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Abstract—A method for direct numerical simulation of three-dimensional unsteady disturbances
leading to a laminar–turbulent transition at hypersonic f low speeds is proposed. The simulation relies
on solving the full three-dimensional unsteady Navier–Stokes equations. The computational tech-
nique is intended for multiprocessor supercomputers and is based on a fully implicit monotone
approximation scheme and the Newton–Raphson method for solving systems of nonlinear difference
equations. This approach is used to study the development of three-dimensional unstable disturbances
in a f lat-plate and compression-corner boundary layers in early laminar–turbulent transition stages at
the free-stream Mach number M = 5.37. The three-dimensional disturbance field is visualized in order
to reveal and discuss features of the instability development at the linear and nonlinear stages. The dis-
tribution of the skin friction coefficient is used to detect laminar and transient f low regimes and deter-
mine the onset of the laminar–turbulent transition.

Keywords: direct numerical simulation, laminar–turbulent transition, hypersonic f lows, boundary
layer.
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INTRODUCTION
The problem of computing the laminar–turbulent transition (LTT) in hypersonic f lows over bodies is

a major task in high-speed aerodynamics. LTT leads to a significant increase in heat transfer and the skin
friction drag of aircraft and affects the performance of propulsion and control units. Solving this problem
requires a deep insight into the physical mechanisms of the transition to turbulence. In the case of small
external disturbances, which are typical of the f light conditions, the LTT consists of three basic stages [1]:
receptivity to external disturbances; the growth of unstable modes, such as first and second Mack ones,
cross f low instability, and Görtler vortices; and the nonlinear breakdown of disturbances, which leads to
a fully turbulent f low regime. The physical mechanisms of these stages can be investigated experimentally
or numerically.

The most suitable approach to systematic studies of linear and especially nonlinear LTT stages is based
on “controlled” experiments. However, there are relatively few publications concerning such experiments
at super- and hypersonic speeds. Thermoanemometric measurements of wave trains generated by a har-
monic point source in a f lat-plate boundary layer at a Mach number of 2 were conducted by Kosinov et al.
[2, 3] (their results were confirmed by direct numerical simulation [4]). Controlled disturbances produced
by a glow discharge on a cone at M = 4 were experimentally studied in [5]. Experimental data obtained on
a sharp cone at M = 5.95 with a glow discharge used as a harmonic point source of disturbances were pre-
sented in [6, 7]. Wave packets and turbulent spots in a hypersonic nozzle boundary layer within the Boe-
ing/AFOSR Mach 6 Quiet Tunnel (BAM6QT) were investigated in [8, 9]; disturbances were generated by
controlled spark and glow discharges. Controlled temperature disturbances produced by a powerful laser
in the BAM6QT were analyzed in [10]. All these experiments yield rather limited data on disturbance
fields, since high-frequency f luctuations are technically difficult to measure at numerous points under
severe super- and hypersonic f low conditions.

In contrast to physical experiments, direct numerical simulation (DNS) provides complete informa-
tion on spatial and temporal disturbance fields, so that various LTT mechanisms can be identified and
studied in detail. Moreover, with the use of DNS, all LTT stages can be computed in a holistic manner by
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solving the full unsteady Navier–Stokes equations without imposing any constraints on the basic (unper-
turbed laminar) f low and the disturbance amplitude. However, at late nonlinear stages of LTT with natu-
ral Reynolds numbers, DNS requires fine three-dimensional grids (with cell sizes corresponding to the
Kolmogorov scale), which consist of hundreds of million nodes. Due to the intensive development of
multiprocessor systems and modern methods for parallel computations, only recently has it become pos-
sible to perform such numerical experiments for hypersonic boundary layers and to approach fully turbu-
lent f lows. For example, unstable controlled disturbances in simple configurations, namely, a plate and a
cone with a zero angle of attack were DNS simulated in [11, 12] by applying specialized numerical
approaches. More specifically, the basic method in [11] was based on a shock-capturing finite-difference
scheme for computing the steady f low over a leading edge with a separated shock wave, while a higher-
order shock-fitting scheme for computing unsteady disturbances was used downstream. It was noted that
this approach faces difficulties in the case of disturbances with extremely large amplitudes and high gra-
dients. In [12] a monotone scheme was first used to compute the complete steady f low field, out of which
a near-wall domain was then cut off and the propagation of disturbances in it was simulated by applying a
hybrid numerical approach with a high-order finite-difference scheme and the spectral method.

In practice, it is convenient for DNS to use a single universal numerical method in order to calculate
both steady f low fields with all spatial inhomogeneities (shock waves, separations, high pressure gradients)
and unsteady disturbances without imposing amplitude constraints.

In this work, hypersonic f lows are computed by applying DNS based on a fully implicit finite volume
method (third-order accurate in space and second-order accurate in time) with a quasi-monotone
Godunov-type scheme. This approach is especially efficient when the governing equations of the problem
are rather stiff as in the case of hypersonic f lows, where the computational domain contains systems of
shock waves [13] or when nonequilibrium physicochemical processes are simulated [14]. Unfortunately,
the monotonicity of the scheme implies that it is highly dissipative, which leads to a nonphysical decrease
in the amplitudes of disturbances propagating in the computational domain. However, on fairly fine grids,
numerical viscosity overall does not distort the basic physics of instability development. Previously, the
method proposed was used to simulate the receptivity [15] and stability [16, 17] of a hypersonic boundary
layer f low in the two-dimensional case and to develop passive methods for stabilizing a hypersonic bound-
ary layer with the help of a porous coating [18] and a wavy surface with a series of local separations [19].

