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Abstract—A finite-difference TVD scheme is presented for problems in nonequilibrium wave dynam-
ics of heterogeneous media with different velocities and temperatures but with identical pressures of
the phases. A nonlinear form of artificial viscosity depending on the phase relaxation time is proposed.
The computed solutions are compared with exact self-similar ones for an equilibrium heterogeneous
medium. The performance of the scheme is demonstrated by numerical simulation with varying par-
ticle diameters, grid sizes, and particle concentrations. It is shown that the scheme is efficient in terms
of Fletcher’s criterion as applied to stiff problems.
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1. INTRODUCTION
A continual description of the wave dynamics of nonequilibrium heterogeneous media is based on

equations of motion for the phase components with different velocities and temperatures, but with iden-
tical pressures [1] and also on models in which each phase has its own pressure, temperature, and velocity
(see [2–5]). In the latter case, the system of equations is hyperbolic and, in the general case, nonconser-
vative. High-order accurate shock-capturing solutions can be produced by applying, for example, modi-
fications of Godunov’s method [3], the Harten TVD scheme [4], etc. The nonconservative of equations
in the solution of the Riemann problem in a nonequilibrium heterogeneous medium was addressed in [6, 7].

A feature of numerical simulation of nonequilibrium wave dynamics of heterogeneous media with
identical phase pressures is that the equations of motion are not hyperbolic (see [1]). As a result, the dif-
ference schemes of [3, 4] cannot be applied, because the components of characteristics have imaginary
parts. TVD schemes that do not require the hyperbolicity of the equations of motion were proposed as
applied to geophysical f luid dynamics [8] with reconstruction of functions [9]. A TVD scheme for simu-
lating the dynamics of a mixture of reactive gases and inert particles was proposed in [10]; in that scheme,
the interphase interactions in the time approximation were computed at the lower time level.

There is also a class of stiff problems with widely different characteristic phase relaxation times [11–
14]. In this case, a severe restriction is imposed on the Courant number (admissible time step), and the
computation of interphase interactions [10, 15] at the lower time level can be not efficient. To overcome
this stiffness difficulty, in the case of two-velocity and two- or three-temperature media, first-order accu-
rate difference schemes [12, 16] and a second-order accurate TVD scheme [17] have been implemented,
in which the admissible Courant number can be increased by one order of magnitude or more.

The goal of this paper is to construct a difference scheme that provides a high resolution for shock, con-
tact, and combined discontinuities in heterogeneous nonequilibrium wave f lows with identical phase
pressures and applies to stiff problems with dominated convection (of hyperbolic and nonhyperbolic
types).

2. WAVE DYNAMICS EQUATIONS FOR A HETEROGENEOUS MEDIUM WITH DIFFERENT 
PHASE VELOCITIES AND TEMPERATURES AND IDENTICAL PHASE PRESSURES

The dynamics of a heterogeneous medium with different phase velocities and temperatures and iden-
tical phase pressures is described using the Euler approach. Within the framework of a continual descrip-
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tion under well-known assumptions without allowance for added mass forces, the system of equations can
be written in the following equivalent form (see [1]):

(2.1)

Here and below, the subscripts 1 and 2 denote the parameters of the gas and the particles, respectively;
the superscript ° denotes the true densities;  is the Hamiltonian operator;  denote
the volume fraction, reduced density, velocity, and total and internal energies per unit mass of the ith
phase; p is the gas pressure;  is the viscous component of the phase interaction force;  is the intensity
of heat transfer between the gas and the particles in a unit volume; and t is time.

Closure relations. System (2.1) is closed by applying the equations of state of an ideal calorically perfect
gas and incompressible solid particles:

Here,  are the temperatures of the gas and the particles, respectively;  is the ratio of specific
heats of the gas;  is the specific heat capacity of the gas at constant volume; and  is the specific heat
capacity of the particles.

The intensities of interphase friction and heat transfer, , are specified using well-known
empirical criteria relations previously tested for the class of problems under consideration [1, 18, 19].

3. DIFFERENCE SCHEME
3.1. TVD Condition for a Stiff Scalar Transport Equation with a Source

The approach proposed is illustrated by considering the Hopf equation with a source term, which is a
model gas dynamics equation with friction and heat transfer on the phase boundary [12]. Following
Harten [20], we prove a sufficient condition for diminishing the total variation of the numerical solution
to the Cauchy problem

In the domain of the problem, we introduce a uniform Euler grid with a spatial step h and specify time
levels  with a step . Consider an arbitrary one-parameter difference scheme of the form

, (3.1)

where  is a parameter of the scheme, , n is the spatial index, and k is the time
level index.

