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INTRODUCTION

In the first and second parts of this series (see M. K. Kerimov, Comput. Math. Math. Phys. 54 (9),
1337–1388 (2014); 56 (7), 1175–1208 (2016)), we analyzed a number of works concerning the monotonic-
ity, convexity, and concavity of Bessel function zeros with respect to an index. In the present paper, other
works on this subject are analyzed with the same degree of detail. In doing this, we will repeatedly refer to
the previous parts of the work.

1. MONOTONICITY AND CONVEXITY PROPERTIES OF REAL POSITIVE ZEROS
OF THE FIRST KIND BESSEL FUNCTIONS Jν(x)

We begin with Lewis and Muldoon’s paper [37], which was motivated by the following physical prob-
lem.

In [48], Putterman, Kac, and Uhlenbeck proposed a purely quantum mechanical explanation of quan-
tized vortex lines arising in rotating superfluid helium. This phenomenon is based on Blatt and Butler’s
results [3] (see also Lewis and Pule [38]), which showed that an ideal Bose gas rotating in a cylindrical
bucket undergoes phase transitions. The total angular moment Ω increases as a linear function of the
bucket’s angular velocity ω between consecutive values ω1, ω2, … at which there are jumps of size ,
where N0 is the number of condensed particles:

Here, N is the total number of particles, m is the mass of a particle, and R is the radius of the bucket.
Assuming that the particle’s wave function satisfies Dirichlet boundary conditions on the bucket walls, the
critical velocity is given by the formula

where jn,k is the kth positive zero of the Bessel function Jν(x).
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From a physical point of view, it can be expected that ω1, ω2…., is an increasing sequence; moreover,
it has been hypothesized that

(1)

The results of [37] were motivated by this physical problem.
The main result of the work is the proof that the derivative

(2)

Hypothesis (1) follows from this result if we use tabulated values of jν,1 for ν = 1, 2, 3, 4 from Watson’s
book [54, pp. 748–750]. To prove (2), the authors first show that  decreases with increasing ν, 0 <

ν < ∞, while  increases with ν for 3 ≤ ν < ∞. It is also shown that all the results proved in the work
are valid not only for jν,1, but also for the zeros jν,k, k = 2, 3, … .

Let us describe the mathematical problem considered in the paper.

For ν ≥ 0, we consider the positive zeros jν,k and  of the functions Jν(x) and (x).
Lewis and Muldoon [37] examine the monotonicity and convexity of zeros of Jν (x) with respect to the

index ν. It is proved that  is a decreasing function of ν in the interval 0 < ν < ∞ and that  and

 are increasing functions of ν for sufficiently large ν. Specifically, it is proved that  and

 increase for 3 ≤ ν < ∞. Some results of this type are also proved for zeros of the derivative (x).

To prove their results, the authors consider (for ν > 0) the boundary eigenvalue problem

(1.1)

(1.2)

and examine its eigenvalues , k = 1, 2, …, and eigenfunctions . The normalized eigenfunc-
tions have the form

(1.3)

Additionally, they use the following well-known fact, which was proved by the Sturm method in
Bôcher’s work [4]: for fixed k, the function jν,k increases with ν for 0 < ν < ∞.Watson (see [54, pp. 507–
508]) proved this result by applying Schläfli's formula

(1.4)

and Watson’s formula (see Watson [54, p. 508, formula (3)]), i.e., the integrodifferential equation

(1.5)

First, some general results are presented regarding boundary value problems for ordinary differential
equations with a parameter λ of the form

(1.6)

(1.7)

It is assumed that –∞ ≤ a < b < ∞; p(x) > 0; and p'(t), q(x), and ϕ(x) are continuous for a < x ≤ b.
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 Lemma 1.1. Suppose that, for every ν > 0, the boundary value problem (1.6), (1.7) has a discrete set of
real eigenvalues. Let λν be an eigenvalue of fixed rank and ψν(x) be the corresponding eigenfunction satisfying
the normalization condition

(1.8)

Let, for every ν > 0,

(1.9)

and

(1.10)

Additionally, suppose that, for any ν > 0, there exists a limit

(1.11)

such that ψν(a+) = 0 and ψν(b) = 0 or (b) = 0.
Then

(1.12)

, (1.13)

and

(1.14)

Proof. To prove (1.12), we multiply the equations

by ψ0 and ψμ, respectively, subtract the second from the first, and integrate between the limits a and b to
obtain

Dividing this result by ν – μ, sending μ to ν, and using formulas (1.8), (1.9), and (1.10), we derive (1.12).
Moreover,

whence (1.13) follows.
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We also have

Combining (1.12) and the relation

,

which follows from (1.6) and (1.7), we obtain

Integrating by parts and using the boundary conditions yields (1.14). The lemma is proved.
Note that results of type (1.12) are well-known in perturbation theory. In the given work, this result is

obtained by a simpler, direct method.
Let us return to problem (1.1)–(1.3). Since Jν(x) = O[xν], x → 0+, the assumptions of Lemma 1.1 are

satisfied. Therefore, (1.12) implies (1.4), i.e., a result proved in a different fashion in Watson’s book [57,
pp. 507–508].

Below is the main result of [37].
Theorem 1.1. The following assertions hold:
(i) For every fixed k, the function  decreases in ν, 0 < ν < ∞.

(ii) For every fixed k, the function  increases as ν grows to sufficiently large values; specifically, 
increases with ν on the interval 3 ≤ ν ≤ ∞.

(iii) For every fixed k, the function  increases as ν grows to sufficiently large values; specifically,

 increases on the interval 3 ≤ ν < ∞.

Proof. Item (i) is a consequence of (1.14) in Lemma 1.1. It follows from (1.13) that

where ψν(x) is given by (1.3). Here, the integrand is positive if  < 2. This holds for sufficiently large
ν, since  → 1 as ν → ∞ (see Olver [46, p. 408]). Thus, the first part of (ii) is proved. However, in
this work, an alternative proof is given, which yields a sharper result in (ii).

Using formula (1.5), we obtain

This expression is positive if I(ν, k) > 1, where

(1.15)

We have
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Part (i) of the theorem implies that  is a decreasing function of ν, 0 < ν < ∞; therefore, for every
u > 0, this also holds for 2νsinh{u/(2ν)} and for the product 2jν,ksinh{u/(2u)}. Since K0(·) is a decreasing
function of its argument and a decreasing function of a decreasing function is an increasing one, I(ν, k)
increases with ν, 0 < ν < ∞.

Furthermore,

(see Watson [54, p. 388]). Therefore, for every k, there exists a unique function ν(k) such that I(ν(k), k) = 1 and
I(ν, k) > 1 for ν > ν(k).

Thus, we again see that  increases with ν for sufficiently large ν.
Now we estimate ν(1). Using the formula

(see Watson [54, p. 444, formula (2)]), the formula

(see Olver [47, p. 244]), and tabulated values of Jν(z) and Yν(z) (see Watson [54, pp. 666–733] and
Abramowitz and Stegun [1, Chapter 9]), we obtain I(2, 1) < 1 and I(3, 1) > 1. Therefore, 2 < ν(1) < 3,
I(ν, 1) > 1 for 3 ≤ ν < ∞, and  increases for these ν. This completes the proof of (ii).

To prove (iii), it follows from (1.5) that

where I(ν, k) is defined by (1.15). Since I(ν, k) increases with ν, 0 < ν < ∞, we see that  increases

for those ν at which  increases, and part (iii) follows from (ii).
Remark 1.1. Computations show that (iii) holds for all ν > 0 at least in the case k = 1. Item (ii) does not

hold for small positive ν, since  as ν → 0+.

Remark 1.2. The authors hypothesize, but fail to prove, that  decreases in ν, 0 < ν < ∞. The
weak result that  decreases for 0 < ν < ∞ follows from (1.5). Indeed, for every fixed k, we

have  < 0 for 0 < ν < ∞, where cν,k is a zero of fixed rank of any solution AJν(x) + BYν(x)
to the Bessel equation. In implicit form, this result is presented in [41, p. 389]), but it is proved there only
for the first positive zero yν,1 of Yν(x).

Remark 1.3. Lorch and Szego [42] investigated the monotonicity, with respect to the order, of differ-
ences (and higher order differences) of consecutive Bessel function zeros. For fixed ν, high order mono-
tonicity with respect to the rank k was also investigated earlier by Lorch, Muldoon, and Szego [41]. The
following results were proved in these works.

Let cν,m and γν,k be the mth and kth positive zeros, respectively, of any pair of (distinct or not) real zeros
of the Bessel function Cν(x) of order ν located so that cν,m > γν,k, where m and k (corresponding ranks of
the zeros) are fixed positive integers. Either zero increases with ν (see Watson [54, p. 508]).

In particular, we can set m = k + l, where l takes any positive integer values. When l = 1, we obtain usual
finite differences given by
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For all n, varying k, and fixed ν, where ν > 1/2, these differences were investigated by Lorch and Szego
[42, 43]. Specifically, it was shown that

The following theorems were proved in the work under study.

Theorem 1.2. For ν > 1/2, the expression  (which is positive) increases with ν for any pair of
fixed positive integers k, n = 1, 2, … .