In the above-indicated works, the method was implemented on a single processor. Accordingly, the
maximum grid sizes were technically limited. In the case of efficient parallel computations, the constraint
on the number of grid nodes can be overcome by using more computational units (processors and mem-
ory). This can be performed without much difficulty in view of the modern trends in the development of
computers. Thus, it seems reasonable to simulate LTT by applying a universal and robust low-order
method on a high-performance supercomputer, rather than using high-order specialized methods, which
save resources, but require labor-consuming adaptation and apply to a limited class of f lows.

In this work, we describe a parallel implementation of the considered numerical method intended for
computations on cluster-type multiprocessor supercomputers with distributed memory. The mathemati-
cal formulation of the problem of simulating viscous compressible gas f lows is presented. We describe a
method for the numerical integration of the Navier–Stokes equations and an algorithm for parallel com-
putations and give some results obtained by applying the method to the DNS of an initial LTT stage. The
method was implemented using the in-house solver HSFlow (High Speed Flow) with parallel algorithms
employed at all levels for efficient computations on cluster supercomputers with a large number of proces-
sors and distributed memory. The solver was verified by simulating wave packet propagation in a plate
boundary layer at the free-stream Mach number  and comparing the results with those of [20].
As an example of DNS simulation of the nonlinear LTT stage in a more complicated f low, we study the
development of three-dimensional disturbances in a separated boundary-layer f low in a compression cor-
ner of 5.5° at . We demonstrate the disturbance fields on the body surfaces, three-dimen-
sional disturbance vortex structures, and fluctuation spectra, which are used to reveal and discuss features
of the instability development at the linear and nonlinear transition stages. Additionally, the onset of LTT
is determined by analyzing the distributions of the skin friction coefficients in the laminar and transient
regions. The velocity profiles in the transient boundary layer are also shown.

∞ =M 5.35

∞ =M 5.373
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1. PROBLEM FORMULATION

In continuum mechanics, the gas motion is generally described by the unsteady three-dimensional
Navier–Stokes equations, which also serve as a basis for the direct numerical simulation of turbulent
flows.

In an arbitrary curvilinear coordinate system , , , where , , and
 are Cartesian coordinates, the Navier–Stokes equations are written in conservation form as

(1)

Here,  is the vector of conservative dependent variables of the problem and , , and  are the f lux vec-
tors in the curvilinear coordinate system. The vectors , , and  are related to the corresponding Car-
tesian vectors , , and  by the formulas

(2)

where  is the Jacobian of the transformation.

The curvilinear coordinate system  is used for discretization on a uniform grid. Specifically, an
arbitrary grid given in Cartesian coordinates is mapped onto a uniform grid in curvilinear coordinates. The
Cartesian components of the vectors , , and  for the three-dimensional Navier–Stokes equations
are given by

where  is the gas density; , ,  are the Cartesian components of the velocity ;  is the pressure;

 is the total energy per unit volume;  is the total

enthalpy;  is the static enthalpy;  is the temperature;  is the specific heat capacity at constant
pressure; and  is the viscous stress tensor, which is symmetric and is related to the strain rate tensor s by
the linear dependence . For a compressible gas, the components of s have the form

and the heat f lux  is defined by the expression

,

where  and  are the molecular viscosity and thermal conductivity, respectively.
System (1) is closed by an equation of state and dependences of the transfer coefficients on temperature

and pressure. In this study, we use the ideal gas model with the equation of state

,

where  is the universal gas constant and  is the molecular weight of the gas. The molecular viscosity is
assumed to depend only on temperature and is calculated according to Sutherland’s law:
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,

where  for air. The Prandtl number  is assumed to be constant.
For numerical integration, the Navier–Stokes equations are nondimensionalized. The Cartesian coor-

dinates , ,  are normalized by the characteristic length L; the time , by the
characteristic time ; the velocity components , , and , by the magnitude of
the free-stream velocity ; the pressure , by the doubled free-stream dynamic pressure; and
the other gasdynamic variables, by their free-stream values. The overbar denotes dimensionless variables,
and the infinity symbol denotes free-stream values. After this nondimensionalization, the following basic
similarity parameters appear in the Navier–Stokes equations: the ratio of specific heats , the
free-stream Mach number  (  is the speed of sound), the Reynolds number

, and the Prandtl number . Most of the numerical results below are presented in
dimensionless variables, and the overbar is omitted for simplicity.

On the wall boundary of the computational domain, we set the no-slip and impermeability conditions
 and the isothermal condition . On the outer boundary, we impose either

Dirichlet conditions with free-stream values of all dependent variables ( , , ,
) or the dependent variables are extrapolated from inside the computational domain, which corre-

sponds to nonreflecting boundary conditions in the supersonic case.
To obtain a steady f low field, the initial approximation can be specified as a uniform free-stream flow,

which develops into a laminar steady f low over the body under study in the course of solving the unsteady
problem.

