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Abstract—The multidimensional quasi-gasdynamic system written in the form of mass, momentum,
and total energy balance equations for a perfect polytropic gas with allowance for a body force and a
heat source is considered. A new conservative symmetric spatial discretization of these equations on a
nonuniform rectangular grid is constructed (with the basic unknown functions—density, velocity, and
temperature—defined on a common grid and with f luxes and viscous stresses defined on staggered
grids). Primary attention is given to the analysis of entropy behavior: the discretization is specially con-
structed so that the total entropy does not decrease. This is achieved via a substantial revision of the
standard discretization and applying numerous original features. A simplification of the constructed
discretization serves as a conservative discretization with nondecreasing total entropy for the simpler
quasi-hydrodynamic system of equations. In the absence of regularizing terms, the results also hold for
the Navier–Stokes equations of a viscous compressible heat-conducting gas.
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INTRODUCTION
A wide variety of numerical methods for gasdynamic simulations has been developed to date (see, e.g.,

[1, 2]). An original class of methods is associated with the construction of quasi-gasdynamic (QGD) sys-
tems of equations and their subsequent discretization. A detail description of this approach can be found
in [3–5]. One of its advantages is the simplicity of parallel implementations of corresponding algorithms.
Additionally, a number of important issues in the mathematical theory of QGD systems were investigated
in [6–9].

The law of nondecreasing entropy plays a key role in both physical and mathematical theory of gas
dynamics equations, namely, the Euler equations for an inviscid non-heat-conducting gas and the
Navier–Stokes equations for a viscous heat-conducting gas (see, e.g., [10–14]). In numerical methods
intended for gasdynamic simulations, the control of total entropy behavior is also an important issue of
theory and practice. The interest in it has been growing in recent years (see [15–22] and earlier works [23–25]
for various one-dimensional Navier–Stokes systems of equations written in Lagrangian mass coordi-
nates).

At the same time, the discrete law of nondecreasing entropy is rather frequently overlooked in the
development of numerical methods. This is caused both by the complexity of its derivation, which requires
special nonlinear transformations of discrete equations (in contrast to other conservation laws) and by
rather specific requirements imposed on the methods to be constructed.

Both these points are vividly manifested in the present paper, which continues to develop a rigorous
mathematical theory of discretizations of QGD systems. Previously, this subject was addressed in the con-
text of one-dimensional QGD systems [26–30] and a simplified barotropic QGD system in the multidi-
mensional case [31]. Note that successful numerical experiments with new discretizations were presented
in [29, 30].

In this paper, the discretization approaches used in [27, 31] are extended to the multidimensional
QGD system written in the form of mass, momentum, and total energy balance equations for a perfect
polytropic gas with allowance for a body force and a heat source. We construct a new conservative sym-
metric spatial discretization on a nonuniform rectangular grid with the basic unknown functions—density,
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velocity, and temperature—defined on a common grid and with f luxes and viscous stresses defined on
staggered grids (following [4, 5]). Primary attention is given to the analysis of entropy behavior: the dis-
cretization is specially constructed so that finally the total entropy does not decrease. This is achieved by
substantial revision of the standard discretization and applying numerous original features, including a
new discretization of the Navier–Stokes viscous stress tensor, new representations for diagonal elements
of the regularizing stress tensor and the heat f lux, a new approach to averaging the regularization param-
eter τ as a multilplier, special “logarithmic” averages of the density and internal energy (in mass and total
energy f luxes), a special role of temperature in discretizations of the viscosity coefficient and the regular-
izing stress tensor, the introduction of correcting terms/factors with small coefficients h2 in the mass and
total energy f luxes within the total energy equation and the body force approximation, a new discretization
of the heat source, etc. Note that, in the one-dimensional case, the discretization is not identical to the
one constructed in [27].

An important feature is that, in the absence of regularizing terms from the system, the results hold for
the Navier–Stokes equations for a viscous compressible heat-conducting gas.

Along with the QGD system, the quasi-hydrodynamic (QHD) system of equations is used in practice
[4, 5]. Mathematically, it is convenient to treat the latter formally as a simplification of the former. As a
result, a conservative discretization with nondecreasing total entropy for the QHD system can easily be
specified as a corresponding simplification of the discretization constructed for the QGD system, which
is performed at the end of this paper.

Note that, in addition to its practical importance, the possibility of constructing a conservative discret-
ization satisfying conservation laws, including the one of nondecreasing entropy, can be of significant the-
oretical importance. Relying on this possibility and the method developed in [32] (which can be referred
to as the method of reference difference schemes), fairly strong results could be derived in the future con-
cerning the properties of a large family of discretizations, including structurally simpler ones, for which
conservation laws are satisfied only with an error.

