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INTRODUCTION
In this paper, we study the solvability of initial boundary value problems for parabolic equations when

one of the coefficients of the equation is unknown. As a rule, in such situations it is assumed that the
unknown coefficient has some special form. Here, we assume that the unknown coefficient is a function
of the time variable only.

In mathematics and mathematical modeling, the problems considered in this work are called inverse
problems (see [1, 2]). The presence of additional unknown functions in inverse problems makes it neces-
sary to impose some additional conditions: overdetermination conditions, in addition to the boundary
conditions that are natural for a particular class of differential equations. For inverse problems with an
unknown coefficient being a function of the time variable, the required overdetermination conditions are
either conditions of integral overdetermination, or conditions of boundary overdetermination, or condi-
tions of internal overdetermination. Conditions of integral overdetermination assume that additional
information is specified as the values of certain integrals of the solution over the domain of variation of the
spatial variables for all . In problems with boundary overdetermination, it is assumed that, in addition to
the natural boundary conditions, some additional conditions whose supports are certain manifolds from
the lateral boundary of the corresponding cylindrical region are specified for all . Finally, in problems
with internal overdetermination, additional information is specified as the values of solutions and (or) its
derivatives at certain interior points of the spatial domain at all .

Inverse problems, both linear and nonlinear, with an unknown coefficient depending only on the time
variable with integral, boundary, or internal overdetermination conditions have been more or less studied
for different classes of differential equations: second-order parabolic and hyperbolic equations, high-
order parabolic equations, pseudoparabolic and pseudohyperbolic equations, and equations with multiple
characteristics; for more detail, see [1–24]. At the same time, it is worth noting that, in most of these
papers and monographs, inverse problems with an unknown coefficient depending on the time variable
and with boundary overdetermination were studied either in the one-dimensional case or in special
domains such as a parallelepiped; only in [18, 19], inverse problems with boundary integral overdetermi-
nation and an unknown right-hand side for second-order parabolic equations in multidimensional
domains of arbitrary spatial geometry were studied.

The aim of this work is to study the solvability of new nonlinear inverse problems with the boundary
overdetermination. The method of study are based on replacing the inverse problem with a new direct
boundary value problem for a “loaded” [25, 26] differential equation, proving its solvability, and con-
structing the solution of the original inverse problem.

Below, we will consider some model situation. Possible extensions and comments will be given in the
end of the paper.
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1. PROBLEM STATEMENT

Let  be a bounded domain of space  with a smooth compact (for simplicity, infinitely differentia-
ble) boundary ,  be a cylinder  of a finite height ,  be the lateral side of , and

, , , , and  be given functions defined at , .
Inverse problem I. Find functions  and  related in the cylinder  by the equation

(1)
under the following conditions for the function :

(2)

(3)

(4)

(hereinafter,  is the inward normal to  at a current point ).
Inverse problem II. Find functions  and  related in the cylinder  by the equation

(5)
under conditions (2)–(4) for the function .

In inverse problems I and II, conditions (2) and (3) are conditions of an ordinary initial (second)
boundary value problems for parabolic equations and condition (4) is an integral overdetermination
boundary condition. The inverse problems of finding the solution together with the unknown time-
dependent coefficient and with overdetermination condition (4) have not been studied earlier in the mul-
tidimensional case.

Inverse problems I and II have a simple physical interpretation (see [27]). The coefficients  and 
in these problems are functions determining the loss (absorption) and specific heat capacity, respectively.
If the medium is isotropic, it is natural to assume that these coefficients are functions of time. Condition (3)
means that the medium is thermally isolated, and condition (4) gives information on the average surface
temperature of the medium; such information can be easily obtained using of a system of sensors.

2. SOLVABILITY OF INVERSE PROBLEM I
To avoid cumbersome computations and formulations, we introduce the following notation. Through-

out this subsection we shall assume that

(6)
for the initial functions , , etc., all the derivatives and integrals defined below exist (the exact
conditions for the initial data will be given below).

Define
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Let  be a function from the space . By the embedding theorems (see, e.g., [28, Ch. II, Sec-
tion 2]), we have the inequality

(7)

in which the constants  and  are determined by the domain  only. Define the number  as

Theorem 1. Let condition (6) and the memberships , , ,
, and  be satisfied. Further on, suppose to be satisfied the matching conditions

and the condition

Then, inverse problem I has a solution  such that  ∩ ,
 ∩ , and .