2. APPROXIMATION OF THE EQUATIONS
The initial–boundary value problem formulated above was solved numerically using the finite volume

method. Its application to the Navier–Stokes equations (1) yields the following discrete analogues of con-
servation laws:

(3)

where n is the time level number;  is the time step; and , ,  and , ,  are the node indices and
the step sizes in , , and , respectively.

In a monotone difference scheme, the f luxes at half-integer nodes are computed by solving the corre-
sponding Riemann problem. Mathematically, this problem is reduced to a nonlinear system of algebraic
equations. An approximate method for solving this problem can be based on dimensional splitting (with
respect to generalized coordinates) and representing some averaged state of the corresponding Jacobian
matrix  (for example,  in the  direction) in diagonal form  where  is a diag-
onal matrix whose elements are six eigenvalues of .

The convective components of the f luxes , , and  at half-integer nodes are approximated using a
monotone Godunov-type scheme [20] and the Roe approximate method [21] for solving the Riemann
problem. Since the computational formulas for , , and  are similar, we consider only the vector .
On a cell face (at a half-integer node), we have

.
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eigenvalues of the operator  and  is a smoothing function ensuring that entropy in

the numerical solution does not decrease. Finally,  and  are matrices whose columns are the right
and left eigenvectors of , respectively.

In the computation of the eigenvalues and eigenvectors of , the dependent variables in neighboring
cells are averaged according to [21]:

where a is the local speed of sound.
To ensure the fulfillment of the entropy condition for choosing a physically correct numerical solution,

the function  is defined as

where  is a parameter responsible for the dissipation properties of the difference scheme (in most of the
computations, we used ).

To increase the order of accuracy (up to the third), the dependent variables are interpolated to a face
of an elementary cell by applying the weighted essentially nonoscillatory (WENO) scheme [22]

, ; , ;

The diffusion components of the f luxes , , and  on faces of an elementary cell are approximated
by applying a second-order accurate central difference scheme. The derivatives are computed using the
formulas

,

,
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The stencil of the finite-difference for approximating the full Navier–Stokes equations consists of
25 points (see Fig. 1). Apparently, the fully implicit nonlinear difference scheme described is uncondi-
tionally stable as applied to one-dimensional linear problems. Experience gained from the application of
this scheme to the simulation of various two- and three-dimensional f lows shows that it is fairly stable in
a broad class of practical problems.

3. SOLUTION OF THE NONLINEAR GRID EQUATIONS
After applying the above difference approximation to the Navier–Stokes equations and using the cor-

responding boundary conditions on a certain grid, the integration of the nonlinear partial differential
equations is reduced to solving a system of nonlinear algebraic equations

, (4)

where  is the vector of desired dependent variables (the values of the gasdynamic variables at grid nodes,
including boundary ones). This system of grid equations can be efficiently solved using the well-known
Newton method; its main advantage is that it has a quadratic convergence rate. To solve (4), we used the
modified Newton–Raphson method

,

where  is the Jacobian matrix,  and  are iteration numbers satisfying , and

 is the residual vector. The expression  is the solution to the linear system of equa-

tions . In the course of the numerical solution, the regularization parameter of Newton’s
method with respect to the initial approximation  was determined by the formula (see [23])

.

With the convergence of the iterative process, we have  and the convergence rate theoretically
becomes quadratic.

The most effort in the implementation of Newton’s method is required by the generation of the matrix
 and the subsequent solution of the system of linear equations with this matrix.
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Since the approximation of the equations in each mesh cell involves only several neighboring nodes (in
the 3D case, 25 for the TVD scheme), the computational complexity of generating the Jacobian matrix is

, where  is the number of grid nodes. In iteration, the Jacobian matrix is formed via finite incre-
ments of the residual vector  in the vector of desired grid variables X. This technique is universal, since
it can easily be extended to an arbitrary system of grid equations (without preliminarily specifying its
form). Rather frequently, the approximation of differential equations yields difference equations of com-
plicated form, so the analytical formation of the Jacobian matrix becomes rather labor-consuming. Spe-
cifically, this occurs when the Navier–Stokes equations are solved by applying monotonized schemes.
Moreover, the number of arithmetic and logical computer operations required for the analytical formation
of the Jacobian matrix can generally be greater than that in the case of using the finite increment proce-
dure.

The storage and CPU time required for solving the system of linear algebraic equations in nonlinear
iteration,

,

depends substantially on the degree of sparseness of the matrix . When the Navier–Stokes
equations are approximated by the second-order accurate difference scheme described in Section 2, the
operator  has a sparse 25-diagonal block structure, while its elementary block is a dense 5 × 5
matrix. Preliminary computations have shown that the convergence of the nonlinear iteration depends
substantially on the stencil points used for the convective component and direct derivatives of the dissipa-
tive component in the Navier–Stokes equations. For mixed derivatives of the dissipative component, the
use of “corner” points in the stencil has only a small effect on the convergence of the nonlinear iteration.
Accordingly, the diagonals corresponding to the mixed derivatives were omitted from , thus
reducing the storage and the total number of arithmetic operations in nonlinear iteration nearly by half.
As a result, the operator  had a sparse 13-diagonal block structure in the 3D case.