This paper is organized as follows. In Section 1, we recall the QGD system of equations and the corre-
sponding internal energy and entropy balance equations. Some of the terms are written in a form more
convenient for the subsequent discretization. In Section 2, we first introduce the necessary notation and
present auxiliary results from difference analysis. Then the discretization of the QGD equations is
described in the early stages of construction. For this discretization, we derive total (over the domain)
mass and energy conservation laws (Theorem 1) and obtain kinetic and internal energy balance equations
(Lemma 2). In Section 3, we complete the construction of the discretization and analyze the behavior of
the total entropy. Generally, the argument underlying the derivation of the law of nondecreasing total
entropy follows the differential case, but is more complicated. It is divided into several steps, namely,
Lemmas 3–7. Note that the discretization is elaborated to a higher degree of detail in parallel with the der-
ivation procedure in order to demonstrate the role of its structural elements in the validity of the law.
A direct consequence of these lemmas is the main result of the present work—Theorem 2 on a lower bound
for the derivative of total entropy and the law of nondecreasing total entropy. In the two-dimensional case,
part of the constructed discretization is written in expanded form. The discretization chosen for off-diag-
onal terms of the regularizing stress tensor is discussed at the end of Section 3. More specifically, we show
how to modify the discretizations from [31] so as to reduce the stencil for such terms. Finally, Section 4 is
briefly concerned with the QHD system of equations. Specifically, we consider a corresponding conser-
vative discretization that is a simplification of the one constructed in Sections 2 and 3 and prove Theorem 3
(similar to Theorem 2) on the properties of total entropy.

1. QUASI-GASDYNAMIC SYSTEM OF EQUATIONS AND ENTROPY BALANCE
The QGD system of equations in the form of [4, 5] consists of the following mass, momentum, and

total energy balance equations:

(1.1)

(1.2)

(1.3)

The unknown functions—the density ρ > 0, velocity u = (u1, …, un), and the total energy of the gas E =
0.5ρ|u|2 + ρε— depend on (x, t), where х = (х1, …, xn) ∈ Ω, Ω is a bounded domain in ℝn (n = 1, 2, 3) with
a boundary ∂Ω, and t ≥ 0. Here and below, summation from 1 to n is implied over repeated indices i and j

∂ ρ + =div 0,t J

∂ ρ + + ∂ = ∂ Π + ρ( ) div( ) ,*t l l l i il lu u p FJ

∂ + + − = ∂ − + Π + +div[( )( )] ( ) .t i i ij j i iE E p q u J F Qu w
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(and only over them), the indices l and k range from 1 to n, and the operators div and  are taken with
respect to х.

We use the equations of state of a perfect polytropic gas:

(1.4)

with constants γ > 1 and сV > 0. The first of these equations is also applied in the form р = Kρθ, where K =
(γ – 1)сV. The functions р, ε, θ > 0 are the pressure, internal energy, and absolute temperature. Let
F(x, t) = (F1, …, Fn) denote the body force density and Q(x, t) ≥ 0 be the heat source strength (both are
given functions).

The regularized mass f lux J = (J1, …, Jn) and the regularized density  are given by the formulas

(1.5)

(1.6)

Here, w = (w1, …, wn) and  = ( , …, ) are auxiliary regularizing vector functions, τ = τ(ρ, u, θ) > 0 is
a regularization parameter, and u  = ui∂i. Note a possible and sometimes useful formula

(1.7)

The viscous stress tensor Π = ΠNS + Πτ consists of the Navier–Stokes and regularizing terms

(1.8)

(1.9)

where μ = μ(ρ, u, θ) ≥ 0 and λ = λ(ρ, u, θ) ≥ 0 are the dynamic and bulk viscosity coefficients (in contrast
to [4, 5], we consider the more general case λ ≢ 0). The second of the terms in  is rewritten in a mod-
ified form suitable for the discretization constructed below:

(1.10)

The heat f lux q = (q1, …, qn) is given by the formula

with the thermal conductivity coefficient � = �(ρ, u, θ) ≥ 0. This formula is rewritten in another form used
also for the discretization below:

(1.11)

Note that, although μ, λ, and � are usually independent of u, such a dependence may arise when the
QGD equations are used.

The indicated system of equations is a special regularization of the Navier–Stokes equations for a vis-
cous compressible heat-conducting gas.

Equations (1.1)–(1.4) and the formula J = ρ(u – w) imply the internal energy balance equation

(1.12)

It is well known that the entropy of a perfect polytropic gas is given by

(1.13)

∇

= γ − ρε ε = θ( 1) , Vp c

ρ*

⎡ ⎤τ= ρ − = ρ + = τ ∇ + ∂ −⎢ ⎥ρ ρ⎣ ⎦

1ˆ ˆ( ), [div( )] , ( ) ,k k k kw u p FJ u w w u u w u

ρ = ρ − τ ρdiv( ).* u

ŵ 1ŵ ˆnw
∇

= ρ − ρ ˆ.*J u w

( )Π = μ∂ + λ − μ Π = μ ∂ + ∂ ≠22 div , ( ), ,
3

NS NS
kk k k kl k l l ku u u k lu

τ τΠ = ρ + τ ∇ + γ − τ γ − Π = ρ ≠ˆ ˆ[( ) div ] ( 1) , , ,kk k k kl k lu w p p Q u w k lu u

τΠ kk

τ ∇ + γ = τ + γ −
= θ τ ρ + τρ ∇ θ + γ − τρ
(( ) div ) [div( ) ( 1) div ]

