
1651

ISSN 0965-5425, Computational Mathematics and Mathematical Physics, 2016, Vol. 56, No. 9, pp. 1651–1664. © Pleiades Publishing, Ltd., 2016.
Original Russian Text © I.S. Menshov, P.V. Pavlukhin, 2016, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2016, Vol. 56, No. 9, pp. 1677–1691.

Efficient Parallel Shock-Capturing Method for Aerodynamics
Simulations on Body-Unfitted Cartesian Grids

I. S. Menshova* and P. V. Pavlukhinb**
a Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Miusskaya pl. 4, Moscow, 125047 Russia

b Research Institute Kvant, Chetvertyi Likhachevskii per. 15, Moscow, 125438 Russia
e-mail: *menshov@kiam.ru, **pavelpavlukhin@kiam.ru

Received June 26, 2015; in final form, February 5, 2016

Abstract—For problems with complex geometry, a numerical method is proposed for solving the
three-dimensional nonstationary Euler equations on Cartesian grids with the use of hybrid computing
systems. The baseline numerical scheme, a method for implementing internal boundary conditions on
body-unfitted grids, and an iterative matrix-free LU-SGS method for solving the discretized equations
are described. An efficient software implementation of the numerical algorithm on a multiprocessor
hybrid CPU/GPU computing system is considered. Results of test computations are presented.

Keywords: computational gas dynamics, Cartesian grids, free boundary method, parallel computa-
tions, hybrid computing systems.
DOI: 10.1134/S096554251609013X

INTRODUCTION
Gasdynamic simulation on modern computing systems with new architectures encounters a number

of difficulties. One is associated with the discretization of the computational domain. In the case of a
domain of complex geometry, unstructured meshes are used in most cases. Accordingly, mesh generation
requires considerable computational resources and quite often involves hand operations for mesh correc-
tion, which lead to high time costs. Unstructured meshes lead to irregular memory access. As result, the
efficiency of software implementations of methods on such meshes is limited not by the number of arith-
metic operations executed per unit time (compute-bound), but rather by the memory bandwidth (mem-
ory-bound). To a higher degree, this is critical for massively parallel processors, since their performance
depends primarily on the order of memory access. Therefore, it is preferable to use structured meshes,
which are characterized by a regular pattern of memory access. However, in some cases, the construction
of such meshes fitted to the boundary of the computational domain may be hard or impossible to imple-
ment.

Another difficulty is associated with the interdependent development of numerical methods and pro-
cessor architectures. Earlier, low-resolution grids were used for solving problems on systems with limited
computational resources. To obtain more accurate solutions on them, high-order numerical methods with
a complex algorithmic structure had to be constructed. On the other hand, processor cores also became
progressively “heavier”: out-of-order execution of commands, cache data storage, prediction of branch-
ing, and vector instructions allowed one to efficiently implement complicated methods. However, the
scalability of computing systems on such heavy cores was bounded, and their further complication led to
lower efficiency. This motivated the development of systems on new massively parallel architectures with
a large number of simple cores. It is at this point where a problem arose: the numerical methods having
been developed over decades turned out to be unfit for implementation on new computers, since high effi-
ciency on them is achieved not due to efficient execution of each of a small (about 10) number of “heavy”
streams, but rather due to the simultaneous processing of a much greater (about 1000) number of “light”
streams. In other words, the simple structure of the core of a massively parallel computer requires com-
putational primitivism for the numerical methods applied.

Explicit methods are well suited for implementation on new architectures, but their application is
strongly limited by the stability condition. In problems with complex geometry, where meshes inevitably
contain cells of different scales, the global time step is determined by the size of the smallest cell, which
leads to unreasonably high growth of computational complexity. Implicit methods do not have this lim-

1652

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol. 56 No. 9 2016

MENSHOV, PAVLUKHIN

itation, but they are much more complicated in terms of the above requirements, especially in paralleliza-
tion. Thus, choosing and creating methods and corresponding efficient parallel algorithms for solving a
broad class of problems in gas dynamics is an important task.