The system of linear algebraic equations obtained in nonlinear iteration was solved using the general-
ized minimal residual method GMRes [24], which had been recognized as the most reliable and fast in a
number of numerical experiments [25].

4. COMPUTATIONAL GRIDS AND THE INTERNAL DATA STRUCTURE

The computations are performed on structured multiblock grids. The grid blocks must join one
another over entire faces, node to node.

Inside each grid block, irrespective of the others, we introduce a local curvilinear coordinate system
 in which the grid is uniform in each direction and has stepsizes , , and , respectively.

The curvilinear coordinates are assumed to vary from 0 to 1 within each block. In this curvilinear coordi-
nate system, the gas dynamics equations are discretized as described in (3). The conversion to physical
Cartesian coordinates is based on (2) with the use of the inverse metric coefficients , , ,

, , , , , and , which are determined by the equation

.

Here, the direct metric coefficients (the derivatives , , , , , , ,
, )) are approximated by finite differences to second-order accuracy.

The grid nodes inside each block have a local three-dimensional index  corresponding to the
grid line directions , , , respectively. Additionally, each node is assigned a global one-dimensional
index that is unique over all grid blocks. This global index determines the index of an element in the solu-
tion vector  and the residual vector  when the system of grid equations (4) is solved.
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To discretize the equations (compute the residual vector ) near a block boundary, we need to know
the values of the dependent variables at the nodes of the adjacent blocks. The access to these nodes is based
on the concept of shadow values. Specifically, each block is preliminarily extended to several grid surfaces
according to the number of points in the discretization stencil, so that these new shadow nodes correspond
to the nodes of neighboring block. The dependent variables at the shadow nodes are not calculated in the
course of problem solving, but are taken from the adjacent block via a special procedure for scattering
shadow values, which is executed before every time iteration. The additional shadow nodes are regarded
as belonging to the current block, thus increasing its size, and have local three-dimensional indices

, but their global indices remain the same as those of the corresponding “actual” nodes in the adja-
cent block. Therefore, the total number of nodes in the computational domain remains unchanged.

For each grid block, the mapping between the local three-dimensional indices (including shadow
nodes) and the global indices is stored in a special list of indices, which underlies the exchange of shadow
values.

5. IMPLEMENTATION OF PARALLEL COMPUTATIONS
ON MULTIPROCESSOR SUPERCOMPUTERS

The distributed computations were implemented with the help of parallelization at the block level at all
stages of the algorithm, namely, in the discretization procedure and the solution of the system of grid
equations.

In the course of the computations, each processor deals with at least one block and stores block data
(the grid and the solution at nodes) independently of the other processors. This makes it possible to use
multiprocessor computer systems with distributed memory. If the number of processors exceeds the num-
ber of initial grid blocks, the grid is additionally divided into the required number of blocks. The numerical
results and the grid are stored in the standard international format of CGNS (CFD General Notation Sys-
tem) files [26].

In the case of parallel computations on a distributed-memory supercomputer, the solution vector with
a global indexing of elements becomes distributed, i.e., its parts are stored on different processors. There-
fore, the residual vector of the nonlinear grid equations and the Jacobian matrix must be distributed as
well. In the developed code, operations with such vectors and matrices were implemented with the help
of subroutines from the freeware package PETSc (Portable Extensible Toolkit for Scientific Computation)
[27], which employs the Message Passage Interface (MPI) for parallel computations.

In each block, the original Navier–Stokes equations are discretized by each processor independently.
As a result, a portion of the globally distributed residual vector is formed. The connection between the
processors corresponds to the connectivity between the blocks and is provided using the concept of
shadow nodes. Exchange of shadow values is implemented via Scatter built-in structures and functions
from PETSc. They make use of the mapping list between the global interblock and local intrablock indi-
ces, which is formed in the preprocessing of the grid.

R

( , , )i j k

Fig. 2. Speedup as a function of the number of processors for a computer with two 12-core Intel Xeon E5-2670 (2.6 GHz)
processors under CentOS (Linux).
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In the solution of the grid equations at every iteration step, the Jacobian matrix is formed in a parallel
manner by using finite increments of the residual vector in the desired grid variables. The resulting Jaco-
bian matrix is fully distributed. The linear system with this matrix is solved by applying a parallel GMRes
version [14] (implemented in PETSc) with a block Jacobi-type preconditioner.

Thus, each stage of the implemented numerical method is executed in parallel in each block of the
computational domain. Therefore, the speedup of the computations is close to perfectly linear if the delays
for interprocessor communication can be neglected. Preliminary computations have shown that the
PETSc parallel procedures efficiently transfer data between the processors, so that the scalability proves
to be good. Figure 2 presents the speedup curve for the hypersonic f low over a sharp plate computed on a
grid consisting of 88.5 million nodes.

The relative delays for interprocessor communication can be reduced by increasing the time spent by
each processor on the processing of its own amount of data irrespective of the others. In other words, the
dimensions of grid blocks and/or their number per processor have to be increased.