Theorem 1.3. For every fixed pair of positive integers m and n, the difference cν,m – γν,k increases with ν for
ν ≥ 0 and

where Dν denotes the differentiation operator with respect to ν.
Corollary 1.1. For every fixed pair of positive integers k and l, the difference cν,k+1 – cν,k increases with

ν for ν ≥ 0 and

Corollary 1.2. If cν,k and γν,k are the kth positive zeros of linearly independent Bessel functions of order
ν and if cν,1 > γν,1, then the difference cν,k – γν,k increases with ν for ν ≥ 0 and

for any fixed k = 1, 2, …; specifically, the difference jν,k – yν,k increases with ν for ν ≥ 0 and

for every fixed k = 1, 2, … .
Corollary 1.1 follows from Theorem 1.2. To derive Corollary 1.2 to this theorem, it suffices to note that

the zeros cν,k and γν,k interlace (see Watson [54, p. 481]) and jν,1 > yν,1 (see Watson [54, p. 487, formula (10)]).
Remark 1.4. The fact that jν,k increases with ν for ν > 0 was proved by Bôcher [4] with the use of the

Sturm theorem. Watson’s result based on formula (1.5) is important in the sense that it proves an increase
in jν,k for ν > –1 and, in fact, for all real ν when a suitably rank of the zero is chosen. Note also that, for
ν > –1, this also follows from the fractional integral

which is similar to the first Sonin integral (see Watson [54, p. 373]).
To study the zeros of the derivative of a Bessel function, we again consider Eq. (1.1) with boundary con-

ditions y(0) = y'(1) = 0. Then the following assertion holds.

Theorem 1.4. Let  be the kth positive zero of (x). Then the formula

(1.16)

holds, the function /ν decreases to 1 with increasing ν, 0 < ν < ∞, and ( )2/ν increases for at least those
ν for which  < 21/2ν.

Formula (1.16) is not present in Watson’s book; possibly, it is new. A consequence of this formula is
that  increases with ν. This result was proved in a different way in Watson’s book [55, p. 510]. The proof
of Theorem 1.4 is similar to that of Theorem 1.1, but it is not presented in the work. The results obtained
in the work are extended to the zeros of the skew product of Bessel functions:
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and also to the zeros of the modified Bessel function of the second kind

These results will be described elsewhere.

2. ON THE CONVEXITY OF SQUARED ZEROS OF THE BESSEL FUNCTION Jν (x)

Elbert and Laforgia [9] proved that the squared zero of Jν (x) (i.e.,  in χ-notation) is a convex func-
tion of ν for ν ≥ 0 and χ ≥ χ0, where χ0 is defined as

(2.1)

First, we prove the following result.
Lemma 2.1. If 0 ≤ ν < ∞ and jν,χ > ν + 1/4, then

(2.2)

Proof. Consider the domain D = {(ν, j); 0 ≤ ν < ∞, j ≥ ν + 1/4} and Watson’s integrodifferential equa-
tion

(2.3)

with the boundary condition

(2.4)

Let us prove that

(2.5)

Making the substitution u = 2jsinh t in (2.5) yields

(2.6)

On the other hand, it is well known (see Watson [50, p. 388]) that

Therefore, to prove (2.5), it suffices to show that

for u > 0 and (ν, j) ∈ D. This inequality is equivalent to
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where x = u/2j. Since

for x > 0, the proof of Lemma 2.1 is complete.
Computations show that a larger domain with j ' > 1 can be obtained. For this purpose, we choose an

initial point (0, j0) ∈ D. Then the solution j = j(ν; 0, j0) of problem (2.3), (2.4) stays in D for all ν > 0, and
this solution can be continued on the left to the value ν = –χ(j0), where

Therefore, j(ν; 0, j0) = jν,χ (j0).
Since the solution of Eq. (2.3) is unique, we conclude that χ = χ(j0) is an increasing function of j0. By

Lemma 2.1, (ν, jν,χ(1/4)) ∈ D for all ν ≥ 0. Therefore,  > 1 for all χ ≥ χ(1/4). Since j0,1 = 2.40… > 1/4, we
have 0 < χ(1/4) < 1. By the definition of χ0, it is true that 0 ≤ χ0 < χ(1/4). In view of (2.6), we have

Therefore, formula (2.3) yields j'(0, j0) < 1 if j0 is sufficiently small. Hence, χ0 > 0.
Remark 2.1. A consequence of the definition (2.1) of χ0 is

(2.7)
This inequality generalizes a similar one proved by Laforgia and Muldoon only for k = 1, 2, … (see [35,

formula (2.4)]).
Remark 2.2. Concerning the role played by χ0, we have the limiting relation

(2.8)

Indeed, in view of (2.7) and the inequality jν,χ' < jν,χ" for ν > –χ' and 0 < χ' < χ", the function jν,χ satisfies

where [χ] denotes the largest integer smaller than or equal to x.
By applying Tricomi’s asymptotic formula (see Tricomi [52])

where ak are constants independent of ν, we obtain formula (2.8). On the other hand, in view of (2.5),

Recalling that K0(u) is a decreasing function of u, we obtain

Therefore, the solution j(ν; ν0, ν0) cannot intersect the line j = ν; moreover, j(ν; ν0, ν0) < ν for ν > ν0

and j(ν; ν0, ν0) = jν,χ with some .

Lewis and Muldoon [37, Theorem 3.1] proved that  is a convex function for ν ≥ 3. Here, a more gen-
eral is proved.

Theorem 2.1. The function  is convex in ν for ν ≥ 0 and any χ ≥ χ0.
Proof. To prove the theorem, it is sufficient to show that
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Differentiating Eq. (2.3) yields

(2.10)

In view of (2.3), three terms on the right-hand side of (2.10) can be written as

(2.11)

By making the substitution u = 2jsinh t, the integral I1 is brought to the form

where

Integration by parts gives

(2.12)

where

It follows that

Recalling the asymptotic formula for function K0(x),

(*)

we conclude that the first term on the right-hand side of (2.12) is zero. Then

(2.13)

Similarly, for I2, we obtain

(2.14)

where
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we have

(2.15)

(see Watson [54, p. 388]).
Combining (2.11) with (2.14), (2.15), and the inequality j ' > 1, we obtain

Therefore, it suffices to show that

In view of (2.6) and (2.12),

where the expression in square brackets is positive for u > 0. Thus, the theorem is completely proved, so
the function  is convex for χ ≥ χ0 and ν ≥ 0.

Corollary 2.1. In the special case χ ≡ k = 1, 2, …, the function  is convex for ν ≥ 0.

Several remarks have to be made regarding what was said above. Since  is convex, the graph of 

lies below the chord joining the points (0, ) and (ν*, ).It follows that

i.e.,  increases with ν for ν > 0. Consider the chord joining the points (0, ) and 

in the graph of  plotted as a function of ν. The convexity of the graph implies that

where the inequality holds as an equality only for ν = 0 and ν = 1/2. Similarly, the convexity of  implies
that

and, since  > 1 for χ ≥ χ0, we have

The convexity property can be used to obtain some other inequalities.
The question arises as to whether the convexity property holds in the entire domain of jν,χ, i.e., on the

interval (–χ, ∞). Consider the case χ ≡ k = 1, 2, …. Then the equation for determining the zeros jν,k of
Jν(x) yields the equation (see Watson [55, p. 15])
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In view of the series for Jν(jν,k), this equation can be written in expanded form as

In a right neighborhood of ν = –k, we have

where ε = ν + k.
Setting ε → 0 and jν,k → 0 yields

This relation can be written as

For k = 2, 3, …, we obtain more accurate approximations

where ε = ν + k. Therefore,

For k = 1, we have

These approximations show that  cannot be convex on the entire interval (–k, ∞) for k = 2, 3, ….

The authors do not know whether  is convex on (–1, 0), but they believe it is.

In [18] Elbert and Siafarikas prove that  is a convex function of ν on the interval –2 < ν < 0. Earlier,
this result was proved by Elbert and Laforgia [19] for ν > 0 only. The monotonicity of the functions

is also investigated. The research method is based on expanding Jν (z) in a power series and is especially
effective on the interval –2 < ν < –1. Let us recall some well-known facts.
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Consider a power series for Jν(z):

(2.16)

It is well known (see Watson [54, p. 483], Hurwitz [22], Kerimov [33]) that Jν (z) has infinitely many
positive zeros jν,k, k = 1, 2, …:

which tend to infinity as ν → ∞.
The first zero jν,1 can be analytically continued to ν = –1, where it vanishes. Continuing jν,1 analytically

to the interval (–2, –1), we find that, by the Hurwitz theorem [22] (see also Watson [54, p. 483], Kerimov
[33]), the zero jν,1 becomes purely imaginary. At the point ν = –2, the function jν,1 again vanishes.

Concerning the behavior of jν,1, it is well known (see Piessens [47]) that jν,1 can be represented by the
power series

(2.17)

about the point ν = –1.

Let is analyze the behavior of  for ν > –2, where it is real. Consider the function

(2.18)

which can be locally represented as

. (2.19)

It follows from (2.19) that

(2.20)

Recalling the well-known inequalities

(see Ismail and Muldoon [29, formulas (5.11), (5.12)]), we obtain

On the basis of computations, Ismail and Muldoon [29] constructed the graph of  on the interval
(–2, 0), which is given in Fig. 1 (see also Kokologiannaki, Muldoon, Siafarikas [34]).

This graph shows that  is a convex function of ν on (–2, 0). For 3 < ν < +∞, this property was proved
earlier by Lewis and Muldoon [37].