The implementation of implicit schemes on graphics processing units (GPUs) is a rather difficult prob-
lem, since the development of an efficient solver is considerably hampered by data dependency, especially
in the absence of tools for global synchronization on GPUs. Specifically, the LU-SGS method [2]
designed for solving systems of linear algebraic equations (SLAEs) generated by implicit schemes was con-
sidered in [1] as a good method for computations on GPUs. However, because of data dependency, which
strongly complicates parallelization, another method was chosen, namely, DP-LUR, which is free of data
dependency, but has a higher computational complexity.

In this paper, we propose an original parallel LU-SGS algorithm that performs exactly as its sequential
prototype and is scalable to several hundred GPUs. In addition to the numerical method itself, an import-
ant role, as was mentioned above, is played by the mesh type. Specifically, GPUs perform much better
with regular data structures typical of structured meshes than with irregular ones characteristic of unstruc-
tured meshes. Structured meshes adapted to the geometry of the computational domain impose con-
straints on the complexity of its geometry. The method proposed in this paper applies to domains with
fairly complex geometry and performs on simple body-unfitted Cartesian grids, which makes it a suitable
candidate for implementation on GPUs. The method is reduced to an alternative formulation in which
internal boundary conditions are modeled using a compensating f lux, which is a special correction term
added to the right-hand side of the governing system of equations. As a result, shock-capturing computa-
tions can be performed over all cells of the computational domain in a unified manner. In other words, the
method is algorithmically homogeneous, which is an important characteristic for a massively parallel
architecture.

1. BASELINE NUMERICAL METHOD
To solve the compressible Euler equations numerically, they are written in Cartesian coordinates in

conservative form:

, (1)

where summation is implied over the coordinate direction index k,

 is the vector of conservative variables,

 are the f lux vectors,

; is the Kronecker delta; are the density, velocity components, and pressure, respec-
tively; and and are the specific total energy and enthalpy. System (1) is
closed by an equation of state, which relates the thermodynamic parameters of the medium. In this study,
we used the ideal gas equation of state , where is the ratio of specific heats. In the compu-
tations presented below, was used for the case of air, i.e., .

In the computational domain, we introduced a Cartesian grid along the coordinate directions with
steps , which can generally be variable. Applying the finite volume method to Eqs. (1), we obtain the
system of semidiscrete equations

, (2)

where i is a generalized cell index, which depends on the coordinate direction index k and takes the value
of a cell index in this direction.

The flux difference on the right-hand side of (2) is

, (3)

where is the numerical f lux approximating the differential f lux on the face between cells i and
i + 1. This numerical f lux is assumed to be a function of two vector arguments,

, (4)

∂∂ + =
∂ ∂

0k

kt x
fq

()= ρ ρ ρ T, ,mu Eq

()= ρ ρ + δ ρ T, ,k k k m km ku u u p u Hf

= 1,2,3m δkm ρ, , ku p
= + 0.5 k kE e u u = + ρ/H e p

= γ − ρ(1)p e γ
γ γ = 1.4

kh

⎛ ⎞Δ= − ⎜ ⎟
⎝ ⎠

i k

k i

d
dt h
q F

+ −Δ = −, 1/2 , 1/2k k i k iF F F

+, 1/2k iF kf

+ −
+ +=, 1/2 1(,)k i k i iF F z z

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol. 56 No. 9 2016

EFFICIENT PARALLEL SHOCK-CAPTURING METHOD 1653

satisfying the approximation condition . Here, denotes the vector of primitive variables:
.

The plus and minus superscripts on the right-hand sides of Eqs. (3) indicate that the corresponding
values are taken at the center of face i + 1/2. The choice of these values determines the accuracy of the
scheme. For example, with the simple choice

, (5)

we obtain a first-order accurate scheme in space. To increase the order of accuracy of the scheme, a higher
order of accurate subgrid-scale reconstruction of the parameters has to be applied [3]. In this paper, we
use a piecewise linear subgrid-scale extension that generalizes the monotone upstream-centered scheme
for conservation laws (MUSCL) [4] to nonuniform grids:

(6)

with finite differences and . In this equation, the cell index i is omitted for
notational brevity, and are grid nonuniformity parameters, and

 is a function determining the order of accuracy of the interpolation scheme. For , we
have the standard second-order accurate MUSCL scheme [5], gives an unstable second-order
central-difference scheme, corresponds to Fromm’s scheme [6], and
leads to a third-order accurate MUSCL scheme in space. Below, we use the last version of the scheme.