The method described above was implemented in the original software package HSFlow (High Speed
Flow).

6. VERIFICATION OF THE NUMERICAL METHOD
The method was verified using the results of [28] obtained with another numerical method for solving

the Navier–Stokes equations. Specifically, hybrid nonmonotone difference schemes of fourth and higher
orders of accuracy and the spectral method were applied in [28]. The free-stream parameters in this work
were similar to those in [28], namely, ,  1/m, , , and

 K. The length  m was used for nondimensionalization; then .
These parameters correspond to their experimental values on the edge of the boundary layer on an sharp
cone, which was placed in a shock tube at ,  1/m, and  K.

The computational domain was a rectangular parallelepiped with sides  m in the
streamwise, vertical, and spanwise directions, respectively. On the lower boundary of the domain, which
coincided with the plate surface, we set the no-slip condition. The wall was assumed to be isothermal with
temperature  K ( ). On the boundaries  (right) and  (front), we used
linear extrapolation of the dependent variables , , , , and  (nonreflecting boundary condition in
the case of a supersonic f low). The free-stream conditions were specified on the boundaries  (left)
and  (upper). The symmetry condition was used on the boundary  (back).

The computations were performed on an orthogonal grid consisting of  nodes in the
streamwise, vertical, and spanwise directions, respectively (overall 88.5 million nodes). Near the plate sur-
face, the grid was refined in the vertical direction, so that 120 nodes fell within the boundary layer. The
mesh size in the boundary layer remained unchanged, namely,  m,  m,
and  m. For comparison, the mesh size in [28] remained unchanged in the streamwise
direction on the initial segment (  m), varied according to a cubic law starting at

 m in the vertical direction, and pseudospectral discretization was used in the spanwise
direction.

The computations were performed on a high-performance distributed-memory computer cluster with
up to 512 processor cores. The efficiency of the numerical code was also tested on 128 and 256 cores (see
Fig. 2).

Disturbances were introduced into the boundary layer through a small circular hole on the plate sur-
face in the form of forced f luctuations of the vertical velocity. These f luctuations were specified by the
usteady boundary condition on the wall:

where , , , , , and  is the dimensionless
frequency. To provide the nonlinear development of disturbances, the amplitude was chosen sufficiently
large:  (5% of the free-stream velocity). The indicated form and parameters of the disturbances
completely agree with the nonlinear regime used in [28].

∞ = .M 5 35 ∞ = × 6
,1Re 14.3 10 γ = .1 4 = .Pr 0 71

∞ =* 64.3163T = 0.1L ∞ = × 6Re 1.43 10

∞ =M 6.0 ∞ = × 6
,1Re 11.0 10 =0* 433.0T

× ×0.45 0.903 0.04

= 300wT = 4.664wT = maxx x = maxz z
u v w p T

= minx x
= maxy y = 0z

× ×2501 251 141

−Δ = × 4* 1.8 10x −Δ = × 4* 3.01 10y
−Δ = × 4* 2.86 10z

−Δ = × 4* 2.5 10x
−Δ = × 6* 6.46 10y

( ) ( )− +⎛ ⎞ ⎛ ⎞= π π −ω⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
≤ ≤ ≤ ≤ ≤ ≤

3 32 1

2 1 2 1

1 2 1 2 1

0.5
cos cos sin ,

, , 0 ,

w
x x x zA t

x x z z
x x x z z z t t

v

=1 1.36x =2 1.40x = −1 0.02z =2 0.02z = π ω1 2t ∞ω = ω ** */L U

= 0.05A



1344

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 57  No. 8  2017

EGOROV et al.

The problem was solved in two steps. First, we computed an unperturbed steady f low field. Then dis-
turbances were introduced by switching on the unsteady boundary condition modeling an actuator.
It should be noted that the numerical error of the unperturbed solution must be much smaller than the
amplitude of the unsteady f luctuations. Accordingly, the steady f low field has to be computed to high
accuracy.

The forced disturbances introduced into the boundary layer by a short local pulse give rise to a three-
dimensional wave packet propagating downstream. The evolution of pressure disturbances on the plate
surface along the centerline z = 0 is shown in Fig. 3, which presents the amplitude of the wave packet
against time in several cross sections in the streamwise coordinate x. This representation is frequently used
in experiments measuring oscillograms of f luctuations at several points along the central line of the model.
It can be seen that the packet has a pronounced carrier frequency and its extent increases downstream due
to the dispersion of the wave components.

Fig. 3. Surface pressure disturbances at z = 0 in various x cross sections for the wave packet simulated according to [28].
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The initial response of the f low to the pulse is demonstrated in Fig. 4, which depicts contour lines of
the instantaneous pressure disturbance field on the plate surface near the actuator at several time instants.
Hereafter, the disturbance field is calculated by subtracting the basic steady field from the instantaneous
perturbed one. First, the wave packet is localized in space around the moving center (see Figs. 4a, 4b).
Further downstream, the wavefronts f latten near the central line z = 0 (see Figs. 4c, 4d). Plane waves with
amplitudes growing downstream begin to dominate. This behavior agrees with the linear stability theory,
according to which plane waves (so-called second Mack mode waves) are amplified faster than oblique
ones. This tendency persists at later stages of the packet evolution (see Figs. 5, 6). In addition to the central
part of the packet with pronounced plane fronts, we can see waves traveling ahead of the main disturbance.
They appear at an early stage (Fig. 4d) and propagate somewhat faster than the main wave packet, namely,
at speeds corresponding to fast acoustic waves.