In [9] Elbert and Laforgia proved that  (k = 1, 2, …, ν ≥ 0) is a convex function of ν on the interval

(–1, 0). Additionally, it was proved that  cannot be convex on the entire interval (–k, ∞) for k = 2, 3, …

and it was conjectured that  is convex for –1 < ν < 0.

In [35] Kokologiannaki, Muldoon, and Siafarikas proved that  decreases to a minimum and then

increases as ν grows from –2 to –1. Additionally, the convexity of  was proved on the interval (–2, 0).

Therefore, in view of Elbert and Laforgia’s work [8],  is convex on (–2, ∞), since  is a contin-
uous function of ν (see Watson [54, Section 15.6]).
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The following remarks were made about l(ν) in Ismail and Muldoon’s work [29, p. 9]:
(i) The function l(ν) increases for ν > –2 (for ν > –1, this was previously known from [27, Theorem 2]).

(ii) The function  decreases on the interval (–2, –1) and increases for ν > –1.

These remarks turn out to be valid and are rigorously proved in [35]. The proofs are based on the fol-
lowing implicit relation between l = l(ν) and ν:

(2.21)

which is derived from series (2.16) for the Bessel function Jν (z). Assuming that

(2.22)

it follows from (2.21) that

. (2.23)

Lemma 2.2. The partial derivative  is negative for –2 < ν ≤ 1 and 0 < l < 2.

Lemma 2.3. The partial derivative  is positive for –2 < ν < 1 and 0 < l < 2.
The proofs of these lemmas are omitted. They imply the following result.
Theorem 2.2. The function l(ν) defined by formula (2.1) increases for –2 < ν ≤ 1.
The following result holds for the derivative l'(ν).
Lemma 2.4. The function l '(ν) satisfies the inequalities

(i) 

(ii) 

Using this lemma and the inequalities

(see Ifantis and Siafarikas [25]) and

(see Ismail and Muldoon [27]), the authors prove the following result.
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Theorem 2.3. The function  decreases from  to 1 for –2 < ν < –1 and increases for ν > –1.

Applying Theorem 2.3, the authors derive the inequalities

The upper bound was previously known (see Ismail and Muldoon [29, formula (5.8)]). The lower
bound is new, and it is sharp as ν tends to –2.

The main result of the work is as follows.

Theorem 2.4. The function  is convex for –2 < ν ≤ 0.
All these lemmas and theorems are proved in [35]; here, the proofs are omitted. This study was moti-

vated by applications of the convexity of  related to a hypothesis put forward in the quantum-mechan-

ical work by Putterman, Kac, and Uhlenbeck [48], which states that the sequence of differences 
increases with n, where jn,1 is the first positive zero of Jn(x), n = 1, 2, … .

3. ON THE CONVEXITY OF ZEROS OF THE BESSEL FUNCTIONS Cν(x)
Now we analyze an important work by Elbert, Gatteschi, and Laforgia [7], where the concavity prop-

erties of the zeros jν,χ of Cν(x) are proved for various ν and χ, where cν,k ≡ jν,χ for k – 1 < χ < k and
α = (k – χ)π.

As we noted above, if χ > 0, then jν,χ is defined as the solution of the Watson integrodifferential equa-
tion

(2.3')

with the boundary condition

(2.4')

The main result of [7] is the proof of the inequality

(3.1)

for ν ≥ ν0, provided that

This result means that jν,χ is concave and supplements the result on the concavity of jν,k in ν proved by
Elbert [6] for –k < ν < ∞, k = 1, 2, … . The proof makes use of χ-notation for zeros and the well-known
formulas
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(see Watson [54, p. 388]).
Substituting 2jsinh t = u into Watson’s formula (2.3') for j = jν,χ yields
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where, for notational brevity, we set
(3.5)

The following formula for the second ν-derivative of a zero j is well known (see Elbert [6, formula (16)]):

(3.6)

where

(3.7)

Recall the lemma from Elbert and Laforgia’s work [9] stating that, if 0 ≤ ν < ∞ and jν,χ ≥ ν + 1/4, then

(3.8)

The authors prove that, for inequality (3.8) to hold, the condition jν,χ ≥ ν + 1/4 can be replaced with
the less restrictive one  > 1.

Next, the functions f(t, ν) and φ = φ(ν) for t > 0 and –∞ < ν < ∞ are defined as

(3.9)

and

(3.10)
The function f(t, ν) is related to I(t) from (3.7) by the formula (2j'/j)tf = I + 2t. By the definition of f(t, ν),

(3.11)

Differentiating f with respect to t gives

whence  = 1/2.
To study the properties of f, it is convenient to introduce a function g(t) by the formula

(3.12)

This function decreases with increasing t, since

where g1(t) = t + sinh3tcosh t – sinh tcosh t is a positive function. This follows from the fact that g1(t) =
(0) and (t) = 2sinh tcosh t(cosh2t + 7sinh2t) > 0 for t > 0. Moreover,

Lemma 3.1. Let f(t, ν) be defined by formula (3.9). Then the following assertions are valid:
(i) f < 0 for ν ≤ –1/2;
(ii) f has only one maximum for fixed ν (ν > –1/2) at t = t(ν), where t(ν) is the inverse of the function ν = g(t)

defined by (3.12);
(iii) max f(t, ν) = f(t(ν), ν) > 0 for ν > –1/2 and t > 0.
Proof. For ν ≤ –1/2, it follows from (3.9) that

which proves (i).
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The function f' can be written in the form

where g(t) is defined by (3.12). Since g(t) is a decreasing function, f ' > 0 on the interval (0, t(ν)) and f ' <
0 for t > t(ν). Therefore, f has a minimum at t = t(ν). This proves (ii).

Assertion (iii) follows from the second relation in (3.11).
Now we analyze the behavior of φ(ν).
Theorem 3.1. Let φ(ν) be defined by formula (3.10). Then the following assertions hold:
(i) φ(ν) = 0 for ν ≤ –1/2;
(ii) φ(ν) = f(t(ν), ν) for ν > –1/2;
(iii) φ(ν) strictly increases for ν ≥ –1/2;
(iv) φ(ν) is strictly convex for ν ≥ –1/2;

(v) φ(ν) = ν +  + O(ν–3), ν → ∞;

(vi) θ(ν) = φ(ν) – ν is a strictly decreasing positive function for ν ≥ –1/2.
Proof. For ν ≤ –1/2, Lemma 3.1(i) implies that f(t, ν) < 0 and, in view of (3.11), we obtain

whence assertion (i) follows.
Part (ii) of the theorem follows directly from definition (3.10) of φ(ν) and property (iii) in Lemma 3.1.

Concerning part (iii), for –1/2 < ν1 < ν2, it follows from (3.9) that

Applying this inequality with t = t(ν1) and Theorem 3.1(ii) yields φ(ν1) < f(t(ν1), ν2).
In view of property (ii) of f(t, ν2) in Lemma 3.1, we obtain for t(ν1) > t(ν2) the inequality

i.e., φ(ν1) < φ(ν2), as required.
To prove property (iv), it suffices to show that

where 0 < α, β < 1, α + β = 1, ν1, ν2 > –1/2, and ν1 ≠ ν2.
The case ν1 = ν2 is dropped, since it is of no interest to us.
Using definitions (3.9) and (3.10), applying property (ii), and setting t* = t(αν 1 + βν 2), we obtain

(3.13)

This inequality shows that φ(ν) is a convex function for any ν. For ν > –1/2, the convexity is strict
since, by Lemma 3.1(ii), (3.13) holds as an equality only at t* = t(ν1) and t* = t(ν2) or, equivalently, at
g(t*) = ν1 and g(t*) = ν2. However, this case ν1 = ν2 was excluded above. The asymptotic formula from (v)
is derived using a power series expansion of tanh t about t = 0. Then conditions (3.13) and the definition
of t(ν) imply that t(ν) tends to zero as ν → ∞ and we have the approximations

and
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For

we obtain

and φ(ν) = f(t(ν), ν) has the required asymptotic expansion.
Finally, θ(ν) = φ(ν) – ν is a convex function, because so is φ(ν). On the other hand, in view of the

asymptotic formula obtained,

Thus, θ'(ν) increases and  = 0. Therefore, θ'(ν) < 0 for –1/2 < ν < ∞ and θ(ν) falls off to
zero as ν increases. The theorem is completely proved.

Now, we prove that jν,χ is a concave function of ν, where χ is a parameter. The proof is based on the
following lemmas.