Proposition. Let the coefficients  and the time step  in (3.1) satisfy the inequalities

(3.2)

Then difference relation (3.1) is a TVD scheme.
Proof. Rewriting (3.1) in the form
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yields

Since all the coefficients are nonnegative, we have

Summing this over  gives

Inequality (3.2) can be rewritten as a time step constraint

(3.3)

For difference scheme (3.1) to be stable, it has to satisfy the Courant–Friedrichs–Lewy (CFL) condi-
tion

(3.4)

Remark. In Fig. 1, the domains of admissible time steps determined by conditions (3.3) and (3.4) are
shown as functions of the scheme parameter . The first case corresponds to a fine grid with  .
The time step is determined by CFL condition (3.4) (see Fig. 1, line 1), and the sufficient TVD condition
(line 3) always holds. In the second case,  for . For example, the stiffness of the problem is
exhibited when the cell size or the source intensity  is increased (Fig. 1, line 2). As , the time
step determined by (3.3) can be arbitrarily large. It does not depend on the grid sizes or the source intensity
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and is restricted by the stability condition (by the well-posedness of the difference problem [21]); i.e.,
scheme (3.1) is K-stable [14].

3.2. TVD Scheme for the Equations of Heterogeneous Wave Dynamics with Identical Phase Pressures

Consider a multiparameter family of difference schemes with parameters  and
two-stage splitting. At the first stage (time level indexed by ), the convective terms are dropped.
The difference relations are given for the one-dimensional case, since the scheme is easy to generalize to
several dimensions. The quantities associated with  are linearized about the point  by

applying a semi-implicit scheme [16] with coefficients , respectively:

(3.5)

Here and below, the half-integer indices  denote cell boundaries and  is the artificial vis-
cosity.

Scheme (3.5) is represented in matrix form:
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At the first stage, the desired parameters are found explicitly by solving the systems of linear algebraic
equations (3.6) with the help of Gaussian elimination.

The nonlinear artificial viscosity is determined by the formula

. (3.7)

The parameter  is computed so as to satisfy the conditions

Here,

where  are the artificial viscosity coefficients: nonlinear  and linear ;  are
the phase relaxation time and its characteristic value; and  are the diameter of the dispersed par-
ticles and its characteristic value.

The artificial viscosity (3.7) provides a nonlinear (adaptive) mechanism of smoothing the numerical
solution. The transition from the second-order accurate difference scheme  on smooth solutions to
the scheme with nonzero artificial viscosity of order  in regions of high gradients and extrema is per-
formed depending on the slopes of the velocity projections at the first stage.

At the second stage, the convective terms of system (2.1) are approximated by upwind schemes with
reconstruction of functions (see [9]):
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The time step is variable and is determined by the condition

where CFL is the Courant number and  is the speed of sound in the gas at the point .

4. NUMERICAL EXPERIMENTS
4.1. Test Problem

When the velocity and thermal relaxation times are small, a linear combination of Eqs. (2.1) yields the
limiting equilibrium schemes

(4.1)

where , , and .
In the region of smooth f low, the energy equation of system (4.1) is equivalent to the quantity

 preserved along the trajectories of mixture particles  (see [22, 23]).
The quantity  is equal to the ratio of specific heats  of the gas in the case of heat-insulated
phases and to  in the case of thermal interphase equilibrium
(see [1]), where  is the gas constant and  are the mass fractions of the phases. Taking into
account that  along the trajectories of mixture particles, if the initial phase distribution is uni-

form, then  and  do not vary with time .
As a test problem, we considered the initial stage of a two-phase flow from a plane channel of length  with

transverse size  to the axis of symmetry. The mixture consisted of an ideal gas (air, ) and incom-

pressible solid particles ( ). The origin was placed at the bottom of the channel on the
axis of symmetry.

The initial conditions were specified as piecewise constant. Specifically, in the channel (for 
and ), we set uniformly distributed phase parameters , , , and

; in the domain  and , there was a gas suspension with uniformly distrib-
uted phase parameters , , , and ; and the parameters

, , , and  were specified in the rest of the domain, i.e., for
 and . The particle sizes varied. Their values are given below. Impermeability con-

ditions were set on the walls and the axis of symmetry, and “soft” boundary conditions of free f low were
specified on the outer boundaries.

To compare numerical solutions produced by scheme (3.5)–(3.8) in the case when the observation
time is much greater than the phase relaxation times, we used exact one-dimensional self-similar solutions
of the Riemann and Hugoniot problems for an equilibrium two-phase medium (see [17, 22, 23]).
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The Riemann invariants and the self-similar solution for rarefaction waves are given by

(4.2)

where M is the Mach number,  is the speed of sound in an equilibrium two-phase medium,
and the index 0 denotes the initial parameter values.

The Hugoniot adiabat centered at  and the discontinuity relations for limiting schemes of
interphase heat transfer have the form

(4.3)

Here,  is the specific volume of the mixture and  is the velocity of the shock wave.
The solution of the test problem in the one-dimensional f low region was constructed by matching sim-

ple waves (4.2) and (4.3), assuming that the velocity and pressure at the interface are continuous.

4.2. Numerical Results
Below are some numerical results obtained for the test problem described above. The parameters of the

difference scheme were specified as , , , , and .

The one-dimensional computations were executed on a grid containing  cells with step
 at  and . In Fig. 2, the distributions of the relative velocity

 and the relative density  along the axis  produced by scheme (3.5)–(3.8)
with Superbee limiter (circles) at  are compared with the exact self-similar limiting ( )
solution in the case of thermal interphase equilibrium  (4.2), (4.3) (solid line): (a) and (b) incident
wave at ; (e) and (f) shock waves transmitted and reflected from the gas mixture at .