In Fig. 6, the wave packet seems to be distorted by nonlinear effects. The interaction between two-
dimensional and oblique waves leads to a bottleneck in z observed in the maximum-amplitude area. As
the disturbance develops further, the nonlinear effects must be amplified and eventually excite a turbulent
spot. This could be seen by executing simulation in a longer computational domain.

Fig. 4. Instantaneous surface pressure disturbance fields near the actuator at (a) , (b) , (c) , and
(d)  ms for the wave packet simulated according to [28].
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For comparison, Fig. 5 also presents the disturbance field obtained in [28]. It can be seen that the basic
structural features of the wave packet are similar in both fields. Specifically, in both cases, the disturbance
has the same streamwise and spanwise sizes, the waves involved have similar frontal shapes, and there are
32 extrema along the centerline in both cases, i.e., the dominant wavelengths coincide quantitatively.
It should be noted that, by the considered time, the packet has been transformed from initially circular
concentric waves into a set of almost plane waves, which is caused by the selective amplification of distur-
bances in the boundary layer according to the physics of instability. Therefore, the agreement of the packet
structure at a later time suggests that the entire physical process is correctly simulated as based on the
results of [28].

Figure 7 compares the spectra of the wave packet in the  plane, where  is the spanwise wave
number. In this work, the spectra were constructed using the discrete Fourier transform of the two-
dimensional pressure disturbance  on the wall for a given х and varying t and z. In [28]  was
computed directly, since the spectral method was used in the spanwise direction. A comparison of the
spectra shows that the range of spanwise wave numbers in [28] is broader than in the present computation,
which can presumably be explained by the insufficient grid resolution in the z-direction in the latter case.
However, in both cases, the characteristic features of the spectral patterns coincide (shown by dashed ovals
in Fig. 7). Thus, the results are in qualitative agreement, though different quantitatively.

It should be noted that, in the present computations based on a low-order method, the spatial grid res-
olution was approximately 28 nodes in the streamwise direction per dominant wavelength (see Fig. 8),

( ),zk f zk

=const' ( , )|w xp t z zk

Fig. 5. Instantaneous surface pressure disturbance field far away from the actuator at  ms: (a) the present work
and (b) [28].
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which was only 38% larger than the resolution in [28], where high-order accurate difference schemes were
applied. Moreover, the simulation results obtained for the wave packet were quite comparable, at least at
the initial nonlinear stage. This agrees with our previous numerical studies of hypersonic boundary layer
stability, which suggest that at least 30 nodes per wavelength are required for unstable waves to be correctly
resolved by the present low-order scheme.

Thus, the universal numerical method applied in this work can be used to study the development of
three-dimensional disturbances in hypersonic f lows.

7. DIRECT NUMERICAL SIMULATION OF THE INITIAL STAGE OF LAMINAR–
TURBULENT TRANSITION

As an example of computing the laminar–turbulent transition at the initial stage, we considered lami-
nar f lows over a plate and a  compression corner in which disturbances were artificially introduced by
periodic gas blowing–suction through a local hole on the body surface. The free-stream parameters were
specified as ,  1/m, and  K; the wall temperature was Tw = 300 K.
The coordinates were normalized by the characteristic scale  m, i.e., the distance from the lead-
ing edge to the kink line on the body surface, which corresponded to the Reynolds number  = 5.67 × 106.
For both configurations, the blowing–suction was simulated by the following unsteady boundary condi-
tion imposed on the vertical mass f lux:

°5.5

∞ =M 5.373 ∞ = × 6
,1Re 17.9 10 ∞ = 74.194T

= 0.3161L
∞,Re L

Fig. 6. Disturbance packet at a long distance from the actuator with manifestation of nonlinear effects: instantaneous sur-
face pressure disturbance fields at (a) t* = 0.291 and (b) 0.41 ms.
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where , , and  are the boundaries of the blow-
ing–suction actuator. The forcing amplitude  was chosen so that the initial development of the
disturbance was linear. The actuator was placed near the leading edge (the central point x0 =

), since, in natural conditions, instabilities in the boundary layer are most effectively
excited near the leading edge. The f low parameters and the size and shape of the actuator were taken from
[17], where the stability of the f low over a similar configuration was analyzed in two-dimensional setting.
In this work, the actuator was switched on at the time  and worked permanently at the frequency