Lemma 3.2. The inequality  > 1 holds in the following cases:

(i) j = jν,χ > 0 for ν ≤ –1/2;

(ii) j ≥ 1/2(ν + 1/2) for –1/2 < ν < 0;
(iii) j ≥ ν + 1/4 for ν ≥ 0.
The proof is omitted.
Lemma 3.3. On the interval –1/2 < ν < 0, it is true that

where

Proof. First, we show that

for –1/2 < ν < 0. Indeed, the function on the left-hand side has a maxima at |2ν|/ , which is
equal to 2Q(x)/π. Moreover, at ν = –1/2, this function strictly increases and approaches a value of 2.
Therefore, in view of (3.4),

Applying formula (3.2) and setting a = 0 yields the required result.
Below is the main result of [7].
Theorem 3.2. Let, for some ν and χ,

where φ(ν) is defined by (3.10). Then  < 0 for these ν and χ.
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Proof. It follows from (3.6) and (3.7) that

In view of (3.9), the function in square brackets is equal to f(t, ν) – j/j'. Therefore, from properties (i)
and (ii) of f(t, ν) and the definition of φ(ν), it follows that

which concludes the proof of the theorem.
The following consequences hold true.
Corollary 3.1. Under the condition φ(ν) = 0 for ν ≤ –1/2, the function jν,χ is concave for ν ≤ –1/2 and

any χ.
For this reason, in what follows we consider only the case ν > –1/2.
Corollary 3.2. Let –1/2 ≤ ν ≤ 0 and jν,χ ≥ Q(ν)φ(ν), where Q(ν) and φ(ν) are defined above. Then, for

these ν and χ,

The proof follows from Theorem 3.2 and Lemma 3.2.
Theorem 3.3. Let ν0 > –1/2 and  ≥ ν0 + 1/2 for some ν0 and χ. Then

(i) jν, χ >  + ν0 for ν > ν0;

(ii)  < 0 for ν ≥ ν0.
The proof is rather long, so it is omitted. Note, however, that the proof makes use of tabulated values

of some of the functions involved.
Corollary 3.3. For ν ≥ 1/2, the function jν,χ is concave on the interval (–χ, ∞).
Remark 3.1. As a special case, this corollary yields the concavity of the zeros, which was proved only

for ν ≥ 0 in [37].
Proof of Corollary 3.3. Consider an inequality following from McMahon’s expansion of cν,χ (see Wat-

son [54, p. 490], Kerimov [33]), namely,

In the case α = π/2 and k = 1, which corresponds to the first zero yν,1 of Yν (x), we have

Note that, in χ-notation, we have yν,1 = jν,1/2, so

and, for any ν0 ∈ (–1/2, 1/2),

Then, by Theorem 3.3, the function jν,1/2 is convex for ν ≥ ν0. Therefore, jν,1/2 is concave for ν > –1/2.
The function jν,χ satisfies one of the following inequalities for χ > 1/2:
(i) jν,χ > 0 if ν ≤ –1/2;
(ii) jν,χ > jν,1/2 if ν > –1/2.
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In both cases, applying Theorem 3.3 yields the required result, i.e., Corollary 3.3 is proved. Other use-
ful generalizations of the results proved in [36] can be obtained in the case of nonnegative ν.

Corollary 3.4. Let χ > χo = 1 – (α0/π) = 0.344…, where

Then the function jν,χ is concave for ν ≥ 0.
Proof. Consider the cylinder function

By the definition of the number α0, the first positive zero c0, 1 of C0(α0, x) is equal to 1/2. Then,
in χ-notation,  = 1/2. Applying Theorem 3.3 with ν0 = 0 and  = 1/2 yields the concavity of .
The concavity of  for χ > χo and ν > 0 follows from the inequality j0,χ > . Corollary 3.4 is proved.

Now we determine the smallest χ0 for which  is concave for every ν ≥ 0.
Remark 3.2. Corollary 3.4 shows that cν,1 is concave for 0 ≤ α ≤ α0 = (π/2) + 0.493.
Laforgia and Muldoon [37] obtained this result only for 0 ≤ α ≤ π/2.
To analyze the behavior of the function jν,χ for 0 < χ < 1 and ν > –χ, the authors computed its values

for a number of χ such that 0 < χ < 1 and ν > –χ. The results were presented in the form of plots for –1 <
ν < 1, χ = 0.1 1/6, and j = ν, 0.2, 0.5, –1 (see Fig. 2). Inspection of the plots suggests the following con-
clusions.

(1) The function jν,χ is concave for χ ≥ 1/2 and ν ≥ –χ on the basis of Corollary 3.3.
(2) In the case 1/6 < χ < 1/2, the function jν,χ is convex on the interval [–χ, ν(χ)] with some function

ν = ν(χ) and is concave on the interval (ν(χ), ∞). Concerning ν(χ), we can assume that it decreases and
satisfies the limiting relations

(3.14)

(3) In the case 0 < χ ≤ 1/6, the function jν,χ is convex for all ν > –χ.

( )
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Fig. 2. Plots of jν,χ for 0 < χ < 1, ν > –χ, and –3 < ν < 1 (from Elbert, Gatteschi, and Laforgia, Appl. Anal. 16, p. 277
(1983)).
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Cases (1) and (3) have not been proved; they are hypothesized and considered true. Their validity is
confirmed by numerical experiments. It is stated in [7] that jν,1/6 > ν, and this inequality is implicitly con-
tained in Spigler’s work [51, p. 79].

Concerning case (3), Elbert and Laforgia [16] proved that the function cν,1 is convex only in the domain

where ε0 = 0.163302.
The convexity properties of the zeros cν,χ of Cν(x) were also studied by Elbert and Laforgia [16]. In [7]

it was proved that jν,χ is a concave function of ν for χ ≥ 0.344… and  is convex for χ ≥ 0.7070… . In [16],
some new convexity properties of jν,χ were investigated. First, the following result was proved.

Lemma 3.4. For χ ≥ 0.7070…, it is true that

where j = jν, χ and j ' = jν, χ.

Proof. The lower bound from this lemma was obtained by Elbert, Gatteschi, and Laforgia [7].
To derive the upper bound, we note that it is equivalent to the inequality

Furthermore,

It is well known (see [7, p. 276] that jν,χ is concave for χ ≥ 0.344… . Therefore, h(ν) decreases with
decreasing ν ≥ 0 when χ ≥ 0.344… . To complete the proof of the upper bound, it remains to be shown only
that h(0) < 0 or, equivalently,

In view of Watson’s formula (see [54, p. 508]) or (1.5), we have

Since K0(x) strictly decreases, while jν,χ increases for x > 0, we conclude that  decreases with
decreasing χ. However, by the definition of  = 0.7070… (see Elbert and Lafоrgia [11]),  = 1.

Therefore,  < 1 for χ > 0.344…, which proves Lemma 3.4.
Now we recall the following lower bound for j " (see [9, p. 74]):

(3.15)

Below is the main result of [16].
Theorem 3.4. Let a function f(ν) be defined by the formula

Then jν,χ + f(x) is a convex function of ν ≥ 0 for χ ≥ χ0 = 0.7070… . The function f(ν) can be replaced by
f(ν) + aν + b, where a and b are arbitrary constants.

Proof. We need to prove that

≤ ν < ∞ π − + ε < α <π0
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Using inequality (3.15) in the case 0 ≤ ν ≤ 1, we have to prove that

(3.16)

Consider a quadratic polynomial in j':

,

where 1 < j' < j/(ν + 1), according to the lemma conditions. On this interval, the function g(j ') has a max-
imum at j/(ν + 1). Therefore,

In view of (3.16), we need to prove only

This inequality holds, since it is equivalent to ν/((ν + j)(ν + 1)2) ≥ 0, which is true. On the second inter-
val ν ≥ 1, we again use (3.15). Thus, we need to prove the inequality

(3.17)

where the quadratic polynomial g(j') now has its minimum at j/2ν. Substituting this value into (3.17) yields

whence the proof of the theorem follows.
Remark 3.3. This result includes, as an important special case, the zeros of Jν (x), which correspond to

χ = k = 1, 2, … . Moreover, the inequality

is stronger than

which guarantees the convexity of j + ν2 as shown by Giordano and Laforgia [19]. Therefore, this result is
a consequence of the theorem proved above.

As an application of the theorem, we consider the cases ν = 0, ν = 1/2, and ν = 1. For ν = 1/2, it is well
known (see Elbert and Lafоrgia [9]) that j1/2,χ = χπ. Therefore, Theorem 3.4 implies that

On the other hand, since jν,χ is a concave function of ν, we obtain

For example, for χ = 1, we have

where the numerical values of j0,1 and j1,1 are taken from the tables given in Watson’s book (see [54]).
The monotonicity of the zeros jν,χ of Cν (x) for ν ≥ 0 was investigated by Elbert and Laforgia [13].
Elbert and Laforgia [8] proved that jν,χ is a strictly increasing function of χ. This property can briefly

be written as

(3.18)

Moreover, it is well known (see Sturm [53]) that the sequence  is strictly decreasing for

|ν| > 1/2 and increasing for |ν| < 1/2. In χ-notation, we have the sequence , which is
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monotone. This property suggests that jν,χ is a concave function of χ for ν ≥ 1/2 and convex for 0 ≤ ν ≤ 1/2.
Thus, the following result holds.

Theorem 3.5. The function jν,χ is concave in χ if ν ≥ 1/2 and convex in χ if 0 ≤ ν ≤ 1/2.
To prove this theorem, for ν ≥ 0 and χ > 0, we first consider the derivative

(3.19)

In the special case ν = 1/2, we have j1/2,χ = χπ, so

Differentiating Watson’s formula for  with respect to χ yields

where j = jν,χ. Integrating by parts the second integral on the right-hand side gives

Recalling a well-known asymptotic formula for K0(u) (see formula (*) in Section 2), we see that the
first term on the right-hand side vanishes. Therefore, in view of (3.19),

Combining this relation with (3.19) yields

(3.20)

A consequence of (3.20) is the following result.
Theorem 3.6. For ν ≥ 0 and χ ' > χ > 0,

(3.21)

Proof. It follows from (3.20) that Iν,χ ⋛ π if ν ⋛ 1/2, respectively, and  = , which

implies assertion (3.21) in Theorem 3.6. To prove that jν,χ is a concave function of χ for ν ≥ 1/2, we need
to show that Iν,χ decreases for growing χ. Let χ ' > χ > 0. Then, in view of (3.18), jν,χ' > jν,χ for ν ≥ 0. On the
other hand, K0(u) has the integral representation

(see Watson [54, p. 46]), so K0(u) is a strictly decreasing function of u and, in view of (3.20), .
This proves the concavity of jν,χ in χ for ν ≥ 1/2.
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The convexity of jν,χ in χ in the case 0 ≤ ν ≤ 1/2 is proved in a similar manner. The proof of Theorem 3.6 is
complete.

