but it has to be kept in mind in the application of the method.

Table 3 illustrates the case inverse to the preceding one, namely, the influence of a discontinuity in the
derivative  for . The initial approximation is , , and the
last value is close to the discontinuity point . The correction term is

, and the next approximation  lies rather far away from the
desired , so more iterations are required. Moreover, near the singularity, the algorithm exhibits a some-
what different behavior: , , and  Further refinement
requires 12 iterations.

In the last line in Table 3 for , the first approximation was specified as , since,
with the use of , the algorithm converged to the eigenvalue 

Example 4. Consider the SP-linear Euler-type vector equation

By analogy with the above examples, the solution is sought in the form , where 
is a constant vector:

Table 4 presents the results obtained for .
Example 5. Consider the SP-nonlinear Euler-type vector equation

Its solution is found as described in Example 4:

+λ ≈ − .5 17 040153
l ξ

− ± − π πλ = , λ = ±
− π

2 2 2 2 2 2
2 2 1 1

2 2 2 2 2
1 2 1

4 / 4'( )
2 4

k k k n l k nl
k l k l k n

= π − λ − λ.2
1 2/l n k k λ β = − 2 1/k k

= 1n
λ ≈ − .1 45 566807 β = −46 λ = −(0) 45 ξ ≈ .(0) 0 662306 ε ≈ .(0) 0 337694

ε λ ≈ − .(0) ' 1 042929l λ ≈ − .(1) 46 042929
≈ .ξ�(0) 0 662303 ≈ .ε�(0) 0 337697

λ ≈ − .ε �

�

(0) ' 1 042937l ≈ − .λ� (1) 46 042937, λ(1) λ

λ'( )l + =5 30%m λ ≈ − .(0) 22 152199 ξ ≈ .(0) 0 966501
= π ≈ .1 22 / 0 965844l k n k

ε λ ≈ .(0) ' 21 597386l λ ≈ − .(1) 0 554812
λ

≈ .ξ�(0) 0 965971 ε λ ≈ .�

�

(0) ' 21 938739l λ ≈ − . .�

(1) 0 213459

+ =5 40%m +λ = . λ(0)
50 6

+λ = . λ = − .(0)
51 4 23 856214 −λ = − . .5 28 959847

λ λ+ + = , + + = .
+ +

1 1 2 2 1 22 2'' ''( 2 ) 0 (2 4 ) 0
(1 ) (1 )

u u u u u u
x x

= +(1 ) pU C x = , T
1 2( )C C C

( ) π= + γ + , γ = λ − , λ = + , = , , …
2 2

2
1( ) 1 sin ln(1 ) 20 1/2 1 2 .

205 ln 2
n n n n n

nU x C x x n

= 5n

λ λ+ λ + = , + + λ = .
+ +1 1 2 2 1 22 2'' ''( 15 ) 0 (15 4 ) 0

(1 ) (1 )
u u u u u u

x x

( )± ±= + γ + , γ = λ − ± λ + λ .2 4 2( ) 1 sin ln(1 ) 10 1 6 100 /2n n n n n nU x C x x

Table 4

m5, % erel eabs ε(0)l ε(M)l M

1 1.1 × 10–7 1.1 × 10–5 6.9 × 10–3 –9.8 × 10–5 2

10 7.3 × 10–8 7.5 × 10–6 6.4 × 10–2 –5.6 × 10–5 3

40 1.6 × 10–7 1.7 × 10–5 0.2 –2.4 × 10–4 4
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The corresponding eigenvalues are sought by solving the equations  Table 5 shows the
numerical results obtained for  (the positive root of the equation ) and for

 (the negative root of the equation ). To correctly calculate the zeros of the
function  for , we set 

For , the figure shows the plot of  in this example, which demonstrates the possi-
bility of appearing multiple zeros and the importance of accurately solving the auxiliary Cauchy problems:
near the point , there appear two closely spaced roots (differing by a value on the order of ),
which may be ignored or taken into account as multiple roots in the case of an inaccurately constructed Δ.

