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Abstract—Heat and mass transfer effects in the three-dimensional mixed convection flow of a visco-
elastic f luid with internal heat source/sink and chemical reaction have been investigated in the present
work. The flow generation is because of an exponentially stretching surface. Magnetic field normal to
the direction of f low is considered. Convective conditions at the surface are also encountered. Appro-
priate similarity transformations are utilized to reduce the boundary layer partial differential equations
into the ordinary differential equations. The homotopy analysis method is used to develop the solution
expressions. Impacts of different controlling parameters such as ratio parameter, Hartman number,
internal heat source/sink, chemical reaction, mixed convection, concentration buoyancy parameter
and Biot numbers on the velocity, temperature and concentration profiles are analyzed. The local
Nusselt and Sherwood numbers are sketched and examined.
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INTRODUCTION
At present the heat and mass transfer over a stretching sheet has gained much importance amongst the

researchers due to their engineering applications such as in polymer technology, metallurgy, extrusion
process, paper and glass fiber production, manufacturing of plastic and rubber sheets etc. Crane [1] initi-
ated the analysis of boundary layer f low of viscous f luid over a stretching plate with linear velocity. After-
wards such work is analyzed through different aspects including suction/injection, MHD, internal heat
generation/absorption, power law heat f lux, mixed convection f lows and also for non-Newtonian fluids.
There are three types of non-Newtonian fluids, such as differential, integral and rate types. Second grade
fluid is a subclass of differential type f luids which exhibits the normal stress effects. To predict these effects
many researchers studied second grade f luid under various aspects (see [2–6] and many refs. therein).
Various investigations also examine the boundary layer f low of viscous and non-Newtonian f luids over a
surface subject to linear and power law stretching velocities (see some recent studies [7–11]).

Much attention in the literature has been given to the f lows by a linear stretching surface. However this
seems not realistic when the processes for plastic and polymer extrusion are considered. In these processes
stretching velocity is nonlinear. Very less attention is given to the f lows generated by power law stretching
velocities. Few investigations about the two-dimensional f lows by an exponentially stretching surface have
been presented. For example, thermal boundary layer by an exponentially stretching continuous surface
in presence of applied magnetic field was investigated numerically by Al-Odat et al. [12]. Thermal radia-
tion in f low of viscous f luid due to an exponentially stretching surface was studied by Sajid and Hayat [13].
Analytical solution of nanofluid f low over an exponential stretching surface was presented by Nadeem and

1The article is published in the original.
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Lee [14]. Heat transfer analysis over an exponentially shrinking surface through the shooting method was
investigated by Bhattacharyya [15]. Heat transfer effect in the f low of Casson fluid was studied by Muk-
hopadhyay et al. [16]. Mustafa et al. [17] presented the analysis of nanofluid f low over an exponentially
stretching sheet in the presence of the convective boundary conditions. Recently, three-dimensional f low
of viscous f luid over an exponentially stretching surface with heat transfer was studied by Liu et al. [18].
Many investigators also stressed on the magnetohydrodynamic f low of an electrically conducting f luid
because of its numerous applications in metallurgical industry such as in drawing, annealing, in the puri-
fication of molten metals from non-metallic inclusions, electromagnetic pumps, MHD generators etc.
Several studies have been presented by the authors for stretched flow in presence of transverse magnetic
field. Magnetohydrodynamic boundary layer f low of viscous f luid with variable viscosity over a stretching
surface was presented by Mukhopadhyay et al. [19]. Motsa et al. [20] addressed the f low of upper con-
vected Maxwell f luid over porous stretching sheet in presence of magnetic field. The authors used the suc-
cessive Taylor series linearization method. Rashidi and Erfani [21] studied the stagnation-point f low in
presence of porous media and magnetic field.