Schemes of second and higher order of accuracy in space are nonmonotone and give rise to spurious
oscillations in numerical solutions near strong discontinuity surfaces [7]. To suppress these oscillations,
one uses limiters of derivatives [3, 5], which modify the differences so that interpolation (6) does not
lead to local extrema.

The most popular are the minmod limiter (see [3, 4])

(7)

and the van Albada limiter (see [8])

(8)

where is a small number used to avoid division by zero (for double precision arithmetic oper-
ations and for single precision arithmetic operations). The former limiter is not a continuously
differentiable function and may lead to an infinite loop of the residual in the course of the convergence of
the solution. We use the latter limiter (a smooth function), which avoids an infinite loop of the residual in
many problems.

Godunov’s method [9] is used to approximate the numerical f lux function. In this approach, the f lux
is computed at the solution of the following self-similar Riemann problem for a system of locally one-
dimensional equations:

(9)

with initial data

The solution of this problem was described in detail in [10]. In fact, the problem is reduced to a single
linear equation for the contact zone pressure, which can be solved by applying Newton’s iterations. The
other parameters of the solution have exact analytical expressions. Let this solution be denoted as

() =, ()k kF z z f z z
()= ρ, ,ku pz

+ −
+ += =1 1,i i i iz z z z

± ± ± ± ±⎡ ⎤= ± δ − Δ + + Δ⎣ ⎦
∓0.5 (1) (1)k kz z

+
+Δ = −1i iz z −

−Δ = − 1i iz z
+

+δ = + 1/()i i ih h h −
−δ = + 1/() i i ih h h

± ±= δ()k k δ = −() 1k
δ =() 1k

δ =() 0k δ = δ − δ2() (12 1)/(12)k

±Δ

+ + − − − +Δ = Δ ϕΔ Δ = Δ ϕΔ
<⎧−ϕ = = ⎨ ≥− ⎩

minmod(,), minmod(,),
0 if 0,3 , minmod(,)
sign()min(,) if 0,1

xyk x y
x x y xyk

± ± ± ± ±

+ −

+ + − −

⎡ ⎤= ± δ − Δ + + Δ⎣ ⎦

⎛ ⎞Δ Δ= ⎜ ⎟Δ Δ + Δ Δ + ε⎝ ⎠

∓0.5 (1) (1) ,

2max 0, ,

s sk sk

s

z z

ε −ε ∼

1210
−ε ∼

610

∂∂ + =
∂ ∂

0k

t x
fq

+

−
+

⎧ <⎪= ⎨
≥⎪⎩ 1

, 0,
(0,)

, 0.
i

i

x
x

x

z
z

z

1654

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol. 56 No. 9 2016

MENSHOV, PAVLUKHIN

 = , where is a self-similar variable. Then the standard Godunov numerical
f lux is given by

. (10)

The numerical f lux has to be computed on each cell edge and, in fact, is the basic operation of a numer-
ical cycle (in terms of time costs). For this reason, various noniterative approximate Riemann solvers were
developed [11] to enhance the efficiency of Godunov’s scheme. One of them leads to the numerical f lux
proposed in [12]. Below, we use it to linearize the numerical f lux. It has the form

, (11)

where the index means averaging; for example, = .

The system of semidiscrete equations (2)–(4) with a numerical f lux of form (10) was integrated with
respect to time by applying an explicit–implicit scheme [13], which ensures the minimum involvement of
the dissipative implicit component and guarantees the maximum norm diminishing (MND) property in
the case of linear equations. With a suitable choice of the time step, this scheme automatically becomes
the baseline explicit second-order accurate scheme in time and space, for which the MND property holds.