Theorem 3.7. For ν ≥ 0 and ν > 0, the function log jν,χ is concave in ν for fixed χ and concave in χ for fixed ν.
Proof. The first part of the theorem follows from the inequality

so we need to prove that

is a decreasing function of ν. The authors prove that H(ν + ε, χ) < H(ν, χ), so the first part of the theorem
is proved. To prove the second part of the theorem, it is necessary to show that

which is equivalent to the fact that

is a decreasing function of χ. The authors prove that L(ν, χ) is a decreasing function of χ if ν > 1/2.
In the case 0 ≤ ν ≤ 1/2, the proof is longer and implies that L(ν, χ) decreases with increasing χ. The

theorem is completely proved.
As a consequence, it is shown that, if ε, δ, h, r > 0 are such that ε + r > 0 and h + δ > 0, then the deter-

minant

is negative, i.e., T < 0. This result generalizes Lorch’s one (see [37, p. 223]), which states that, for ε, δ ≥ 0
and h, r = 0, 1, 2, … such that ε + r > 0 and h + δ > 0, the determinant

is negative, i.e., T < 0.
The proof of the corollary is omitted.
Elbert, Laforgia, and Lorch [17] study some new monotonicity properties of zeros of the Bessel func-

tion Cν(x). Writing the zeros cν,k in χ-notation, the authors prove the following assertions.
1. If 0 ≤ β ≤ 0.2202728, 1/2 ≤ γ ≤ 1, and χ = ν – α/π ≥ 0.3648159, then

is a increasing function of γ for ν > 0. Moreover, jν,χ is cν,k if χ = ν – α/π, k = 1, 2, …, so, if χ = k = 1, 2, …,
then jν,χ = jν,k and jν,k–1/2 = yν,k. (Unfortunately, I failed to find this work, so the results were taken from
MR1143384(93a:33006), as reviewed by E. Ifantis.)

Elbert and Laforgia [14] proved that, if jν,χ is a positive zero of Cν (x), then log jν,χ/ν is a convex func-
tion of ν for ν > 0 and χ ≥ χ0 = 0.7070… . This result includes an important special case of zeros jν,k of Jν(x)
corresponding to χ ≡ k = 1, 2, … .

Elbert, Gatteschi, and Laforgia [7] proved that, under certain conditions on χ, the function jν,χ is con-
cave in ν, i.e.,

(3.22)

for χ ≥ χ0 = 0.344… and ν ≥ 0.
Elbert and Laforgia [11] showed that

(3.23)

as a consequence of the inequality proved in the following lemma.
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Lemma 3.5. For ν ≥ 0 and χ ≥ χ0 = 0.7070…, the function j = jν,χ satisfies the inequality

(3.24)

This lemma is used to prove that jν,χ /(ν + 1) and  are convex functions of ν ≥ 0 for χ ≥ 1/2 and χ ≥
χ0 = 0.7070…, respectively.

Theorem 3.8. For ν > 0 and χ ≥ χ0 = 0.7070…, the function log jν,χ /ν is convex in ν.
Proof. We need to prove that

By Lemma 3.5, it suffices to show that

or, equivalently,

This inequality holds, since j' > 0, j > 0, and (j – νj')' = –νj'' > 0 in view of (3.22). Theorem 3.8 is com-
pletely proved.

Theorem 3.9. For ν > 0 and χ ≥ χ0 = 0.7070…, the function  is convex in ν.
Proof. We need to show that (j2)" > 0 or

In the case of inequality (3.24), it suffices to show that

or

Since j > 0, it is sufficient to prove that j' > 1.
This inequality was proved by Elbert and Laforgia [9] for χ ≥ , where  ∈ (0, 1). However, it was

shown in [7, p. 276] in implicit form that  > 1 if χ ≥  = 0.344…. Therefore, in the case under consid-
eration (χ ≥ 0.7070…), we obtain the required result (j2)" > 0 for χ ≥ max{ , χ0} = χ0. Theorem 3.8 is
proved.

Remark 3.4. Theorem 3.8 supplements Elbert and Laforgia’s result [9] stating that  is convex if χ ≥ ,

but only for  ∈ (0, 1) without indicating its numerical value. The convexity of  is proved in [9] relying
only on the inequality  > 1. However, it holds only for χ ≥  = 0.344… .

Theorem 3.10. For χ ≥ 1, the function jν,χ /(ν + 1) is convex in ν ≥ 0.
Proof. We need to prove that

Differentiating this function yields

which is positive in view of (3.22). Therefore, it suffices to determine the sign of f(0).
It is stated that f (0) > 0.
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It follows from (3.24) that  > , where  = (d/dν)jν, χ|ν = 0 and  = (d2/dν2)jν, χ|ν = 0. There-
fore, it suffices to show that

(3.25)

Relying on Watson’s formulas (see Watson [55, p. 508]) at ν = 0, we obtain

Since K0(u) is a strictly decreasing function of u, we conclude that  decreases in χ. By the defi-
nition of χ0 (see Elbert, Gatteschi, and Laforgia [7]),  = . Therefore, g(χ) in (3.25) is an increasing
function of χ. Moreover,  = 1.54… and j0,1 = 2.40… (see Laforgia and Muldoon [35, p. 383]), so g(1) =
1.07… > 0. This completes the proof of the theorem.

Remark 3.5. The proofs of the theorems in this paper are based on inequality (3.24) from Lemma 3.5.
The authors believe that this inequality is not quite sharp and has to be replaced by a sharper one.

Accordingly, they hypothesize that

Remark 3.6. Numerical experiments show that the claim of Theorem 3.8 can be obtained so that the
function log[jν,χ /(ν + χ)] is also convex. If the relation from the remark were proved, this would imply the
convexity of log[j/(ν + χ)].

Giordano and Rodono [20] consider the zeros jν,χ = cν,k of Cν(x), where χ = k – α/π. Some new mono-
tonicity and convexity properties of jν,χ are proved. Specifically, it is proved that

is an increasing function of ν ≥ 0 for corresponding values of δ and k – α/π ≥ 0.7070… .
Relying on this result, under certain conditions, they prove that cν,k + 1/2δν 2 is a convex function of

ν ≥ 0. Moreover, the monotonicity of  is proved. The results strengthen some earlier obtained ones
of this type.

Giordano and Laforgia [19] prove that jν,χ + αν 2 with α ≥ 1 is a convex function of ν for ν ≥ 0 and χ ≥
χ0 = 0.7070… . For notational simplicity, we define

Theorem 3.11. For ν ≥ 0 and χ ≥ 0.7070…, the function

increases in ν for any

Proof. We need to prove that

for ν ≥ 0, χ ≥ 0.7070…, and δ ≥ .
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For the considered values of ν and χ, we have  > 0 (see Elbert and Laforgia [11]). Therefore, the
previous inequality holds if

Since d(ν/jν,χ)/dν is positive for ν ≥ 0 and χ ≥ 0.7070… (see Elbert and Laforgia [11, p. 76]), it suffices
to show that  + δ > 0. We can use the lower bound

which follows from the convexity of  for χ = 0.7070… and ν ≥ 0 (see Elbert and Laforgia [11, p. 75],
Elbert and Laforgia [16]).

For ν = 0, we have

and, recalling that  increases for ν ≥ 0 (see Elbert and Laforgia [13]), we obtain

Therefore,  + δ is positive for at least all δ ≥ , which proves the theorem.
Remark 3.7. In the important case of zeros jν,k of Jν(x) corresponding to χ = k = 1, 2, …, the values of

 can be estimated using the differential inequality (see Ifantis and Siafarikas [24])

(3.26)

where hn,ν(x) (n ≥ 0) are Lommel polynomials (see Watson [54], Kerimov [31]). If χ = k = 1, we have
 = –0.350987… (see Laforgia and Muldoon [35, p. 383]). Therefore, Theorem 3.11 holds for every δ >

0.350987… .
Corollary 3.5. For ν ≥ 0 and χ ≥ 0.7070…, the function

increases with ν for all δ ≥ 1.
By Theorem 3.1, it suffices to show that

Since  < 1/2π (see Elbert and Laforgia [10]), we obtain

Recalling that  ≤ j0,χ for χ ≥ 0.7070… (see Elbert and Laforgia [11, p. 75]), we complete the proof of
Corollary 3.5.
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Corollary 3.6. For ν ≥ 0 and χ ≥ 0.7070…, the function

is convex in ν for all

Note that, in the case χ = k = 1, the function jν,χ + βν2 is convex for β ≥ 0.175493… and ν ≥ 0, where
jν,1 is the first positive zero of Jν (x) (see Remark 3.7).

Remark 3.8. The function jν,k + βν2 is convex for β ≥ (2 + )/[2(ν + k) ], ν > 0, where jν,k is the
kth positive zero of Jν(x).