[ div( ) ( ) ln ( 1) div ].
p p p p

K
u u u u

u u u

⎧ ⎡ ⎤ ⎫− = ∇θ + τ ρ ∇ ε − ∇ ρ −⎨ ⎬⎢ ⎥ρ⎩ ⎣ ⎦ ⎭
2( ) ( )p Qq u u uû

{ }− = ∇θ + τθ ρ ∇ θ − ρ ∇ ρ −
θ

( ) ln ( ) ln .V
Qc Kq u u uû

∂ ρε + ε = − + Π ∂ − − + ∇ − ρ +ˆ( ) div( ) div div( ) ( ) .t ij i j i iu p p w F QJ q u w w

= − ρ + θ0 ln ln ,VS S K c
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where S0 is a constant. The mass and internal energy balance equations imply the entropy balance equa-
tion (see [4, 5])

(1.14)

(see also [8] for Q ≢ 0), where

Combining Eq. (1.14) with the boundary conditions  and , where n is the out-
ward normal to ∂Ω, we immediately derive the total entropy balance equation

(1.15)

Its right-hand side represents total entropy production. More specifically, the integral of the sum
ΞNS + Q/θ is the Navier–Stokes entropy production, and the other terms involve the multiplier τ and rep-
resent relaxation production. All terms under the integral sign are nonnegative, except for the last one,
which contains Q twice and is nonnegative provided that τ(γ – 1)Q ≤ 4р. Thus, under the indicated con-
dition, we have the law of nondecreasing total entropy

Note that the penultimate terms on the right-hand sides of (1.14) and (1.15) are written in a somewhat
modified form that is most suitable for deriving discrete analogues.

Note also that, under the standard boundary condition u|∂Ω = 0, the above-mentioned boundary con-

ditions for J and q can be rewritten in a simpler equivalent form as  = 0 and

.

2. NOTATION, EARLY STAGES OF SPATIAL DISCRETIZATION OF THE QGD SYSTEM,
AND ITS FIRST PROPERTIES

2.1. Following [27, 31], we introduce the notation necessary for constructing a discretization and recall
a few formulas. In what follows, let Ω = (0, Х1) × … × (0, Хn). For k = 1, …, n, on [0, Xk] we introduce an
arbitrary nonuniform grid  in xk with nodes 0 = xk0 < xk1 < … <  = Xk. Let ωkh consist of its interior

nodes xkm, 1 ≤ m ≤ Nk – 1. Additionally, let xk(–1) = –xk1 and  =  + . The steps
are hkm = xkm – xk(m – 1).

We also introduce an auxiliary grid  with nodes xk(m + 1/2) = (xkm + xk(m + 1))/2, –1 ≤ m ≤ Nk, and steps

 = xk(m + 1/2) – xk(m – 1/2) = (hkm + hk(m + 1))/2. Let  consist of its interior nodes xk(m + 1/2), 0 ≤ m ≤ Nk – 1.

( ) ρ τ∂ ρ + = − + Ξ + + ρ
θ τθ ρ

γ − τ γ −⎡ ⎤ ⎛ ⎞+ τ ρ γ − + ∇ θ − + −⎜ ⎟⎢ ⎥ θ⎣ ⎦ ⎝ ⎠

2 2

2

ˆ( ) div( ) div | | [div( )]

( 1) ( 1)( 1)div ( ) ln 1
2 4

NS
t

V

KS S

Q QQc
p p

qJ w u

u u

( )μ μ ∇θλΞ = + − + ≥ = = ∂ + ∂
θ θ θ θ

2
2

2
| |2 12 (div ) 0, 1,2,3, ( ).

3 2
NS

ij ij ij i j j in u uu ûD D D

∂Ω⋅ =| 0J n ∂Ω⋅ =| 0q n

Ω Ω

⎧⎪ ρ τ∂ ρ = Ξ + + ρ⎨ τθ ρ⎪⎩

⎫⎪γ − τ γ −⎡ ⎤ ⎛ ⎞+ τ ρ γ − + ∇ θ − + − ≥⎬⎜ ⎟⎢ ⎥ θ⎣ ⎦ ⎝ ⎠⎪⎭

∫ ∫
2 2

2

ˆ| | [div( )]

( 1) ( 1)( 1)div ( ) ln 1 , 0.
2 4

NS
t

V

KSdx dx

Q QQc dx t
p p

w u

u u

Ω

∂ ρ ≥∫ 0.t Sdx

∂Ω

⎛ ⎞∇ − ⋅⎜ ⎟ρ⎝ ⎠

1 p F n

∂Ω∇θ ⋅ =| 0nû

ωkh kkNx

+( 1)kk Nx
kkNx ( )−− ( 1)k kkN k Nx x

ω*
kh

k̂mh ω*
kh
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The set of functions defined on a grid ω is denoted by Н(ω). For the subsequent analysis, it is natural

to assume that  and . For  and , we introduce the grid
averages and difference quotients

Clearly, sk, , δk: H( ) → H( ), while , : H( ) → H( ) and H( ) → H(ωkh). Let
 and .