Proof. For a fixed number , define the function , :

Further on, for an arbitrary function , define the function :

Consider the following auxiliary boundary value problem: find a function  satisfying the equation

(8)

in the cylinder  and the additional conditions

(9)

(10)

For brevity, we will denote by  the space . Using the hypotheses of the the-
orem and applying the fixed-point method, we will show that problem (8)–(10) has a solution 
belonging to the space .

Let  be a fixed function from the space . Consider the following problem: find a function
 satisfying the equation

 

in the cylinder  and conditions (9) and (10). According to the theory of parabolic equations (see [29,
Ch. III, Section 6]), this problem has a solution  belonging to the space . In other words, bound-
ary value problem , (9), and (10) generates an operator  mapping the space  into itself: .
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Let us show that the operator  satisfied all conditions of the Schauder fixed-point theorem (see [30,
Ch. VIII, Section 35]).

Consider the equalities

which follow from Eq. . Integrating by parts, using the inequality , and
applying Young’s inequality and Grönwall’s lemma, we find that all solutions of boundary value
problem , (9), and (10) satisfy the estimates

(11)

(12)

(13)

Estimates (11) and (12) and inequality (7) imply another estimate:

(14)

Using estimates (11)–(14), it is easy to estimate the derivative  as

(15)

where the number  is determined by the numbers , , , and  and the function  (the exact
value of  is not important).

Inequalities (11)–(15) imply that all solutions of boundary value problem , (9), and (10) satisfy the
estimate

(16)

in which the constant  is determined only by the functions  and , the domain , and the
number .

In turn, estimate (16) implies that the operator  maps a closed ball of the radius  of the space 
into itself.

Let  be a sequence of functions from this ball, converging in the space  to a function
, and  and  be solutions to problems , (9), (10) and , (9), (10), respectively.

Define . We have the equalities
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Repeating the proof of estimate (16), it is easy to obtain the inequality

(17)

The function  satisfies the inequality . Using this estimate and
applying the Hölder inequality and inequality (7), we replace (17) with

Since the right-hand side in this inequality tends to zero as , we have  as  in the
space . But this means that the operator  is continuous.

Now let us prove that the operator  is compact on a closed ball of the radius  of the space .

Let  be an arbitrary sequence of functions from this ball. Since we have the embeddings
 and the second embedding is compact (see [28, Ch. II, Section 2; 31, Ch. I, Sec-

tions 8, 11], we can choose from  a subsequence  strongly converging in the space

. Repeating the proof of the continuity for the sequence , we conclude that the sequence

 strongly converges in the space . But this means that the operator  is compact.

Thus, the operator  maps a closed ball of the radius  in the space  into itself and is compact on
it. By the Schauder theorem, the operator  on this ball has at least one fixed point: .

At a fixed point  of the operator , Eq. (8) and conditions (9) and (10) are satisfied. Further on,
the function  satisfies the inequality

Therefore, we have . In other words, the solution  of problem (8)–(10) is a solu-
tion of the equation

It should be noted that the function  at all  from the interval  satisfies the equality

Hence, we can determine the function  as a solution to the problem

(here, the variable  is a parameter).
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Define

It follows from the aforesaid that the functions  and  are related in the cylinder  by Eq. (1).
The function  obviously satisfies conditions (2) and (3). Let us show that  also satisfies con-

dition (4).
Multiply Eq. (1) by the function  and integrate over the boundary  of the domain . As a result,

we obtain the equality

On the other hand, we have the equality

These two equalities imply the relationship

(18)

Since we have the condition

(19)

and the function  is nonnegative, equalities (18) and (19) obviously imply

In other words, in addition to conditions (2) and (3), the function  also satisfies condition (4). The
membership of the functions  and  in the required classes is obvious too. The constructed func-
tions  and  give the sought-for solution of inverse problem I. The theorem is proven.

Let us present another variant of the solvability theorem for inverse problem I.
Let  be a fixed number from the interval . Define

Theorem 2. Let condition (6) and the memberships , , ,
, and  be satisfied. Further on, suppose to be satisfied the matching conditions

and the conditions
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Then, inverse problem I has a solution  such that  ∩ ,
 ∩ , and .

Proof. Theorem 2 is proven by analogy with Theorem 1; the only difference is that the equality

( ) is analyzed not with Grönwall’s lemma but with Young’s inequality and the
inequality .

Now let us discuss the uniqueness of the solution to inverse problem I.
Theorem 3. Suppose that all hypotheses of Theorem 1 are satisfied. Then, for any two solutions

 and  of inverse problem I, we have  for  and
 for .