This result can be derived by combining the relation

with the inequalities

(see Elbert and Laforgia [14, p. 2]),

(see Ifantis and Siafarikas [24, p. 140]), and

(see Ismail and Muldoon [28, p. 196]).
We see that the estimate for β depends on the zeros jν,k, for which numerous lower and upper bounds

are available. Therefore, this estimate can be sharpened for large ν. For example, if k = 1, we see that
jν,1 + βν2 is a convex function for β ≥ (2 + )[2(ν + 2) ]–2. This estimate is less than 0.175492 for any
ν ≥ 1.5. For ν = 1.5, we have β ≥ 0.1570079, and, for ν = 2, β ≥ 0.13444789.

Before proving the monotonicity properties of , we prove the following result.
Lemma 3.6. For ν > 0 and χ ≥ 0.7070…, there exists a unique value νχ such that

Proof. In view of Elbert and Laforgia’s work [11, p. 76], the function jν,χ /ν decreases for ν > 0 and χ ≥
0.7070… . Since jν,χ is concave,  also decreases for ν ≥ 0 and χ ≥ 0.7070… (see Elbert, Gatteschi, and
Laforgia [7])

Now consider the function

By applying the asymptotic formula for cν,k,

with
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where

(see Laforgia and Muldoon [35, p. 385]) and using the estimate 1 <  < 1/2π as ν → 0+, we see that g(ν)
tends to +∞. As ν → +∞, the function g(ν) tends to –1/2, since

for zeros jν,χ with χ ≥ 0.7070… (see Elbert and Laforgia [9, pp. 208, 76] and Elbert and Laforgia [14, p. 3]).
Therefore, there is at least one positive νχ such that

Let us show that g(ν) decreases as ν grows from 0 to +∞. Differentiating g(ν) yields

For our purposes, we need the following estimate for  (see Elbert and Laforgia [11, p. 74]):

Thus, it suffices to show that

or, equivalently,

in view of  – jν, χ < 0 (see Elbert and Laforgia [11, p. 76]). This holds, since jν,χ > ν (see [11, p. 80]).
Therefore, there is only one νχ such that g(νχ) = 0. This proves Lemma 3.5.

Now we obtain the inequalities

(3.27)

Remark 3.9. In the important special case of zeros jν,k of Jν(x), we can determine an interval Ik such
that νχ ∈ Ik. Inequality (3.26) can be used to deriver an upper bound for , while the inequalities

(3.28)

can be used to deriver a lower bound for  (see Ismail and Muldoon [28, p. 195]).

For example, in the case k = 1, using inequality (3.26) with l = 3, we derive  < 1.2714, while math-
ematical tables yield 1/4j2,1 = 1.2839. Therefore,  < jν,1/(2ν) for 0 < ν ≤ 2. From (3.28) with m = 3, we
have  > 1.2234… and jν,1/(2ν) for ν = 2.5 is equal to 1.15269… . For ν ≥ 2.5, we can obtain  >
jν,1/(2ν).

Clearly, the value of ν1 satisfying  > /(2ν1) lies on interval (2.25).
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Theorem 3.12. For ν > 0 and χ ≥ 0.7070…, the function  decreases on the interval (0, νχ) and
increases on the interval (νχ, +∞), where νχ is defined in Lemma 3.5.

Proof. Differentiating  with respect to ν yields

Applying Lemma 3.5 and using inequalities (3.27), we see that the function  decreases on (0, νχ)
and increases on (νχ, +∞).

Remark 3.10. Since

the function  is convex if

or

(3.29)

Since  is a convex function of ν for ν ≥ 0 and χ ≥ 0.344…, we see that (3.29) holds if  < jν, χ/2ν,
i.e., for 0 < ν < νχ.

For example, in the case χ = k = 1, we have ν1 ∈ (2, 2.5) (see Remark 3.9). Therefore,  is a convex
function for at least 0 < 2 ≤ ν1.

4. ON THE VARIATION WITH RESPECT TO A PARAMETER OF ZEROS OF BESSEL 
FUNCTIONS OF THE FIRST KIND

Under this title, Ismail and Muldoon published an important work [28], where the Hellmann–Feyn-
man theorem in a discrete setting is used to obtain representations for the derivatives (with respect to a
parameter) of positive zeros of a family of entire functions. With the help of these representations, the
zeros are proved to be monotone functions of the parameters involved.

This family includes the Bessel functions Jν(x) and their basic analogue, namely, the q-Bessel functions

(x; q). A consequence of this theory is that /(ν + 1) increases with ν when ν ∈ (–1, ∞). The Lommel
polynomials and generalized Lommel polynomials are used to derive improved lower bounds for the
smallest zero jν,1 of Jν(x).

Now, this work will be described in more detail. In previous sections, we used classical formulas for
derivatives of the positive zeros jν,k of the Bessel function Jν(z) and the positive zeros cν,k of the cylinder
function Cν(x), namely, Schläfli’s formula

(4.1)

and Watson’s formula

(4.2)
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In [23] Ifantis and Siafarikas derived a new formula of this kind:

(4.3)

In [37] (see above) Lewis and Muldoon showed how formula (4.1) can be brought to a form to which
the Hellmann–Feynman theorem for the approximate solution of a boundary value problem for differen-
tial equations can be applied. Watson’s formula (4.2) is more useful than (4.1), since it applies to the gen-
eral cylinder functions Cν(x) and has a convenient form (in view of the fact that K0(u) is a positive decreas-
ing function of u). That is why formula (4.2) has been the starting point for many works devoted to Bessel
function zeros. However, formula (4.2) has not been put into a general setting; i.e., we do not know a for-
mula that would apply to a general class of differential equations and would reduce to (4.2) in a special
case. Formula (4.3) yields more general results. For example, it can be proved that, for a fixed k, the ratio

(4.4)
decreases on the interval (–1, ∞). This result is not easy to obtain from formula (4.2).

A new proof of formula (4.3) that is more convenient than that given by Ifantis and Siafarikаs [23] was
presented in [28]. It was shown that formula (4.3) can be interpreted as a version of the Hellmann–Feyn-
man theorem as applied to a discrete setting arising from the three-term recurrence relation for cylinder
functions.

Below, the abstract Hellmann–Feynman theorem is briefly considered as applied to the study of zeros
of the Bessel functions Jν(x).

Let {Hν} be a sequence of symmetric operators on a space equipped with a positive definite inner prod-
uct 〈·〉 depending on a parameter ν. Let λν and ψν be the eigenvalues and eigenvectors of the operator Hν,
i.e.,

(4.5)

(4.6)
or

(4.7)
Formally differentiating (4.6) with respect to ν, we obtain

The last terms on the left- and right-hand sides are equal. Using the symmetry of Hν and relation (4.5),
we see that two middle terms on the left-hand side cancel with those on the right-hand side, so we obtain

(4.8)

Relation (4.8) expresses the Hellmann–Feynman theorem.
To derive a formula for the second derivative of an eigenvalue, we assume that the inner product is

independent of ν and that the eigenfunctions ψν are normalized by ||ψν || = 1. Then differentiating the
equation

using the symmetry of ∂Hν /∂ν, which follows from the symmetry of Hν, and the result

of differentiating (4.5), we obtain

(4.9)
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This formula provides the second derivative version of the Hellmann–Feynman theorem.
An important consequence of formula (4.8) is that, under certain conditions, dλν/dν > 0. Accordingly,

formula (4.9), combined with Rayleigh’s principle, yields the inequality d2λν/dν2 > 0 for the largest eigen-
value.

Now consider a space of sequences in which the inner product of two sequences u = {ui} and  = { }
is defined by the formula

(4.10)

where {an(ν)}, n = 1, 2, …, is a sequence of entire functions of ν and, for n > 0, an(ν) is a positive function
for ν ∈ I = (a, b). The interval I is independent of n. Assume also that, uniformly in n, n > 0, the sequence
{an(ν)} is bounded below by a positive number on each closed subinterval [c, d] of I. Let L be the normed
linear space of sequences u with a finite norm [〈u, 〉]1/2. The operator Hν on L is defined by the infinite
matrix

(4.11)

The operator Hν is symmetric. Consider a family of real-valued functions fν(x) satisfying the recurrence
relation

(**)

Let ξν be a zero of fν (x). If the vector

belongs to the space L, then uν is an eigenvector corresponding to the eigenvalue 1/ξν, i.e.,

Then the Hellmann–Feynman theorem in a discrete setting yields the formula

and, with the use of (4.10), we have

(4.12)

These formulas are used to simplify the derivation of (4.3). For this purpose, we consider the well-
known recurrence relation for Jν (x):

The function x–νJν(x) is entire in x and analytic in ν for ν ∈ (–1, ∞), so its zeros are differentiable func-
tions of ν. In view of aν (ν) = 2(n + ν) and I = (–1, ∞), Eq. (4.12) implies (4.3), since the differentiated
series converge uniformly in ν on compact ν-intervals. Considering the recurrence relation

which is satisfied by Jν{x(ν + 1)}, we can apply what was said above to (4.4) with an(ν) = 2(ν + n)/(ν + 1).
Here, (ν) = 0 and (ν) < 0 for n = 2, 3, … . Then

(4.13)

is a decreasing function of ν on the interval (–1, ∞).
By applying a more complicated method, this result was proved by Elbert [5] and Ifantis and Siafarikas [23].
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Next, the authors simplify the sum in the denominator of formula (4.3). Recall the formula

(4.14)

(see Watson [54, Section 5.51]), which implies that

(4.15)

It follows from (4.13) that  =  for j = jν, k. Combining this relation with identity (4.15)
gives

(4.16)

In Ismail’s work [27], relation (4.16) and the formula

from Watson’s book [54, Section 5.51]) are used to prove the equivalence of (4.1) and (4.3). With the help
of (4.16), formula (4.3) can be written in the simplified form

(4.17)

Now we describe a method based on using Lommel polynomials for the study of the zeros of Jν (x).