Let   H( ). The following difference analogues of the product rule and one more formula hold:

(2.1)

(2.2)

(2.3)
The last two formulas are used not only in the analysis, but also in the construction of the discretiza-

tion.

The inner products in H( ), H(ωkh), and Н( ) are defined as

with the help of the composite trapezoidal and midpoint rules.
Below, we repeatedly use the summation-by-parts formula

(2.4)

where the substitutions are zero (for example) for ( )0 =  = 0 or  =  = 0, and the formula

(2.5)

where the substitutions are zero for ( )0 =  = 0 or  =  = 0. The indicated conditions on y
are equivalent to the fact that y is an odd/even function, respectively, with respect to xk = 0, Xk. For  =

 = 0, the inner products on left-hand sides of the formulas can be simplified to .

Lemma 1. Let , where . Any  that is an even function of  with respect to
 satisfies the inequality

This result is a strengthening of Lemma 1 in [31]; its proof remains nearly the same. Recall that the
derivation of this inequality dictates the form of the operator , which is not standard. It is also shown
in [31] that, under suitable conditions on the grid , the coefficients of the operators  and sk are close
(for a uniform grid , they coincide). Note that ( ) = hkska and, in principle, this formula can be
effectively used when the parameter τ is chosen depending on the spatial grid.

We introduce the multidimensional grids  =  × … × , ωh = ω1h × … × ωnh, ∂ωh = \ωh, and

 =  × … × . Let the grids  and  be obtained from  by replacing the multiplier  with

∈ ω*( )k khh H ∈ ωˆ ( )k khh H ∈ ωv ( )khH ∈ ω*( )khy H

−
− − − − −

−

+ + −
− +

= + = + δ =

= + δ =

�

v -v
v v v v v v v

- y

1
1/2 1 1/2 1 1/2

( 1)

( 1) 1/2 1/2
1/2 1/2

( ) 0.5( ), ( ) , ,ˆ ˆ2 2

* *( ) , .ˆ ˆ ˆ2 2

km km m m
k m m m k m m m k m

k m km km

k m m mkm
k m m m k m

km km km

h hs s
h h h

h yhs y y y y
h h h

�ks ωkh ω*
kh

*
ks δ*

k ω*
kh ωkh ω*

kh

− − / −=v v1 2 1( )k m m + − / =v v1 2( )k m m

�v ∈ ωkh

δ = δ + δv v v* * *( ) ( ) ( ),k k k k kys y s y

δ − δ δ = δ + δ� � � �v v v v v v v v2* * *[( ) 0.25 ( ) ] ( ) ,k k k k k k k k k ks s h s s

− = δ δ� � �vv v v v v2( ) ( ) 0.25 ( ) .k k k k k ks s s h

ωkh ω*
kh

ω ω= + +� � � �v v v v v v v v0 0 1( , ) 0.5 ( , ) 0.5 ,
kh kh k k kk N N kNh h

−

ω − −ω
= =

= =∑ ∑� �� � *

1

1/2 1/2

1 1

ˆ( , ) , ( , )
k k

kh kh

N N

m m km m m km

m m

h y y y y hv v v v

ω ωδ = − δ + −v v v v* 0 0
* * *( , ) ( , ) ( ) ( ) ,

kh k kkh
k k k N N ky y s y s y

*
ks y *( )

kk Ns y v 0 v
kN

ω ω= + δ − δ*
2 2

0 0 1
* * *( , ) ( , ) 0.25( ) 0.25( ) ,

kh k k kkh
k k k N N kN k ks y y s y h y hv v v v

δ*
k y δ*( )

kk Ny v 0 v
kN

v 0

v
kN ω⋅ ⋅(, )

kh

∈ ω( )kha H ≥ 0a ∈ ω*ˆ( )khy H kx
= ,0k kx X

ωω ≥� *
2 2*( , ) ( ,( ) ) .

khkh
k ks a y a s y

�ks
ωkh �ks

ωkh �ks k̂h a

ωh ω1h ωnh ωh

ω*
h ω1

*
h ω*

nh ω *,ˆ i h ω *,i h ωh ωih



COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 57  No. 4  2017

ENTROPY-CONSERVATIVE SPATIAL DISCRETIZATION 711

 and , respectively, and let  be obtained from ωh by replacing the multiplier  with . The
multidimensional averages are defined as

The spaces H( ), H(ωh), and H( ) are equipped with the inner products

Let the inner product  be obtained from  by replacing  with , and 
be obtained from  in a similar manner.

2.2. The equations of QGD system (1.1)–(1.3) are discretized in space as follows:

(2.6)

(2.7)

(2.8)

where, recall, 1 ≤ l ≤ n. The boundary conditions are specified as

(2.9)

Here, the basic unknown functions , , and  are defined for  and .
As before,

(2.10)
Additionally, uk is sequentially extended as an even function of х1 with respect to the points 0, Х1, …, Xn

with respect to the points 0, Хn (except for xk) and as odd function of xk with respect to the points xk = 0,
Xk (for all 1 ≤ k ≤ n), while the functions ρ, θ, and τ are extended evenly in all xi, 1 ≤ i ≤ n.