, which is characteristic of the instability of the first Mack mode (see [1]).
The computations were performed on a curvilinear orthogonal grid consisting of 2801 × 221 × 141

nodes in the х, y, and z directions, respectively (overall 87.3 million nodes). First, a two-dimensional
2801 × 221 grid was constructed by applying a numerical conformal mapping of the rectangle onto the
computational domain. This grid was then refined toward the wall. The grid in the streamwise direction
was uniform with the mesh size being , which corresponded to about 80 nodes per basic
wavelength, so that the condition requiring at least 30 nodes per wavelength was satisfied with a margin.
In the present study, this criterion was amply fulfilled. Near the wall, mesh refinement was used to ensure
an identical step of  within the separation region and the mixing layer. Thus, about 120 nodes
fell into the boundary layer, which (as follows from numerical experience) were sufficient for instabilities
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Fig. 7. Spectra of the wave packet in the  plane for (a) х = 0.25 and (b) 0.35 m in the present work (left panels) and
[28] (right panels). The dashed ovals mark the structural features coinciding in both fields.
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Fig. 8. Grid resolution in the streamwise direction for the surface pressure disturbance along the centerline  at
 ms.
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to be correctly resolved by the proposed numerical scheme. A three-dimensional grid was constructed by
adding equidistant points spaced at  to the two-dimensional grid in the spanwise direction
up to . Time integration was performed with the step , i.e., we used about 100 steps
per a period of the disturbance actuator.

The computations were executed on a cluster-type multiprocessor supercomputer with 768 processor
cores (32 computational servers with two processors containing 12 cores each).

Figure 9 shows the computed steady f low field over the compression corner. Due to the viscous-invis-
cid interaction, a weak shock wave is formed near its leading edge. Further downstream, the corner gen-
erates oblique shocks issued from the separation and reattachment regions. With the help of the skin fric-
tion coefficient distribution

the coordinates of the separation and reattachment points are found to be  and ,
respectively. These are the zeros of , between which the skin friction becomes negative.

Figure 10 shows the dimensionless pressure disturbance distribution  over the plate surface and
the compression corner at the time , when the head wave packet formed at the moment of switching
the actuator on is still within the computational domain. Hereafter, instantaneous disturbance fields are
calculated by subtracting the basic field from the perturbed one at different times. Moreover, for illustra-
tive purposes, the fields calculated only for  are mirrored with respect to the plane of symmetry .
Figure 11 presents the surface disturbance fields at the later time , when a spatially constant distur-
bance—wave train—can be observed in the entire computational domain. Upstream of the separation
point, the wave train patterns on the plate and the compression corner are similar to each other, which
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Fig. 10. Surface pressure disturbances for the plate (upper panel) and the compression corner (lower panel) at .
The vertical lines mark the separation, corner, and reattachment lines for the compression corner.
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Fig. 11. Surface pressure disturbances for the plate (upper panel) and the compression corner (lower panel) at .
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Fig. 13. Spectra in the –  plane in various х cross sections for the plate (left panels) and the compression corner (right
panels).
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Fig. 13. (Contd.)
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indicates a weak influence of the separation in the upstream direction. Immediately downstream of the
actuator, they attain a V shape typical of the first unstable Mack mode. Near the centerline , the dis-
turbances exhibit a staggered pattern surrounded by oblique waves on both sides. The wave amplitude
grows downstream, so that nonlinear breakdown is eventually observed. For the f lat plate, this occurs at

. For the compression corner, the wave amplitude grows rapidly in the separation region, so that
the disturbance structure is distorted by nonlinear effects ahead of the reattachment point and a “young”
turbulent wedge begins to form in the reattached boundary layer for .

The beginning of nonlinear breakdown of a wave train is demonstrated in Fig. 12 as a shadowgraph
(the Laplacian of density ) in the plane of symmetry. For the compression corner, the intensity of f luc-
tuations is higher and small-scale vortices are observed near the wall. This agrees with the well-known fact
that stochastization in a transient boundary layer begins near the wall.

Variations in the spectral content of the disturbance in its downstream motion and in the growth of the
amplitude can be observed in the two-dimensional spectra shown in Fig. 13. The spectra were constructed
in various х cross sections by calculating the discrete Fourier transform of the wall pressure f luctuations

 with varying t and z. It can be seen that, at  and , the series of waves consists
basically of oblique waves with frequency  and spanwise wave number , which corre-
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sponds to a unstable first mode. For , upper harmonics with frequencies being a multiple of the
fundamental one begin to appear in the spectrum: , , i.e., a fundamental
resonance and/or oblique breakdown develop. The upper harmonics in the compression corner are more

≥ 1.1x
ω = ω =02 250 ω = ω =03 375

Fig. 14. Surface of the criterion  colored according to the horizontal velocity on the (a) plate and (b) compression
corner at .
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intense than those on the f lat plate. Additionally, subharmonics appear at later stages. In the case of the
compression corner, noticeable intensity is exhibited by harmonics with a zero frequency, which indicates
changes in the mean flow field: the boundary layer is transformed from laminar to turbulent regimes.

Figures 14 and 15 show spatial vortex structures of wave trains in the nonlinear breakdown region.
Visualization is based on the Q-criterion , where  is the second scalar invariant of the strain rate
tensor  with  and . Lambda structures and
their breakdown giving rise to small-scale disturbances can be observed in the figures. In the case of the
compression corner, hairpin-shaped vortices rising from the surface are observed along the centerline at
late stages of the breakdown. This is a feature characteristic of the onset of LTT.