Instead of the Lommel polynomials, the authors use the class of more general polynomials { }
defined by the recurrence formula

(4.18)

It is assumed that cν+n > 0 for n ≥ 1. For cν = 2(ν – 1), the polynomials {ϕn(x)} coincide with the gen-
eralized Lommel polynomials {hn, ν (x)} (see Watson [54], Kerimov [31, 32]).

The polynomials {ϕn(x)} satisfy the relation

(4.19)

Let

(4.20)

where Γc(ν) is the gamma function associated with the sequence (cν), i.e., a function satisfying

Relations (4.16) and (4.20) imply the recurrence formula

which has the form of (**). If cν = 2ν, then fν (x) = Jν (x). It is assumed that cn+ν > 0 for n ≥ 1 and the series

(4.21)
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converges. Thus, the system { } is orthogonal on a bounded set E that is symmetric about x = 0 and
its only limit point is x = 0.

The functions ϕn(x) are orthogonal with respect to a discrete probability measure dμ whose masses are
located at the reciprocals of the zeros of x–νfν(x) and, in certain cases, at the point x = 0. Then the orthog-

onality condition for the polynomials { } is

(4.22)

Now we define a matrix operator Hν by the relation

(4.23)

The inner product of two sequences u and  is defined as

The operator Hν is symmetric on the normed space L with the norm ||u||2 = , and the Hellmann–
Feynman theorem is applicable to Hν. For u = {ui: i = 0, 1, …} to be an eigenvector corresponding to an

eigenvalue λ, it is necessary that {ui} be a multiple of { }. However, such a vector u belongs to L if and
only if λ supports a mass of dμ. This is the case, which follows from moment theory (see Shohat and
Tamarkin [50, Corollary 2.6, p. 45]). Therefore, the nonzero eigenvalues of Hν are the reciprocals of the

zeros of x–νfν(x). The function x–νfν(x) is even, since  = . Let ξν be a positive zero of
fν(x). Since x–νfν(x) is an analytic function of x and ν, the zero ξν is differentiable in ν.

Theorem 4.1. Let {cn+ν: n = 1, 2, …} be a sequence of positive differentiable functions of ν, ν ∈ I, and
assume that series (4.21) converges. If {fν(x)} are analytic functions of x and ν and x = ξν ≠ 0 is a zero of fν(x),
then

(4.24)

This theorem shows that, as functions of ν, the zeros of fν (x) increase (decrease) if cn+ν increases
(decreases) with ν for all n = 1, 2, … .

The mass M(ξν) of dμ located at 1/ξν is given by the formula (see Shohat and Tamarkin [50, p. 45, Cor-
ollary 2.6])

(4.25)

Since the Lommel polynomials {hn, ν + 1)(x)} correspond to cν = 2ν, we set ξν = jν, k and find from (4.24)
that

(4.26)

which is known as the Lommel formula. The Lommel polynomials are related to the Bessel functions Jν(x)
by the formula

(4.27)
where m takes nonnegative integer values (see Watson [54, Section 9.6], Kerimov [31]). Note that (4.27)
implies the equivalence of formulas (4.18) and (4.26).

What was described at the beginning of this section is related to the above exposition based on Lommel
polynomials. An analogue of relation (4.27), which can be proved by induction, is

(4.28)
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This shows that (4.24) implies (4.12) if we set an(ν) = cn+ν.
The Lommel formula yields the sequential lower bounds

(4.29)

which also follow from (4.17),

, (4.30)

and

(4.31)

Computations at k = 1 show that these bounds are quite sharp in the interval –1 < ν ≤ 2. They may be
contrasted with other bounds, such as

(4.32)

which was proved by Elbert and Laforgia [9], and

(4.33)

proved by Elbert [6] using (4.2) and by Ifantis and Siafarikas [23] using (4.3).
For comparison purposes, we also present some inequalities obtained for the first zero jν,1 with the help

of the Rayleigh function

(4.34)

(see Watson [54, p. 502] and Kerimov [31]). These inequalities have the form

(4.35)

Here,  is a rational function, which can be calculated using by the recurrence formula

(4.36)

(see Kerimov [31]).

On applying several explicit formulas for  given by Watson [54, p. 502] and Kerimov [31], the first
few of the formulas (4.35) yield the successively improving bounds

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

Although these inequalities, which are valid for ν > –1, are implicitly contained in (4.35), they were
not well known and were sometimes rediscovered by different methods. For example, inequality (4.37)
was proved by Ronveaux and Moussiaux [49] by applying a differential equation technique based on
homographic transformations of the Riccati phase equations. Inequality (4.38) was proved by Elbert [5].
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Now we show that  increases as ν grows in the interval (–1, ∞). In view of the representa-
tion

(4.42)

(see Piessens [47]), this result is quite sharp for ν close to –1. We need to prove that

(4.43)

In view of (4.30), it suffices to show that

(4.44)

However, it follows from (4.28) that (4.44) (and, hence, (4.43)) holds for –1 < ν < 1. For ν ≥ 1, inequal-
ity (4.42) can be proved taking into account (4.44), since jν,1/(ν + 1) decreases, ν > –1, and j1,1/2 is equal
to 1.92…, which is less than 2. Thus, the following result holds true.

Theorem 4.2. The function  is an increasing function of ν on the interval (–1, ∞).
With the use of inequalities (4.29), (4.30), and (4.42) and the orthogonality of Lommel polynomials,

the authors derive upper and lower bounds for jν,1.
It is well known that, if {pn(x)} is a family of discrete orthogonal polynomials, then the largest zero of

pn(x) converges to the largest mass point of the measure. The largest zero of pn(x) increases with n, because
the zeros of pn(x) and pn+1(x) interlace. Similarly, the second largest zeros of pn(x) increase with n and con-
verge to the second largest mass point.

The Lommel polynomials {hn,ν+1(x)} are orthogonal with respect to a discrete measure whose masses
are supported at ±1/jν,n, n = 1, 2, … . An explicit formula for the Lommel polynomials (see Watson [54,
Section 9.61], Kerimov [31]) is

(4.45)

where

The largest zero of h3,ν+1 is [2(ν + 1)(ν + 3)]–1/2. Therefore,

which is the right-hand inequality in (4.38).
A similar consideration of h5,ν+1(x) leads to the improved bounds

(4.46)

where

(4.47)

The first inequality in (4.46) is due to Schafheitlin (see Watson [54, p. 487]) and is also obtained by
considering h5,ν+1(x). This inequality is sharper than the right-hand inequality in (4.38).

In Watson’s book [54, p. 487], this inequality was said to be sharper than

(4.48)

Numerical experiments show that (4.46) is sharper than the upper bound in (4.40) for all ν > –1 and
sharper than the upper bound in (4.41) for ν > –0.54. However, (4.46) is not better for large ν than the
next bound, after (4.41), in the Rayleigh sequence; that bounds behaves, for large ν, like 14ν2/11, while
(4.46) behaves like 4ν2/3. More accurate lower bounds for jν,1 and jν,2 can be obtained by applying the Car-
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dan and Ferrari formulas to find the largest and second largest zeros of the Lommel polynomials of
degrees 7 and 9. However, the corresponding computations require much effort.

The next issue to be discussed is how a lower bound, such as (4.29), (4.30), or (4.31), for the derivative
of the zero jν,1 can be combined with an lower bound for jν,1 in order to obtain a sharper lower bound for jν,1.
We may choose any lower limit of integration (exceeding or equal to –1) but the most interesting results
are obtained with the choices –1 and 0.

As a first example, we note that, from (4.42), jν,1 → 0 as ν → –1, and then integrate (4.29) to derive the
lower bound in (4.37):

If we use 0 rather than –1 as a lower limit of integration, then

(4.49)

which is weaker than the well-known inequality

(4.50)

(see Laforgia and Muldoon [35]).
Combining (4.30) with the lower bound in (4.37), we obtain

which, after integration with the lower limit –1, gives the lower bound

(4.51)

which is better than the lower bound in (4.37) and better for small ν than the lower bound

(4.52)

(see Watson [54, Section 15.3, (5)]).
If inequality (4.30) is used again, but with lower bound (4.51), then

(4.53)

which is better than (4.51), as can be seen if we write (4.51) in the form

and use

Inequality (4.53) is sharper than the lower bound in (4.37), but is not sharper than the lower bounds
in (4.38) and (4.39).