To construct a hybrid explicit–implicit scheme, a baseline explicit scheme is chosen to be a two-step
predictor–corrector one, although other variants are also possible. In this scheme, at the first step, the
predictor values at the time half-step are computed using the explicit Euler scheme

(12)

with the f lux determined by the cell-face interpolated values

. (13)
Here, the superscript n denotes the discrete time level. The solution at the new time level n + 1 is obtained
by applying an explicit second-order accurate scheme at the step with the f luxes computed from the
predictor values:

(14)

The above-described predictor–corrector scheme guarantees the MND property (in the linear case)
under the Courant–Friedrichs–Lewy stability condition imposed on the integration time step:

(15)

where the function on the right-hand side is determined by the local f low velocity and the speed of sound:

, (16)

here, is a safety factor ().
The baseline explicit scheme is written in operator form:

, (17)

where denotes the discrete two-step transition operator in (12)–(14). For each mesh cell, we intro-
duce an intermediate-level parameter, i.e., a scalar parameter , . The solution vector at the
intermediate level is defined as + . Then the hybrid explicit–implicit scheme is writ-
ten as

. (18)

(,)t xz ()+ −
+λ,

1, ,R k
i iZ z z λ = /x t

() ()+ − + −
+ +⎡ ⎤= ⎣ ⎦

,
1 1, 0, ,R k

k i i k i iF z z f Z z z

() () () () () (){ }+ − + − − +
+ + ++

⎡ ⎤= + − + −⎣ ⎦1 1 11/2
1,
2k i i k i k i k i iiu cF z z f z f z q z q z

+ 1/2i +∗ 1/2()i
+ −

+⎡ ⎤∗ + ∗⎣ ⎦10.5 () ()i i

⎛ ⎞ΔΔ= − ⎜ ⎟
⎝ ⎠

�

()
2

n
n k

i i
k i

t
h

F zq q

+, 1/2k iF

+ −Δ = −() () ()n
k k i k iF z f z f z

Δt

()

+

+ −
+ +

⎛ ⎞Δ= − Δ ⎜ ⎟
⎝ ⎠

=

�

� �

1

, 1/2 1

() ;

, .

n n k
i i

k i

k i k i i

t
h

F zq q

F F z z

for allΔ ≤ λ () ,n
it iz

−+⎛ ⎞λ = ⎜ ⎟
⎝ ⎠

1

() n k
i s

k

u C
K

h
z

sK < ≤0 1sK

()+ = + Δ Δ1
2 ,n n n

i i tL tq q q

⋅2()L
ωi ≤ ω ≤0 1i

ω = ω nq q +− ω 1(1) nq

()+ ω= + Δ ω Δ1
2 ,n n

i i itL tq q q

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol. 56 No. 9 2016

EFFICIENT PARALLEL SHOCK-CAPTURING METHOD 1655

Obviously, with the choice of in all mesh cells, the hybrid scheme becomes its explicit counter-
part. In the other limiting case , it becomes a fully implicit Euler scheme with a second-order accu-
rate approximation in space.

The implicit component of the hybrid scheme introduces excessive dissipation, which stabilizes the
numerical solution, but degrades its accuracy. Therefore, an optimal solution in the design of a hybrid
scheme is to choose the largest values of in mesh cells, which ensures the maximum participation of the
explicit component, provided that the MND property holds.

It turns out that such a choice can be made. Note that the hybrid scheme can be rewritten in an equiv-
alent form as

. (19)

It is easy to see that Eq. (19) is an explicit two-step scheme for the transition from the variable inter-
mediate level + to the upper layer . Therefore, the MND property

(20)

holds if

. (21)

A consequence of (20) is the inequality (see [13]). Therefore, inequality (21) is also a
necessary condition for the MND property to hold for the numerical solutions of the hybrid scheme.

Inequality (21) is satisfied if we set

(22)

or, in view of Eq. (16),

. (23)

It can be seen that the intermediate-level parameter in every mesh cell depends on the solution on the
upper time level. Thus, the hybrid scheme is, in fact, implicit and requires the solution of a nonlinear sys-
tem of equations at every time step. Note also that, with a suitable choice of the time step , the number
of equations to be solved can be reduced by making the hybrid scheme in some of the mesh cells purely
explicit. In more detail solution of a system of nonlinear equations is discussed below.

2. INTERNAL BOUNDARY CONDITIONS
To implement internal boundary conditions on a Cartesian grid that is not fitted to the geometry of the

solution domain, we use the free boundary method [14, 15]. Let us briefly describe the basic principles of
this method.