Figure 16 presents the skin friction coefficient  over the plate surface and the compression cor-
ner for a developed flow. Streaky structures are well seen in the friction field. In the case of the compres-
sion corner, friction grows quickly immediately behind the reattachment line and the disturbance elon-
gates in the spanwise direction.

Figure 17 shows the streamwise distributions of  on the central line  and averaged in z within
the spanwise boundaries of the disturbance. Additionally, the curve for a compressible fully turbulent
boundary layer according to the van Driest correlation is depicted for the f lat plate. At an early stage of
instability development, the distribution of  on the plate and in the corner corresponds to a laminar

> 0Q Q

= Ω −2 2[| | | | ]/2Q S = ∇ + ∇ T[ ( ) ]/2S V V Ω = ∇ − ∇ T[ ( ) ]/2V V

( , )fc x z
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Fig. 15. Surface of the criterion  colored according to the horizontal velocity on the plate (upper panel) and the
compression corner (lower panel) at  (top view). The dotted curves mark the separation, corner, and reattachment
lines for the compression corner.
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boundary layer. As instability develops,  deviates from the laminar value starting at . In the case
of the compression corner, friction grows more sharply and by a larger value, so that a “young” turbulent
wedge seems to form in the reattachment region. For the f lat plate, the local friction on the centerline
exceeds its turbulent value (see Fig. 17а), i.e., there is an overshoot in heat transfer, which is frequently
observed at early LTT stages in hypersonic flows [29]. The averaged friction coefficient is considerably lower
than its value in the plane of symmetry, which is explained by the inhomogeneity of friction in z exhibited as
streaky structures in Fig. 16. Moreover, the averaged friction is lower than the turbulent one (for the f lat
plate), which indicates a transient f low regime, while complete turbulization occurs downstream outside
the computational domain.

Figure 18 shows the vertical velocity profiles near the outlet boundary of the computational domain
(maximally far away from the onset of instability development). The profiles of the perturbed boundary
layer differ from the laminar ones for both the plate and the compression corner. However, they also differ
in shape from the typical parabolic profile for a fully turbulent boundary layer. This confirms that the f low
is in a transient regime.

Thus, DNS in the considered example yields a detailed disturbance field at every time instant. As a
result, we can investigate the spatiotemporal spectra of disturbances and various averaged characteristics
at the initial stage of LTT.

fc ≈ 0.9x

Fig. 16. Skin friction coefficient field for the (a) plate and (b) compression corner at . The dashed lines mark the
separation, corner, and reattachment lines for the compression corner.
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CONCLUSIONS
A DNS method for computing three-dimensional unsteady disturbances leading to a hypersonic lam-

inar–turbulent transition was proposed and implemented. The simulation relies on solving the full three-
dimensional unsteady Navier–Stokes equations. The numerical technique is intended for distributed-
memory multiprocessor supercomputers and is based on a second-order fully implicit monotone approx-
imation scheme and a modified Newton–Raphson method for solving nonlinear difference equations.
The implemented technique was shown to be well scalable on 128, 256, and 512 processor cores.

The DNS method was used to simulate three-dimensional disturbances propagating in a plate bound-
ary layer at a free-stream Mach number of 5.35. Disturbances were introduced into the boundary layer by
setting an unsteady boundary condition on the vertical velocity in the form of a short pulse propagating
through a circular hole. This pulse gave rise to a three-dimensional wave packet propagating downstream
in the boundary layer. It was shown that plane waves corresponding to the second unstable Mack mode
dominate in the packet. Weak nonlinear effects related to the interaction plane and oblique waves were
demonstrated. The results were found to agree with a similar numerical study [28], which validates the

Fig. 17. Streamwise distributions of the skin friction coefficient for the (a) plate and (b) compression corner at :
(1) perturbed flow in the plane of symmetry z = 0, (2) z-averaged perturbed flow, (3) laminar f low, and (4) correlation for
the turbulent boundary layer.
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Fig. 18. Velocity profiles in the cross section  at  for the (a) plate and (b) compression corner: (1) laminar
unperturbed boundary layer, (2) z-averaged profile, and (3) f low in the plane of symmetry (z = 0).
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present method as applied to the study of the development of three-dimensional disturbances in hyper-
sonic boundary layers. The grid resolution used was 30 nodes per wavelength and 120 nodes across the
boundary layer, which can be regarded as the necessary minimum for the proposed universal low-order
method.

This method was used to study the development of three-dimensional disturbances in a f lat-plate
boundary layer and a compression-corner boundary layer at the free-stream Mach number .
Characteristic structures of the disturbance field during the linear and nonlinear laminar–turbulent tran-
sition stages were detected. The viscous friction coefficient distributions on the laminar and transient seg-
ments of the body surface were obtained, which make it possible to determine the onset of LTT. Spectral
characteristics were constructed in various cross sections, and a broadening of the spectrum correspond-
ing to the LTT onset was demonstrated.

In the case of hypersonic f lows, the proposed approach outperforms specialized high-order schemes,
since it provides a tool for shock-capturing computations of complex-geometry f lows with resolving all
strong spatial inhomogeneities and avoids labor-consuming tuning. The increased resource requirements
for the method are balanced by its efficient parallel algorithm and the availability of high-performance
supercomputers.
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