Example 6. Consider a system with both matrices P and R depending on the SP:

Its solution is sought as described in Example 4:

±γ = π ./ ln 2n n
+
+λ ≈ .1 1 155809 +γ = π1 / ln 2

−
−λ ≈ − .4 8 225792 −γ = π4 4 / ln 2

Δ( )x −
−λ4 = .30ln

λ =(0) 20.1 Δ ,λ(0)( )x

= 1x −310

⎛ ⎞ λ+ λ + λ + = ,⎜ ⎟+ +⎝ ⎠

⎛ ⎞ λλ + + + λ = .⎜ ⎟+ +⎝ ⎠

1 2 1 22 4

1 2 1 22 4

'1 ' '( 5 ) ( 15 ) 0
(1 ) (1 )

'1 ' '(5 4 ) (15 4 ) 0
(1 ) (1 )

u u u u
x x

u u u u
x x

( )± ± ± λ + λ λ −= + γ + , γ = .
λ ±

∓
3 23

2 40 91 60 36( ) (1 ) sin ln(1 )
10 4

n n n
n n n

n

U x C x x

Table 5

, % erel eabs ε(0)l ε(M)l M

1 2.5 × 10–8 2.9 × 10–8 8.1 × 10–3 –7.9 × 10–5 2

10 2.1 × 10–8 2.4 × 10–8 7.5 × 10–2 –6.9 × 10–5 3

40 2.1 × 10–7 2.5 × 10–7 0.24 –3.1 × 10–4 4

, % erel eabs ε(0)l ε(M)l M

1 1.5 × 10–7 1.2 × 10–6 1.2 × 10–2 –1.2 × 10–4 2

10 1.9 × 10–7 1.5 × 10–6 0.11 –1.6 × 10–4 3

40 9.3 × 10–8 7.7 × 10–7 0.53 –1.4 × 10–3 6

+
+1m

−
−5m

Behavior of the function 

0.002

0.001

−0.001

−0.002

0

Δ

0.2 0.4 0.6 0.8 1.0 1.2
x

Δ .( )x
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Table 6 presents the numerical results obtained for , i.e., for the positive root of the equa-
tion 

Example 7. Consider the SP-nonlinear Euler-type vector equation

The solution of the problem has the form , where ,

, , .

Table 7 gives the results for ,  and , 

6. TRANSVERSE VIBRATIONS OF A ROD OF VARIABLE CROSS SECTION
WITH ALLOWANCE FOR ITS ROTATIONAL INERTIA

As a model example, we consider the classical problem of free transverse vibrations of a hinged thin rod
with allowance for the rotational inertia of its cross section [37, 38]. The dynamics of the rod is described
by the equation

where  are transverse displacements,  is the density of the rod material,  is the cross-sec-
tional area,  is Young’s modulus,  is the moment of inertia of the cross section, and l is the length
of the rod. Passing to the harmonic vibrations  and introducing 
(where ω is the eigenfrequency and ,  are characteristic constant values of the density and Young’s
modulus), we obtain the boundary value problem

(6.1)

+
+λ ≈ .1 49 93714

+γ = π .1 / (2)ln

+ + = , + + = .
λ + λ +

1 1 2 2 1 22 2
1 1'' ''( 2 3 ) 0 (2 3 5 ) 0

( ) ( )
u u u u u u

x x

⎛ ⎞π= + λ + λ⎜ ⎟γ⎝ ⎠
( ) 1 / sin ln(1 / )n n nu x C x x γ −λ = − 1( 1)n

n e

γ = π2 /3 3 −λ + λ = −1n n = ± , ± , …1 2n

= 1n λ ≈ .1 0 425387 = −2n −λ ≈ − . .2 1 097772

( ) ( ) = , = ,ρ − ρ = − , = = ,�� ��

0 0( ) ( ) ( ) ( ) ' ' ( ) ( ) '' '' '' 0x l x l
x S x U x I x U E x I x U U U

,( )U x t ρ( )x ( )S x
( )E x ( )I x

ω, =( ) ( )i tU x t e u x λ = ρ ω >2 2
0 0/ 0l E

ρ0 0E

⎛ ⎞ ⎛⎛ ⎞ ⎞ρ ρ+ λ − = , < < ,⎜ ⎟ ⎜⎜ ⎟ ⎟ρ ρ⎝ ⎠ ⎝⎝ ⎠ ⎠
= = = = .