Let be the domain occupied by a solid and be its boundary. Then the Euler equations (1)
describe the gas f low in the domain , and the boundary condition for these equations is the relation

, (24)

where is the outward unit normal vector to on the surface .
The idea of the free boundary method is to replace the boundary value problem for the homogeneous

Euler equations in a bounded domain by an inhomogeneous system in the entire space. The original sys-
tem of equations is modified by adding a vector to the right-hand side (in what follows, this vector is
called the compensating flux):

. (25)

ω = 1i

ω = 0i

ωi

()+ ω ω= + ω Δ ω Δ1
2 ,n

i i i itL tq q q

ω = ω nt t +− ω 1(1) nt +1nt
+ ω

∞ ∞
≤1nq q

ωω Δ ≤ λ ()i it z
+

∞ ∞
≤1n nq q

ω⎡ ⎤λω = ⎢ ⎥Δ⎣ ⎦

()min 1, i
i t

z

−ω ω⎡ ⎤⎛ ⎞+
⎢ ⎥⎜ ⎟ω =

⎜ ⎟⎢ ⎥Δ ⎝ ⎠⎣ ⎦

1

min 1,
ks

i
k

i

u CK
t h

Δt

Ω Γ = ∂Ω
Ω3\R

= ∈ Γ0,k ku n x

= ()knn Ω Γ

wF

∂∂ + = −
∂ ∂

k
w

kt x
fq F

1656

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol. 56 No. 9 2016

MENSHOV, PAVLUKHIN

The modification of Eqs. (25) resembles, in structure, penalty functions used in the immersed bound-
ary method [16]. In fact, these are different approaches. Penalty functions are volumetric and do not take
into account the subgrid-scale geometric structure. On the contrary, compensating f luxes are determined
on the surface specifying the object’s geometry and are computed, as will be shown below, with allowance
for the geometric characteristics of the object at the subgrid-scale level.

The system of modified equations (25) is solved in the entire space , and the compensating f lux
is chosen so that the restriction of the solution of Eq. (25) in to coincides with the solution of
the original boundary value problem. An expression for that ensures the fulfillment of this condition
was proposed in [14], namely,

, (26)

where denotes a generalized Dirac function of defined by the relation

. (27)

The quantity in Eqs. (26) is the instantaneous reaction of the solid wall to the influence exerted by
the f luid f low. For an ideal gas with the ratio of specific heats , this reaction is defined depending on the
sign of the normal relative velocity as follows.

If , then the wall pressure corresponds to the pressure behind the front of a developing
shock wave and is given by the formula (see [17])

. (28)

In the case , a rarefaction wave is formed and the wall pressure has the form

. (29)

Here, denotes the relative number of the Mach: , where is the speed of sound.
Note that, mathematically, the compensating flux can be chosen not necessarily in the form of (27)–(29).

Possibly, there are other right-hand sides for which boundary condition (24) is also satisfied. Our choice
is based on natural physical substantiation. The f lux is simulated in two components. The first balances
the mass, momentum, and energy f lowing past the surface , while the second component determines the
reaction of the wall and the corresponding work.

In the numerical implementation of the free boundary method, the surface specifying the geometry

of the body is assumed to be representable as a set of discrete elements: . Usually, these are
plane polyhedra or triangular spatial elements. The cells of the Cartesian grid are divided by the body
boundary into three types: liquid (lying entirely outside), solid (lying entirely inside), and mixed. The
mixed cells are determined by the computed vector and by the subgrid-scale structure of the body geom-
etry. In this paper, we use a linear extension, which is defined by the volume fraction occupied by the liq-
uid in an mixed cell, , and by the outward normal vector (directed toward the liquid) , ,
where is the area of the plane element approximating the intersection of the mesh cell with Г.