The functions Fk are given on  and are assumed to be odd in xk with respect to the points xk = 0,
Xk and even in xl with respect to the points xl = 0, Xl for all l ≠ k. The function Q is defined on .

By generalizing the formulas from [27], Jk and Е(k) are defined on  as:

(2.11)

The averages ρ(k) and εkkl for ρ and ε on  are chosen in a special manner below. In the following

theorem and lemma, they, together with , wk, Πkl, qk, and Rhk, are also defined on , and are as yet
arbitrary. Here, the functions wk (and, hence, Jk), Rhk, and qk are assumed to have the same evenness/odd-

ness properties as uk. Assume that the functions  and Πkk are even, while  with  are odd in xk

with respect to xk = 0, Xk.
Note that the second and third boundary conditions in (2.9) are equivalent to the fact that Jk and qk are

odd functions of xk with respect to xk = 0, Xk.
It should be emphasized that Eqs. (2.6) and (2.8) are written not only on ωh, but also on ∂ωh. For exam-

ple, the first (simpler) of them at xk = 0, Xk takes the form

,

since Jk is odd in xk with respect to xk = 0, Xk and in view of the property  = 0 for all l ≠ k; specif-
ically, on grid edges,  = 0 for all l ≠ k, 1 ≤ k ≤ n.

ω*
ih ω*

ih ω *,i h ωih ω*
ih

� �

≠ ≠ ≠ ≠

= = = = = ≠∏ ∏ ∏ ∏… ˆ ˆ1

, ,

* * * *, , , , , where .n k k k ki i ij ij
k i k i k i j k i j

s s s s s s s s s s s i j

ωh ω*
h

ω ω ω ω ω ω

ω ω ω

= = ≡
= ≡

… … … …� � � � �

� � �… …

1 1

* * *
1

( , ) ( ( ,1) , ,1) , ( , ) ( , ) ( ( ,1) , ,1) ,
( , ) ( , ) ( ( ,1) , ,1) .*

h h nh h h nh

h h nh
y y y y yy

v v vv v v v v vv

ω�v v
*,

( , )
i h ω�v v( , )

h ω⋅(,1)
ih ω⋅ *( ,1)

ih
�v v *( , )i

�v v( , )

∂ ρ + δ = ω* 0 on ,t i i hJ

∂ ρ + δ + δ = δ Π + ρ ω( )* * * *( ) ( ) ( ) on ,*
l

t l i i i l l l i il l l hu J s u s p s F

∂ + δ + − − δ δ = δ − + Π

+ ρ − + θ + ω

( ) 2* *[( )( ) 0.25 ( ) ] ( )

* *[( )( ) ] [ ( )] on ,

i
t i i i i i i i i i i i ij i j

i i i i i i i hi i h

E E s p s u w h p u q s u

s s s u w F s R F Q

∂ω = == = = ≤ ≤0, 0,
* *| 0, | 0, | 0, 1 .

h k k k kk k x X k k x Xs J s q k nu

ρ , >( ) 0x t ,( )x tu θ , >( ) 0x t ∈ ωhx ≥ 0t

= ρ + ρε = ρθ ε = θ20.5 | | , , .VE p K cu

ω *,k h

ωh

ω *,k h

− += ρ − = ρ + ρ ε( ) ( ) ( ) ( )
, ,( ), 0.5 .kk k k k

k k k k j k j kJ s u w E u u

ω *,k h

ρ( )

*
k ω *,k h

ρ( )

*
k Π kl ≠k l

= = = −∂ ρ + = ∂ ρ − =
10 0.5 0.5

1

2 2| | 0, | | 0
k k k k k k kN k

k

t x k x h t x X k x h
k kN

J J
h h

=0,|
k kl x XJ

= =∂ ρ 0, ; 0,|
k k l lt x X x X
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Note that the subsequent analysis simplifies noticeably if boundary conditions (2.9) are replaced by the
periodicity of the solution in х1 with period X1, …, хn with period Хn.

Theorem 1. The total (over ) mass and energy conservation laws hold:

Proof. Taking the scalar product of the mass and total energy balance equations (2.6) and (2.8) with 1
in H( ) and using formulas (2.4) and (2.5) and the fact that Jk, (Е(k) + skp)(skuk – wk), (δkp)δkuk, qk,
and Πkjskuj are odd functions, while (skρ)(skuk – wk)Fk, and RhkFk are even functions of xk with respect to
xk = 0, Xk, we derive the required conservation laws.

Lemma 2. For the indicated discretization, the following kinetic and internal energy balance equations on
 are valid:

(2.12)

(2.13)

Proof. The momentum balance equation (2.7) is multiplied by ul, and the second term on the left-hand
side is transformed with the help of formulas (2.1):

(2.14)

on  (with the boundary condition  = 0 taken into account). The mass balance equation (2.6) is

multiplied by  and is also transformed with the help of formulas (2.1):

Substituting this expression into (2.14), using the elementary formulas

replacing the index l by j, and summing the result over j, we obtain Eq. (2.12).