4 4 2
0 0 0

'' '( ) ( ) ( ) ( )( ) ( ) '' ' 0 0 1

(0) (1) ''(0) ''(1) 0

x I x x S xE x I x u u u x
E l l l

u u u u

Table 6

, % erel eabs ε(0)l ε(M)l M

1 2.7 × 10–8 1.4 × 10–6 6.7 × 10–3 –5.8 × 10–5 2

10 2.3 × 10–8 1.1 × 10–6 6.2 × 10–2 –4.6 × 10–5 3

40 3.7 × 10–8 1.9 × 10–6 0.2 –1.8 × 10–4 4

+
+1m

Table 7

m1, % erel eabs ε(0)l ε(M)l M

1 1.9 × 10–9 8.1 × 10–10 –1 × 10–2 –1.2 × 10–6 2

10 8 × 10–9 3.4 × 10–9 –0.1 1 × 10–4 2

40 1.9 × 10–9 8.1 × 10–10 –0.39 –1.2 × 10–6 3

m–2, % erel eabs ε(0)l ε(M)l M

1 2.9 × 10–7 3.2 × 10–7 –9 × 10–3 –2 × 10–6 5

10 4.7 × 10–7 5.1 × 10–7 –0.12 –3.2 × 10–6 6

40 6.4 × 10–7 7.1 × 10–7 –0.72 –1 × 10–4 5
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If the coefficients of the equation are constant, then the solution has the form

where  are the eigenvalues.

Let , , , , and . Then problem (6.1)
can be reformulated as the VSLP

Table 8 presents the numerical results obtained as described in the above examples for ,
, ,  m, , ,  m, , ,

and  (for comparison, without allowance for rotational inertia,  and
).

Additionally, Table 8 gives the smallest five eigenvalues found for a rod of variable cross section with
, where  m. Specifically,  and  are the eigenvalues calculated with and

without allowance for rotational inertia, respectively, with a relative error on the order of 10–6;  and
are the respective numbers of iterations required for achieving the required accuracy; and  is the dif-

ference between  and  in percent. In both cases, the first approximation was specified as the eigen-
value  for a rod of constant cross section without allowance for rotational inertia (see above) for 
and as  for . The difference  is given to compute . The relative error was determined using
the two-sided estimate from Theorem 1: if , then  The
solutions of the auxiliary Cauchy problems grew exponentially, so the uniform grid for the integration of
the auxiliary problems was refined to  in order to achieve sufficient accuracy.

The results demonstrate the capabilities and efficiency of the proposed method.

− /= γ , γ = λ + λ + λ , = ,2 1 1 2( ) sin ( /2 ( /2) ) constn n n n n n nu x c x SI c

−λ = π + π4 1 2( / ) /( ( / ) )n n l SI n l

= ρ ρ 4
0/( )p I l = ρ ρ 2

1 0/( )r S l = 4
2 0 /( )r E l EI =1u u = − 4

2 0'' /( )u EIu E l

− λ + + λ = , + = , = = = = .1 2 1 1 2 2 1 1 2 2' '' ''( )' 0 0 (0) (1) (0) (1) 0p u u r u u r u u u u u

= ,1 3n
−λ ≈ . × 2

1 1 519674 10 λ ≈ .3 1 215957 = 1l = π 2S r = π 4 /4I r = .0 025r = 4/p I l = 2
1 /r S l

= 4
2 /r l I −λ ≈ . × 2

1 1 522017 10
λ ≈ .3 1 232834

= −0 0( ) /(2 )r x r xr l = .0 0 025r λR
n λE

n
RM

EM nm
λR

n λE
n

λ(0)
1 = 1n

,
−λ 1

E R
n > 1n ε( )M l λR

n

λ < λ < λ( ) ( )i j = λ − λ . λ + λ .( ) ( )) ( ) ( )
rel ( /0 5( )j i i je

= 128ln

Table 8

m1, % erel eabs ε(0)l ε(M)l M

1 7.6 × 10–9 1.2 × 10–10 2.5 × 10–3 –1.5 × 10–5 2

10 2 × 10–9 3 × 10–11 2.4 × 10–2 –6 × 10–6 3

40 1.3 × 10–9 2 × 10–11 8 × 10–2 –4.6 × 10–6 4

m3, % erel eabs ε(0)l ε(M)l M

1 8.4 × 10–7 1 × 10–6 2.5 × 10–3 –2.4 × 10–6 4

10 8.4 × 10–7 1.0 × 10–6 2.4 × 10–2 –2.4 × 10–6 4

40 2.1 × 10–7 2.6 × 10–7 8.1 × 10–2 –5.7 × 10–7 6

Table 9

n m, % ME MR

1 0.00756158 0.00755396 0.1 5 2 –5.8 × 10–6

2 0.132408 0.131952 0.3 6 6 –3.3 × 10–5

3 0.664790 0.659782 0.7 5 5 –4.1 × 10–5

4 2.08971 2.06212 1.3 5 5 –1.1 × 10–6

5 5.08577 4.98206 2 5 8 4.5 × 10–6

λE
n λR

n ε( )M l
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