Proof. Define . We have the equalities

Successively considering the equalities

integrating by parts, and applying Young’s and Hölder’s inequalities and inequality (7), we obtain the esti-
mate

in which the constant  is determined only by the input data of the problem. This estimate and Grönwall’s
lemma imply that  is identically zero in .

Thus, the functions  and  coincide in . Therefore, the functions  and  also
coincide for .

The theorem is proven.

3. SOLVABILITY OF INVERSE PROBLEM II
Analysis of the solvability of inverse problem II is performed by analogy with the analysis of the solv-

ability of inverse problem I.
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Define

Hereinafter, we assume that  is a positive number. Let  be a fixed number from the interval .
Define the numbers , , and  as follows:

Theorem 4. Let condition (20) and (21) and the memberships , ,
, , , , , and 

be satisfied. Further on, suppose to be satisfied the matching conditions

and the conditions

Then, inverse problem II has a solution  such that , , and
.

Proof. Consider the following auxiliary boundary value problem: find a function  satisfying the
equation
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in the cylinder  and the conditions
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The solvability of this problem is proven by the fixed-point method.
Let  be a function from the space . Consider the boundary value problem: find a function
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Consider the equality

Integrating by parts, applying Young’s inequality, and using the hypotheses of the theorem, we find
that the solutions  of boundary value problem , (23), and (24) satisfies the estimate

(25)

Using (25), is it easy to estimate the second derivatives of the function  and obtain the total estimate

(26)

of all solutions of boundary value problem , (23), and (24), in which the constant  is determined
by the functions , , , the numbers  and , and the domain .

Estimate (26) implies that the operator  maps a closed ball of the radius  of the space  into itself.
Using estimate (26) and the compactness of the embedding , it is easy to prove that the
operator  is continuous and compact on a closed ball of the radius  in the space . Therefore, the
operator  in the space  has fixed points. These fixed points give the solution  of boundary value
problem (22)–(24).

Solutions  of problem (22)–(24) have the same estimates (25) and (26). In particular, (25)
implies that  satisfies the inequality

Hence,  and the fixed point  of the operator  is a solution of the equation

(27)

Set

and define the function  as a solution of the problem

It is easy to check that the functions  and  are related on the cylinder  by Eq. (5) and the
function  satisfies overdetermination condition (4) (in fact, one has only to repeat the reasoning used
to prove Theorem 1).

The fact that the function  satisfied conditions (2) and (3) and the membership of the functions
 and  in the required classes are obvious.

The theorem is proven.
Theorem 5. Suppose that all hypotheses of Theorem 3 are satisfied. Then, for any two solutions

 and  such that  and , we have 
and .

This theorem is proven by analogy with Theorem 3.

4. COMMENTS AND ADDENDA
1. In general, similar results on the solvability of inverse problems I and II can be obtained in more gen-

eral situations than studied here: (a) for equations of form (1) or (5) in which the Laplace operator is
replaced with an arbitrary second-order linear elliptic operator and conditions (3) is replaced with the
condition of the second or third boundary value problem with the corresponding conormal derivative;
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≡1 2( ) ( )p t p t



COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 57  No. 6  2017

PARABOLIC EQUATIONS WITH UNKNOWN TIME-DEPENDENT COEFFICIENTS 965

(b) in the case of a function  depending on the variables , …,  and . The corresponding solvability
conditions can be derived rather easily using the technique proposed above.

2. In the general case, the numbers  and  in the inequality (7) depend in a very complicated manner
on the geometrical characteristics of the boundary of the domain . However, these numbers are easily
computed, for example, for star domains with respect to some interior point of the domain .

3. Let us present some examples demonstrating that the set of initial data in inverse problems I and II
for which the conditions of the existence theorems are satisfied is not empty.

A simplest example for inverse problems I is constructed as follows. Let  for ,
 for ,  for ,  for , and

It is obvious that all hypotheses of Theorem 1 are satisfied and the solution of inverse problem I is
defined by the equalities

Now replace   with a function , where  is a positive number and  is a
function with a support lying strictly inside the domain . Let  for , 

for , and . We have the equalities , , and

. The hypothesis  of Theorem 1 is obviously satisfied
for sufficiently large numbers .

In a similar manner, if , , , , , ,
and , the hypothesis  of Theorem 4 will be satisfied for sufficiently large num-
bers .

These examples demonstrate that the set of initial data in inverse problems I and II satisfying the con-
ditions of the existence theorems is not empty.

4. The condition  for  is purely technical and was introduced to simplify
the computations.
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