According to formulas (2.11), we write

,

and, with the help of (2.1) and (2.2), Eq. (2.8) can be rewritten as

Subtracting (2.12) from this equation yields Eq. (2.13).

Note that Eq. (2.13) is a natural discretization of differential equation (1.12) (anyway, for F = 0), which
is not only important in itself, but is also used heavily below to derive the law of nondecreasing total
entropy. This is achieved by using the nonstandard discretization of |u|2 in the form of  in (2.11)

and by introducing the correcting divergent terms  (containing the small multipliers )
into the total energy balance equation (2.8). Note that Eq. (2.8) in system (2.6)–(2.8) can be equivalently
replaced by Eq. (2.13).
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3. COMPLETING THE CONSTRUCTION OF THE DISCRETIZATION
AND ANALYSIS OF THE TOTAL ENTROPY BEHAVIOR

3.1. Applying the formulas from [27], for ρ and ε, we introduce nonstandard “logarithmic” averages
over xk:

(3.1)

Note that

Here, ln(α; β) is the divided difference for the logarithmic function:

The functions  and  are assumed to be even in xk with respect to xk = 0, Xk, 1 ≤ k ≤ n. Recall that,
in order to avoid the loss of numerical stability for small |(β/α) – 1|, it is recommended that ln(α; β) be
calculated using an approximation of its integral representation [29].

Lemma 3. The following equality holds on :

(3.2)

Proof. By entropy definition (1.13) and the mass balance equation (2.6), we have

Therefore, with the help of formula (2.1),

Furthermore, applying formula (2.1) with y = Jk  and  = , we can write

(3.3)

According to entropy definition (1.13),

additionally, we have the elementary formulas

(3.4)

which imply that

where the fulfillment of the second equality is ensured namely by the choice of averages (3.1). Combining
this equality with (3.3) yields (3.2).

Lemmas 2 and 3 are proved by generalizing the corresponding arguments in [27] to the multidimen-
sional case.
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For the subsequent analysis, we note that, by virtue of the second formula in (3.4), it holds that

(3.5)

The following lemma gives a preliminary expression for total entropy production, so it begins the der-
ivation of the law of nondecreasing total entropy. Recall that this derivation is based on the mass and inter-
nal energy balance equations.

Lemma 4. The following formula holds for the derivative of the total entropy:

(3.6)

Proof. Taking the scalar product of either side of Eq. (2.13) with 1/θ in H( ) and of Eq. (3.2) with 1
and applying formulas (2.4) and (2.5), we derive

Here, we took into account that qk, skuk – wk, and Jk  are odd functions of xk, while Πklδkul +

wkδkp, (skρ)(skuk – wk)Fi, and RhkFk are even functions of xk with respect to xk = 0, Xk, and  = 0

for all 1 ≤ k ≤ n.
Substituting the first of these equalities into the second one and combining like terms with the help of

the formula p = Kρθ, we obtain formula (3.6).
Let us construct special discretizations of , , and  ensuring that the total entropy production (i.e.,

the right-hand side of (3.6)) is nonnegative. First, we discretize the viscous stress tensor , see (1.8)–(1.10).
Let  = μ/θ and  = λ/θ. Note that, in solving the Euler equations with the help of the QGD equations,
one usually sets  (see [4, 5]), where  > 0 is the Schmidt number; then simply .
Let

. (3.7)
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where  and  (or  and ) are defined on , while
 is defined on . Here,  is the Kronecker delta. It is assumed that  and  are even,

while  and  with  are odd in xk with respect to xk = 0, Xk.

An essentially new element is the extraction (in (3.7)) of the multiplier , which approximates θ.
Discretizations (3.8) and (3.9) are identical to those successfully used recently in [31] (with μ and λ in the
role of  and ).

Formula (3.10) also involves nonstandard approximations of θ and , namely,  and

, respectively.

Let us also construct such discretizations for the components of the vectors w and  (see (1.5)):

(3.12)

(3.13)

(3.14)

The first two of these quantities are defined on . The last term in (3.14) is nonzero only for n = 3;
moreover, in this term,  and , where (k, l, m) is a permutation of (1, 2, 3). All these for-

mulas contain correcting multipliers depending on θ, including  ≈ 1; moreover, the corresponding

difference involves the small multiplier  (see the first formula in (3.5)). The difference expressions on
 applied here and in (3.10) are given by

(3.15)

(3.16)

Clearly, these formulas approximate (in the same manner) the respective quantities

which are independent of k, on n different grids , 1 ≤ k ≤ n. Note that, in (3.13)–(3.16) and below, the
averages of τ are not extracted as multipliers (in contrast to more traditional discretizations [4, 5]); instead,

 is averaged in complexes with other unknowns.

Since  is discretized not only on the grid , but also on  with l ≠ k according to (3.13) and
(3.14), the stencil of formula (3.11) does not expand (see the discussion below). Such a technique was used
in [4, 5], but the corresponding discretizations were substantially different.