The computed profiles of the relative particle velocity  at the corresponding times are shown
by dotted curves. Figures 2c and 2d present the numerical results at  obtained with various lim-
iters: (0) Upwind; (1), (2) Superbee; (3) Van Leer; (4) Minmod; and (5) Muscl. The nonlinear artificial
viscosity (3.7) with  and  was used in all versions, except for scheme (1), where usual linear
artificial viscosity (  and ) was applied. It can be seen that the computed shock wave profile is
smeared to a substantially higher degree in the last case.

Figure 3 shows the two-dimensional results obtained at various times: (a), (b) ; (c),

(d) ; and (e), (f) , namely, lines of equal relative gas density  depicted
with a contour interval of 255 from 0.1001 to 0.999. The computations were conducted in a Cartesian
coordinate system on a uniform grid with step  and resolution  by applying the
scheme with Superbee limiter, , , , , and . The
geometric conditions of the problem were specified as  and . The numerical solutions
were obtained for a dispersion medium with particle sizes  (Figs. 3a, 3c, 3e) and 
(Figs. 3b, 3d, 3f).
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Figure 3 shows some of the characteristic features of the heterogeneous f low detected in the computa-
tion: (1) the shock front after the decay of the initial discontinuity, (2) the contact discontinuity (jump in
the gas density), (3) the rarefaction wavefront, (4) the front of the shock transmitted into the gas mixture,
(5) combined discontinuity of the gas suspension (porosity discontinuity), (6) the front of the shock
reflected from the gas suspension, (7) the contact discontinuity inside the gas suspension, (8) the front of
the shock reflected from contact discontinuity (2), and (9) the transmitted shock front after the interac-
tion of shock (6) with contact discontinuity (2). The dotted line marks the position of the combined dis-
continuity in the mixture f low; for fine particles ( ), it nearly coincides with the contact dis-
continuity (Figs. 3a, 3c, 3e). In the case of nonequilibrium heterogeneous f low ( ), the general

μ= m0.1 d
μ= m50 d

Fig. 2. Equilibrium flow ( ): (a–d) incident wave, (e) and (f) the shock waves transmitted and reflected from
the gas suspension.
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flow pattern is preserved (see Figs. 3b, 3d, 3f). Due to the considerable slip of the phases, the initial shock
splits into contact (2) and combined (dotted) discontinuities.

The computational efficiency of difference schemes was compared by applying the criterion from [24],
which combines two properties: the accuracy of the numerical solution in some norm  and the running
time  of the algorithm on the same computer:

. (4.4)

ε
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− ε=
ε

1 I I

II II

ETCE
ET

Fig. 3. Lines of equal relative gas density for (a), (c), (e)  and for (b), (d), (f) .
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According to (4.4), scheme I is more efficient than scheme II if .
Given a problem with a characteristic length L, suppose that the task is to determine the efficiency of

scheme I against scheme II at the time T for given numerical accuracy . Then criterion (4.4)
can be represented in the form

. (4.5)

Here,  is the CPU time required for computing the parameters within a single grid cell in the tran-
sition to an upper time level; N is the number of cells along a single axis; and  is the dimen-
sion of the problem.

Criterion (4.5) shows that, for  and , the computational efficiency of a difference
scheme is determined by its stability margin (admissible Courant number ). We compare scheme I
with  and scheme II with interphase interactions taken into account at the lower time
level ( ). Figure 4 displays  as a function of the volume particle fraction  for
various cell sizes and particle diameters as obtained in the numerical solution of the one-dimensional test
problem. The computations confirm that the stability margin of scheme I is independent of the volume
particle concentration, the spatial mesh size, or the particle sizes (line 1). In the case of scheme II, 

is reduced with increasing  and decreasing particle diameter: (2) , (3) , and
(4)  for ; additionally, it depends on the cell size: (5)  for .

Let us estimate the efficiency of the proposed scheme, for example, with Superbee limiter as compared
with the first-order Upwind scheme in (3.8) for various problem dimensions  in the case of identical
parameters  and the Courant number CFL. To achieve the prescribed (identical for
both schemes) resolution for the contact discontinuity (see Fig. 2d), Upwind must be implemented on a
grid that is finer by more than five times; therefore, . At the same time, the scheme with
Superbee limiter requires roughly five times more CPU time for the computation in a single grid cell in
the transition to an upper time level. Accordingly, the estimated efficiency of the difference scheme as
applied to the one-, two-, and three-dimensional problems is 5, 25, and 125, respectively.

5. CONCLUSIONS
The difference scheme represented is applicable to heterogeneous f low problems with dominated con-

vection (of hyperbolic or nonhyperbolic type). The stability of the scheme is independent of the grid size
or the interphase interaction intensity, which can be useful in multidimensional computations or, for
example, when it not known beforehand about the formation of solution singularities (discontinuities) or
stiffness manifestation.
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