There are several processes where forced and free convection act simultaneously to establish the f low
regime, temperature and concentration fields around a heated/cooled permeable/impermeable plate or
stretching sheet. Examples include f low in electronic equipment cooled by a fan, f lows in the ocean and
in the atmosphere, solar receivers exposed to wind currents, electronic devices cooled by fans, nuclear
reactors cooled during emergency shutdown, heat exchangers placed in a low-velocity environment and
many more. Unsteady mixed convective f low and heat transfer over a stretching surface in the presence of
slip was determined by Mukhophadhyay [22]. Mixed convection flow of MHD stagnation point f low over
a vertical stretching sheet with a thermal radiation was obtained by Hayat et al. [23]. Recently, Turkyilm-
azoglu [24] discussed the mixed convection flow over a permeable stretching surface. Heat source or sink
in moving f luids assumes a greater significance in all situations which deal with exothermic or endother-
mic chemical reaction and concerned with dissociating f luids [25, 26]. More often investigators consid-
ered the surface temperature and heat f lux situations for the stretching surface. Recently convective
boundary is used for the heat transfer from the surface (see [27–29]). However, according to our knowl-
edge no analysis has been given yet for the f low employing the convective condition of mass transfer over
a stretching surface.

The purpose of present investigation is to deal with the three-dimensional f low of viscoelastic f luid by
an exponentially stretching surface. Formulation is made in the presence of a heat source/sink. Heat and
mass transfer effects in the presence of chemical reaction and mixed convection are also studied. A uni-
form magnetic field is applied along the normal to the f low direction. Convective boundary conditions for
heat and mass transfer over the surface have been taken into account. Similarity transformations are used
to reduce the partial differential equations into the ordinary differential equations. Convergent solutions
are obtained by using the homotopy analysis method [30–40]. Impacts of all the physical parameters
involved in the f low problems are analyzed for the f low field, temperature and concentration.

1. MATHEMATICAL MODELING

We consider the three-dimensional mixed convection boundary layer f low of viscoelastic f luid over an
exponentially stretching surface in the presence of an internal heat source/sink and generative/destructive
chemical reaction. Magnetic field is applied in the transverse direction of the f low. The surface coincides
with the plane at  and the f low is confined in the region  Convective boundary conditions for
both heat and mass transfer on the surface of a sheet are chosen. The governing boundary layer equations
for three dimensional f low can be put into the forms:
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In the above equations,  , and  are the velocity components in the x-, y-, and z-directions, respec-
tively,  is the material f luid parameter,  is the thermal expansion coefficient,  is the concentration
expansion coefficient,  is the electrical conductivity,  is the magnitude of applied magnetic field,  is
the density of f luid,  is the gravitational acceleration,  is the kinematic viscosity,  is the
dynamic viscosity,  is the thermal diffusivity,  is the f luid temperature,  is the specific heat of the
fluid,  is the uniform volumetric heat generation/absorption,  is the concentration field,  is the mass
diffusivity and prime denotes the differentiation with respect to .

The boundary conditions can be expressed as follows:

where subscript  corresponds to the wall condition,  is the heat transfer coefficient,  is the concen-
tration transfer coefficient,  is the ambient f luid temperature, and  is the ambient f luid concen-
tration.

At wall the velocities, temperature and concentration distributions are defined as:

where    are the constants,  is the reference length,  is the ambient temperature,  is the
ambient concentration,  is the temperature exponent, and  is the concentration exponent.

By using the transformations [18]:

Eq. (1) is identically satisfied and Eqs. (2)–(9) give:
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where  is the viscoelastic parameter,  is the mixed convection parameter,  is the local Grashof
number,  is the concentration buoyancy parameter,  is the Hartman number,  is the Prandtl num-
ber, is the heat generation absorption parameter,  is the chemical reaction parameter,  is the Schmidt
number,  is the ratio parameter,  is the heat transfer Biot number, and  is the mass transfer Biot num-
ber. These can be defined in the forms

The local Nusselt and Sherwood numbers in dimensionless forms can be expressed as follows:

,

in which  is the local Reynold number.

2. SERIES SOLUTIONS
For homotopic solutions, the initial guesses and auxiliary linear operators are chosen as
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Here  is an embedding parameter, the non-zero auxiliary parameters are   , and  and the non-
linear operators are  , , and . Taking  and  we get

As  varies from  to  then  , , and  differ from   , and
 to  , , and  Applying Taylors’ expansion we attain

The convergence of the above series strongly depends upon , , , and  Considering that ,
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The general solution expressions can be written as

where the special solutions are  , , and .