The constructed functions wk and  are assumed to have the same evenness/oddness properties with
respect to all variables as uk does (see above).

The expression  in (3.10) is specified below as a term of q (see (3.28) below). Its form, like
the form of , is of no importance up to Lemma 7.
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Recalling definition (1.6) and generalizing the formulas from [27] with the θ-dependent multiplier
in (3.12) taken into account, we define

(3.17)

These quantities are assumed to have the above-mentioned evenness/oddness properties. Once again, 

contains the correcting multiplier  ≈ 1, while Rhk is itself a correcting term with a small multiplier .

Lemma 5. The Navier–Stokes terms in the total entropy production satisfy the lower bound

(3.18)

where  = 0.5( ) for  and  on .
The equality in (3.18) follows from the property  = 0 for all  and j. The inequalities fol-

low directly from [31, Lemma 3]. Note that they can be slightly strengthened, but we do not go into more
detail about this issue.

To write the total entropy production, for  and div(ρu), we introduce the discretizations
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they are not used for the discretization of the QGD equations. In (3.20), ρ is factored out of the averaging
operators, so this formula is also not standard.

Lemma 6. The regularizing terms and terms with  in the total entropy production satisfy the lower bound
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Proof. To transform the first term on the left-hand side of (3.21), we use formulas (3.10)–(3.12) and
extract terms with components of  and F:
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Here, we used the fact that  =  = 0 for all .

Rearranging the multipliers in the terms of , introducing shortened notation, and using formulas (3.13)
and (3.14), we obtain

Applying Lemma 1 and formula (2.5) several times yields the inequality

It should be emphasized that the sum over j in the penultimate expression is taken inside square brack-
ets. Here, we used the property  = 0 for  and the fact that αjk are even functions of xj with
respect to xj = 0, Xj for .

Now formula (3.24) implies that

(3.26)

In view of definitions (3.12) and (3.17) and formula (2.3), the other terms on the left-hand side of (3.21)
are transformed as

here, we took into account the formula (skρ)(skuk – wk) = skuk – (skρ)  (cf. (1.7)). The terms with Rhi

appearing in Eq. (2.8) and their form (3.17) are explained by the necessity of satisfying the last equality.
When it is added to (3.41), the term with Fi on the right-hand side cancels out.
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Applying the formula

to the last term Аτ and rearranging terms, we obtain the decomposition

where

while Aτ,θ and Aτ,Q are given by formulas (3.22) and (3.23). Setting dk = δk(ρuk) and applying defi-

nition (3.15), Lemma 1, and formulas (2.5) and (3.20), we write the chain of relations

Here, we took into account that dk are even functions of xk with respect to xk = 0, Xk and used the equality
 = 0 for all l ≠ k. The lemma is proved.

Note that the discretizations of the terms with components of F in Eqs. (2.7) and (2.8) and the manip-
ulations with them performed in the analysis of total entropy are direct generalizations of the correspond-
ing ones presented in [27].

It remains to discretize the heat f lux  written in form (1.11). Specifically, for 1 ≤ k ≤ n, let

(3.27)

on , where the coefficient  is defined on , and let

(3.28)

for  In these formulas, we used the same nonstandard approximations for  and  as before,

while the derivatives ∂klnρ and ∂klnθ were approximated as  and .

The functions qk and  are assumed to be odd in xk with respect to xk = 0, Xk.
To write the total entropy production, we introduce the following discretizations for  and 

(they are not used for the discretization of the QGD equations):
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Note that the discretization of the QGD equations constructed for n = 1 is somewhat different from

the one proposed in [27].
Lemma 7. The total entropy production terms containing  and  satisfy the lower bound
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Proof. According to definition (3.27) and the first formula in (3.4), we write

(3.31)

where, in view of the relation

(3.32)

(following from (3.4)) and the boundary condition u|∂Ω = 0, we have
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By virtue of formula (2.5),

Here, we took into account that ak + bk are even functions of xk with respect to xk = 0, Xk and
 = 0 for all l ≠ k. Applying Lemma 1, rearranging the terms twice, and recalling defini-

tions (3.29), we obtain

It should be stressed that the sum over i in both terms with δ(ii) is taken inside square brackets. Estimate
(3.30) is proved.

Combining Lemmas 4–7, we obtain the main result of this paper.
Theorem 2. The spatial discretization of the QGD equations consists of Eqs. (2.6)–(2.8), together with for-

mulas (2.10), (2.11), and (3.1), where Π, w, and q are given by formulas (3.7)–(3.16), (3.27), and (3.28) and
ρ* and Rh are given by formulas (3.17).

For this discretization under boundary conditions (2.9), the derivative of the total entropy satisfies the lower
bound

(3.36)

where the quantities , divh(ρu), divhu, and  are defined in (3.19), (3.20), and (3.29). The first
four terms on the right-hand side of this bound are always nonnegative (in view of Lemma 5), while the last
term is nonnegative provided that  on .

Under the indicated condition, this bound implies the law of nondecreasing total entropy

Inequality (3.36) is a discrete analogue of the total entropy balance equation (1.15) (the transition from
the equality to the inequality was used for illustrative purposes with several specific nonnegative difference
terms dropped).