Inequalities (4.30) and (4.31) can also be used to derive bounds that are sharper than (4.50). For exam-
ple, multiplying (4.30) by , applying (4.50), and then integrating, we obtain the lower bound

(4.54)

Inequality (4.38) yields a better lower bound. To see this, we write (4.38) in the form
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These inequalities yield

(4.55)

and, after using (4.51), we obtain

Integrating this inequality from –1 to ν gives

(4.56)

This inequality is sharper than (4.53) for all ν > –1. On the other hand, using (4.50) rather than (4.51)
in (4.55) and integrating with the lower limit 0, we obtain

(4.57)

Numerical experiments show that (4.57) is sharper than (4.54).
It is of interest to compare (4.54) and (4.57), which are valid on (0, ∞) and become sharp at ν = 0, with

(4.50), the only other inequality of this kind known to the authors. These inequalities are sharper than
(4.50) for 0 < ν < 6.5 and 0 < ν < 11, respectively, but (4.50) is sharper for large values of ν. All the inequal-
ities obtained are valid only for small values of ν. For large ν, asymptotic expansions are known.

5. ON ZEROS OF q-BESSEL FUNCTIONS

The basic Bessel (or q-Bessel) functions of the first and second kinds were first defined by Jackson
(see [30]) by the series

(5.1)

(5.2)

where

Before analyzing the zeros of these functions, we present some theoretical results concerning q-Bessel
functions, q-Lommel polynomials, relations between them, etc. All of them can be found in [26, 28].

The author of [26] additionally investigates the zeros of the function Jν+αx(x), which is related to (x; q)

and (x; q).
Consider the q-gamma function (see Askey [2], Jackson [30])
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as q → 1, since  is equal to

Both (x; q) and (x; q) satisfy the recurrence relations

(5.5)

Integrating (5.5) yields a relation similar to that between the Bessel functions Jν (x) and the Lommel
polynomials {Rn,ν (x)}. Namely, the formula

(5.6)

relates the q-Bessel functions to the q-Lommel polynomials Rm,ν (x; q).
In turn, the q-Lommel polynomials {Rn,ν (x; q)} satisfy the recurrence relation

(5.7)

Setting

(5.8)

we obtain the generalized q-Lommel polynomials, which satisfy the recurrence

(5.9)

The functions (x; q) and (x; q) are related by

(5.10)

(see Hahn [21]). Concerning the zeros of (x; q) and (x; q), it is only mentioned in [21] that (x; q) has
an infinite number of real zeros.

Series (5.1) for (x; q) converges only for |x| < 2; additionally, there is formula (5.10). Therefore, it
cannot be expected that the zeros of (x; q) have the same properties as those of (x; q).

It is proved in [26] that all nonzero zeros (which are infinitely many) of (x; q) are real and simple
and that the zeros jν,n(q) of (x; q) and (x; q) interlace. Similar properties are also possessed by the
zeros of Jν+ax(x).

Due to relation (5.10), the function (x; q) has only a finite set of nonzero zeros for |x| < 2, and they
coincide with zeros of the entire function .

For q-Lommel polynomials, there is an explicit formula:

(5.11)

Similarly, the generalized q-Lommel polynomials are given by the explicit formula

(5.12)
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This formula is an exact analogue of the corresponding formula from Watson’s book [54, p. 296, for-
mula (3)] for the generalized Lommel polynomials hn,ν(x), i.e., of formula (4.4).

Let {jν,k(q)} denote the positive zeros of the even function  ordered in the form

(5.13)

Relying on the above theoretical results regarding q-Bessel functions and q-Lommel polynomials, the
following theorems are proved in [26], which are given below without detailed proofs.

Theorem 5.1. The basic Bessel functions (x; q) and (x; q) have no common zeros, except for possibly
the point z = 0, when ν takes real values.

Theorem 5.2. All zeros of  are real and simple for ν > –1. There are infinitely many such
zeros, and their only limit point is a point at infinity.

Theorem 5.3. Between any two consecutive positive zeros of , the function  has
exactly one zero when ν ≥ –1.

Theorem 5.4. All zeros of the function  are real and simple for ν > –1 and real a.
There are infinitely many such zeros, and their only limit point is a point at infinity. Between any two

consecutive zeros of , the function  has only one zero.

The variation in the positive zeros jν,k(q) of (x; q) with respect to ν and q is studied in the second
part of [28, pp. 201–206].

The function (x; q) is analytic for x > 0, ν > –1, and 0 < q < 1. Therefore, its positive zeros are dif-
ferentiable with respect to ν and q.

Returning to recurrence formula (**) for fν (x) and setting fν (x) = , we obtain the recur-
rence formula

(5.14)

Now ξν is a zero of (x; q), and an(ν) = 4q1/4sinh[(n + ν)w], where w = –(ln q)/2 > 0.

The function an(ν) increases in ν, so the positive zeros of (x; q) increase with ν, ν > –1, provided
that the vector u = {fν+1(ξν), fν+2(ξν)} belongs to a suitable inner product space. However, we have the
asymptotic formulas

as n → ∞, so the series defining the norm ||u|| converge. It follows that the zeros of a q-Bessel function are
the eigenvalues of a symmetric operator and all of them are real for ν > –1.

Concerning the variation of zeros with respect to q, the authors consider the formula

(5.15)

Then

(5.16)

where w = –((lnq))/2. It can be seen that 2r > tanh(rw) for r > 0 and e–4 < q < 1. From this and (5.15), it
follows that an(q), n > 0, decreases as q increases on the interval (e–4, 1). Another result can be obtained
by considering 2q–1/4jν,k(q) rather than the zeros jν,k(q). With a suitable scale, we derive the recurrence rela-
tion

(5.17)

In view of the notation an(q) = q–ν/2 – qν/2, we see that an(q) (n > 0) decreases for increasing q : 0 < q < 1 and
ν > –1.

In view of what was said above, the following result holds.
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Theorem 5.5. Let ν > –1. The positive zeros jν, k(q) of (x; q) increase with ν for 0 < q < 1 and decrease
in q for e–4 < q < 1, but q–1/4jν,k(q) increases with ν and decreases in q for 0 < q < 1.

The function an(ν)/sinh[(ν + 1)w] decreases with increasing ν on (–1, ∞). It follows that
jν, 1(q)/(q–ν – 1 – qν – 1) is a decreasing function of ν if ν ∈ (–1, ∞) and q ∈ (0, 1).

In [26] Ismail defined the q-Lommel polynomials hn,ν(x; q) as generated by the recurrence relations

(5.18)

(5.19)

They are orthogonal with respect to a purely discrete measure whose masses are located at the recip-
rocals of the zeros of (x; q). Inequalities of form (4.30) and (4.46) can be extended to q-Lommel poly-
nomials if we consider the zeros of the q-Lommel polynomials of degrees 3 and 5, respectively. The poly-
nomials hn,ν(x; q) are given by the explicit formula

(see Ismail [26, formula (3.6)]).
Thus,

so we obtain the inequality

which, in the limit as q → 1, yields the upper bound in (4.27). Considering the zeros of the polynomial
h3,ν+4(x; q) yields the inequality

which, in the limit as q → 1, leads to the upper bound in (4.28).
Next, the authors examine the convexity of the reciprocals of the zeros jν,1 and jν,1(q) for Jν(x) and

(x; q). This issue is first investigated in the general case of an entire function fν(x) with the help of
results obtained previously for zeros of Jν(x). To use the general formula (4.8) in this case, inner product
(4.10) has to be replaced with an inner product independent of ν.

The most suitable variant is the usual inner product

(5.20)

Let
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Then the recurrence formula (**) becomes
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Now the operator Tν is defined by the formulas
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The operator Tν is symmetric, and its second derivative is given by

(5.25)

where the primes denote derivatives with respect to ν. Note that the second term on the right-hand side
of (4.9) is nonnegative if λν is the largest eigenvalue of Tν.

Theorem 5.6. Let an(ν) = cn + ν + 1 and Λ be the largest eigenvalue of the operator Tν. If the assumptions of

Theorem 4.1 hold and  > 0 for n = 1, 2, …, then Λ is a convex function of ν.
Corollary 5.1. Under the assumption of Theorem 4.2, the reciprocal of the smallest positive zero of

fν(x) is a convex function of ν.
Taking the logarithmic derivative of fν(x), one can obtain the identity

(5.26)

It follows from (5.26) that (ν) is positive if an(ν) = 2(n + ν) or an(ν) = 4q1/4sinh((n + ν)w), where
w = ((ln q))/2.

This proves the following result.
Theorem 5.7. Both 1/jν, 1 and 1/jν, 1(q) are convex functions of ν when ν > –1.
The convexity of 1/jν, 1 can be derived from the formula

on using jν,1 > 0 and the result  < 0 for ν > –1 from [6].
A finite-dimensional version of this theorem is also proposed.
In this case, Tν is replaced by an N × N matrix obtained by deleting the rows N, N + 1, … and the col-

umns N, N + 1, … from Tν. The new matrix is defined on , and its eigenvalues are the zeros of (x).
It follows that the largest zero of (x) is a convex function of ν if  ≥ 0 for 1 ≤ n ≤ N. In this case, (x)
is the Lommel polynomial hN,ν+1(x) or the q-Lommel polynomial hN,ν+1(x; q) if ν > –1.

As N → ∞, the largest zeros of hN,ν+1(x) and hN,ν+1(x; q) converge to 1/jν,1 and 1/jν,1(q), respectively,
which proves Theorem 5.7.

CONCLUSIONS
This paper continued the study concerning the properties of positive real zeros of first and second kind

Bessel functions begun in the first and second parts of this work. Specifically, we discussed the monoto-
nicity, convexity, and concavity of zeros of the Bessel functions Jν(x), Yν(x), and Cν(x), squared zeros,
zeros of q-Bessel functions, etc.

This study was conducted as carefully as in the previous parts of the work.
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