3. CONVERGENCE ANALYSIS AND DISCUSSION

The homotopic solutions (37)–(40) obviously depend on the auxiliary parameters  , , and .
In order to control the convergence of the series solutions these auxiliary parameters play a central role.
To obtain the convergence region, the  is curves have been plotted at 14th order of approximations in
Fig. 1. This figure clearly shows that the acceptable values of  , , and  are 

, , and  Table 1 ensures that the series solutions
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Figures 2–7 are plotted to see the effects of a viscoelastic parameter , Hartman number , ratio
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 and  are plotted in the Figs. 4 and 5. The velocity profiles  and  are decreased when
we increase the values of . Also the momentum boundary layer thicknesses are decreasing functions
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  , and 

Order of 
approximations 1 5 10 15 20 25 30 35

–f "(0) 1.155 1.104 1.078 1.068 1.065 1.064 1.064 1.064
–g"(0) 0.2359 0.2395 0.2414 0.2420 0.2422 0.2422 0.2422 0.2422
–θ'(0) 0.3084 0.2620 0.2437 0.2373 0.2341 0.2341 0.2340 0.2340
–ϕ'(0) 0.3300 0.3318 0.3336 0.3340 0.3341 0.3341 0.3341 0.3341

= =M 0.1,K = = β =A B
α = 0.2, λ = = = γ = γ = = =1 20.3, 0.5, Pr 0.7, Sc 0.8,N k α = 0.2 θ ϕ= = = −� � � � 0.6f g
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Fig. 1.   is curves for the function f(η), g(η), and θ(η).
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flow  Figure 10 exhibits the variation of the concentration buoyancy parameter  on the velocity
profile . It is examined that an enhancement in  gives rise to the velocity profile .

Effects of an internal heat source/sink parameter  temperature exponent , heat transfer Biot num-
ber  and Prandtl number  on the temperature  are analyzed in the Figs. 11–14. Figure 11 depicts
the influence of an internal heat source/sink parameter  on the temperature  With an increase in an
internal heat source  both the thermal boundary layer thickness and  increase while in a case of
the heat sink parameter  both the thermal boundary layer thickness and  decrease. Variation of
the temperature exponent  on the temperature  is displayed in Fig. 12. It is found that with an

λ < 0. N
η'( )f N η'( )f

β, A
γ1 Pr θ η( )

β θ η( ).
β > 0 θ η( )

β < 0 θ η( )
A θ η( )

Fig. 7. Variation of α on g'(η).
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increase in  the thermal boundary layer thickness as well as temperature  decreases. As the heat
transfer Biot number  increases from zero, the temperature  boosts up (see Fig. 13). Also it is seen
that the thermal boundary layer thickness is an increasing function of . Impact of the Prandtl number  on
the temperature  is drawn in Fig. 14. As Prandtl number is the ratio of momentum to thermal diffu-
sivities therefore an enhancement in  leads to decrease in the thermal diffusivity and consequently
decrease in temperature  is noted.

Figures 15–18 are sketched to see the variations of a chemical reaction parameter , concentration
exponent , mass transfer Biot number  and Schmidt number Sc on the concentration profile 
Figure 15 is displayed to analyze the variation of a chemical reaction parameter  on the concentration
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γ1 Pr
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profile  It is noted that the associated boundary layer thickness and the concentration profile
decrease for a generative chemical reaction when  while the reverse phenomenon is noted for a
destructive chemical reaction for . With an enhancement in the concentration exponent  both the
concentration profile  and the boundary layer thickness decrease (see Fig. 16). Variation of the mass

ϕ η( ).
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< 0k B
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Fig. 19. Variations of λ and N on –θ'(0).
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transfer Biot number  on the concentration profile  is displayed in Fig. 17. Here we examined that
the effect of  on the concentration profile  is similar to that of  on the temperature profile 
Figure 18 is drawn to see the influence of the Schmidt number Sc on the concentration profile  It is
seen that with an enhancement in Sc the mass diffusivity decreases which shows a decrease in the concen-
tration profile 