The properties indicated in the theorem remain valid for τ ≥ 0. To show this, the third term on the right-
hand side of (3.36) has to be rewritten as
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(the sum over j is taken inside curly brackets). Specifically, for τ = 0, the result holds for the Navier–Stokes
equations for a viscous compressible heat-conducting gas (in which case only the first and second terms,

together with , are retained on the right-hand side of (3.36)); the second boundary condition dis-

appears from (2.9) (it holds automatically by virtue of the above-mentioned extension of the components

of u), while the third boundary condition becomes  = 0.
3.2. For illustrative purposes, the part of the constructed discretization involving summation over

repeated indices (or containing several indices) is written in expanded form for the two-dimensional case
(n = 2). Equations (2.6)–(2.8) become

Formula (2.11) for Е(k) and formulas (3.13), (3.14) for  are

Formulas (3.15), (3.16), and (3.28) become

Here, the quantities with upper or lower indices 1 correspond to the grid , while the quantities with
indices 2 correspond to  (if there are two indices, priority is given to the upper one).
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Formulas (3.8) and (3.9) for components of stress tensor (3.7) are written as

The first and fourth of these formulas correspond to the grid , while the second and third, to .

3.3. Let us discuss the discretization of  and  (see (3.11), (3.13), (3.14)). Instead of discretizing
 on n grids, we can use the single grid  and apply the simpler formulas
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The quantity  discretizes

on n grids , 1 ≤ k ≤ n; there is an obvious analogy between formulas (3.38) and (3.28). However, here
we need to use the formula
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where the operator  maps a function from the grid  to . Unfortunately, this leads to a consid-
erable expansion of the stencil used.

For the indicated discretizations, differences in the derivation of Theorem 2 arise only in the proof of
Lemma 6. Transforming the first term on the left-hand side of (3.21) with the help of formulas (3.10),
(3.39), and (3.37), extracting terms with components of , and applying formula (2.5) twice (with respect
to xj and xi), we obtain
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with the same term Aτ. Here, we again take into account that  =  = 0 and use the fact
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3.4. For the multidimensional QGD system with a potential body force, discretizations of type (3.39),
(3.37), (3.38) were recently used in [31]. Let us describe how they can be replaced by discretizations of
type (3.11), (3.13), and (3.14) in order to reduce the stencil for , .

For the first of the spatial discretizations proposed in [31], we use the formulas

The first of these formulas is identical to (3.11), while the other two can be viewed as simplifications

of (3.13) and (3.14). Then in [31] there appears a sum , where  (see (3.25)) is given by

In a similar manner to the proof of Lemma 6, we have the chain of transformations

where the sum over j in the penultimate expression is taken inside square brackets. Finally, Theorem 2
from [31] remains valid when the term

(3.42)

where now

For the second of the spatial discretizations proposed in [31], we can use the formulas

where slpρ is a special average of ρ. Similar arguments lead to the validity of Theorem 3 from [31] with sub-
stitution like (3.42), where sjρ is replaced by sjpρ.
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4. ENTROPY CONSERVATIVE DISCRETIZATION OF THE QUASI-HYDRODYNAMIC 
SYSTEM OF EQUATIONS

As before, the QHD system of equations (see [4, 5]) consists of mass, momentum, and total energy bal-
ance equations of form (1.1)–(1.3), but with a number of substantial simplifications. Specifically, the reg-
ularizing terms τdiv(ρu) are omitted from the expressions for w and  (see (1.5) and (1.6)) and only the

first terms are retained in the expressions for  and q (see (1.9) and (1.11)), so now

while  and ΠNS are given as before by formulas (1.5) and (1.8). The QHD system can be regarded as
another regularization of the Navier–Stokes equations for a viscous compressible heat-conducting gas.
Some of its basic mathematical properties were investigated in [33].

For the QHD system, the total entropy balance equation is much simpler than (1.15):

(4.1)

To obtain a spatial discretization of the QHD system, as before, we use Eqs. (2.6)–(2.8), together with
formulas (2.10) for Е, p, and ε, (2.11) for Jk and E(k), and (3.1) for ρ(k) and . However, now we set
w =  and

Formulas (3.7)–(3.9) and (3.11) for Π, , and ; (3.13) and (3.14) for ; and (3.17) for Rhk remain
valid.

Theorem 3. For the indicated spatial discretization of the QHD equations with boundary conditions (2.9),
the derivative of the total entropy satisfies the lower bound

(4.2)

Proof. Indeed, neither the formulations nor the proofs of Lemmas 2–5 change in the case of the QHD
equations. In Lemma 6, we now have Aτ, θ = Aτ, Q = 0, and its proof simplifies considerably, since, addi-
tionally, Аτ = Аτ, u = 0. Therefore, the right-hand side of bound (3.30) in Lemma 7 contains only the first

term plus . As a result, its proof is reduced to formula (3.31) with  = 0. The theorem is proved.

Inequality (4.2) is a discrete analogue of the total entropy balance equation (4.1).
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