Figures 19–22 are displayed to see the impacts of a mixed convection parameter  concentration
buoyancy parameter N, ratio parameter  Hartman number , Prandtl number  temperature expo-
nent  internal heat source/sink  and heat transfer Biot number  on the local Nusselt number 
Figure 19 shows that the heat transfer rate at the wall increases for an assisting f low  while it decreases
for an opposing f low  It is also examined that the heat transfer rate at the wall is increasing function
of the concentration buoyancy parameter . Figure 20 showed that the larger values of a ratio parameter 
corresponds to a higher heat transfer rate . Also it is noted that with an increase in Hartman number
the heat transfer rate decreases. Similar behaviors of the temperature exponent  and Prandtl number 
are observed on the heat transfer rate at the wall  (see Fig. 21). Figure 22 depicts that the heat trans-
fer rate at the wall  decreases with an internal heat generation  while it increases with an inter-
nal heat absorption 

Variations of a mixed convection parameter  concentration buoyancy parameter , ratio parameter 
Hartman number , Schmidt number , concentration exponent , chemical reaction  and mass
transfer Biot number  on Sherwood number  are plotted in the Figs. 23–26. Figure 23 is drawn to
see the influences of a mixed convection parameter  and concentration buoyancy parameter  on the
Sherwood number . It is seen that the Sherwood number  is an increasing function of  and

 in the case of an assisting f low  while a decreasing function for an opposing f low case. Figure 24
depicts that the Sherwood number  decreases with an enhancement in Hartman number M while it
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α –f "(0) –g"(0) f(∞) + g(∞) –f "(0) –g"(0) f(∞) + g(∞)

0.0 1.28180856 0 0.90564383 1.28181 0 0.90564

0.50 1.56988846 0.78494423 1.10918263 1.56989 0.78494 1.10918
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increases with an increase in a ratio parameter  The Sherwood number  increases with an increase
in the Schmidt number Sc and concentration exponent  (see Fig. 25). Figure 26 explains that the mass
transfer at the wall  enhances with a generative chemical reaction when  while it reduces with
a destructive chemical reaction for . It is also observed that the mass transfer at the wall  is an
increasing function of the mass transfer Biot number  Table 2 ensures the validity of the present results
with the Liu et al. [18] in a limiting sense.

CONCLUSIONS

The present study deals with the three-dimensional mixed convection flow of MHD viscoelastic f luid
by an exponentially stretching surface in the presence of a heat source/sink and generative/destructive
chemical reaction. The main outcomes of the present study are as follows.

Variation of a viscoelastic parameter  on the velocity profiles  and  is qualitatively opposite
to that of Hartman number M.

Both the velocity profile  and momentum boundary layer thickness are increasing functions of an
internal heat source parameter  an assisting f low case  and the concentration buoyancy param-
eter  These quantities are decreasing functions of an internal heat sink parameter  and an opposing
flow case 

Thermal boundary layer thickness and temperature  decreases with an increase in an internal heat
source  temperature exponent  and Prandtl number  while the thermal boundary layer thickness
and temperature  increase when an internal heat source  and the heat transfer Biot number 
are increased.

With an enhancement in a generative chemical reaction for , the concentration exponent  and
the Schmidt number Sc the concentration profile  decreases while concentration boundary layer
thickness increases for larger mass transfer Biot number  and destructive chemical reaction when 

The heat transfer rate  boosts up in the case of an assisting f low  the concentration buoy-
ancy parameter  a ratio parameter  the heat transfer Biot number  and an internal heat sink param-
eter  while the heat transfer rate  reduces with an opposing f low  the Hartman number
M and an internal heat source 

With an increase in an assisting f low  the concentration buoyancy parameter , a ratio param-
eter  the mass transfer Biot number  and a generative chemical reaction parameter for  the Sher-
wood number  enhances while the reverse behavior is noted in case of an opposing f low  the
Hartman number M and a destructive chemical reaction parameter for 
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