These parameters are computed when the intersection of the mesh cell with the surface elements is
analyzed. The normal vector is computed by averaging the unit normals of the elements with weighting
coefficients equal to the area of the intersection: , where and C denotes the
grid cell domain. The volume fraction in an mixed cell can be approximately computed in terms of the

3
R wF

3
R Ω3\R

wF

ρ⎛ ⎞
⎜ ⎟= ρ + − δ Γ
⎜ ⎟⎜ ⎟ρ⎝ ⎠

() (,)
k k

w k m k w m

k k

u n
u u n p p n

u n H
F x

δ Γ(,)x Γ

Γ

δ ϕ = ϕ ∀ ∈∫ ∫
∩

3(,) () () V
V V

S dV dSx x x R

wp
γ

< 0k ku n wp

⎡ ⎤γ γ + γ γ += + + γ +⎢ ⎥
⎢ ⎥⎣ ⎦

2 2
2 2 2 4(1) (1)1 M M

4 16wp p M

< 0k ku n

γ
γ−γ −⎡ ⎤= −

⎢ ⎥⎣ ⎦

2
111 M

2wp p

M =M /k ku n a a

wF
Γ

Γ

Γ = Γ∪ jj

Γ Γ

ω f fn =| |f fsn

fs

Γ j

=f j jsn n = Γ ∩area()j js C
ω f

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol. 56 No. 9 2016

EFFICIENT PARALLEL SHOCK-CAPTURING METHOD 1657

mean distances from the liquid vertices of the cell, , and from the solid vertices, , to the plan normal
to passing through the reference point :

. (30)

The reference point is determined by the centers of the surface elements :

, (31)

where М is the number of elements on Г.
System (25) is discretized in two stages with the use of splitting with respect to physical processes.

At the first stage, the homogeneous system is integrated over a set of liquid and mixed cells according to
the numerical scheme described in the preceding section:

(32)

Thus, the solution at this stage describes the variations in the gasdynamic parameters over a time
step according to the Euler model without allowance for the influence exerted by the wall on the f low
parameters.

At the second stage, the resulting solution is corrected using the compensating f lux on the right-hand
side. The corresponding discrete equations are derived from the physical considerations mentioned above.

Using the solution as initial data, we integrate the homogeneous Euler equations over the liquid part
of a mesh cell:

, (33)

where is the numerical f lux on the wall, the sum on the right-hand side is taken over cell
faces that are completely or partially in the liquid, and is the area of the liquid part of a face. Since only
the influence of the wall is taken into account at this stage, the face f luxes are computed using the cell
values .

Since the f low is conservative, Eq. (33) can be rewritten as

(34)

with the f lux + and . The sum of the f luxes on the right-
hand side gives the compensating f lux introduced above: .

Equation (34) is integrated with respect to time by applying an implicit scheme to avoid severe restric-
tions on the time step caused by the volume fraction , which can generally be arbitrarily small in some
mixed cells. This leads to the system of discrete equations

. (35)

Combining (32) and (35) yields the numerical scheme

(36)

which is absolutely stable when the intermediate-level parameter is computed by formula (23) and is third-
order accurate in space and second-order accurate in time.

+d −d
fn 0x

+ + −ω = +/()f d d d

jx

− −

−
=

+
= = =

+ ∑
1 1

01
1

| |
, ,

| |

jj j
j j Mj j

k kj
j k

s
s

s

n x x
x n n x x

n

()+ −
+ +

⎛ ⎞Δ= − Δ ⎜ ⎟
⎝ ⎠

=

�

� �, 1/2 1

()* ;

, .

n k
i i

k i

k i k i i

t
h

F zq q

F F z z

*iq

*iq

σ σ
σ∈

ω = − +∑i
f i p f

f

dV s s
dt
q F F

()= T0, ,0p w mp nF

σs
σF

*iq

ω = − +i
f i c f p f

dV s s
dt
q F F

= ρ ρ(,c k k k m ku n u u nF ρ T,)m k kpn u n H = 1 2 3iV h h h
= −w c pF F F

ω f

()+ +Δ
= −

ω
1 1*

i i i

n nf
w

f i

ts
V

q q F q

()
()

+ +

+ −
+ +

Δ⎛ ⎞Δ= − Δ −⎜ ⎟ ω⎝ ⎠

=

�

� �

1 1

, 1/2 1

() ,

, ,

i

n n nfk
i i w

k f ii

k i k i i

ts
t

h V
F zq q F q

F F z z

1658

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol. 56 No. 9 2016

MENSHOV, PAVLUKHIN

The nonlinear system (36) is solved using the matrix-free approximate factorization method LU-SGS
(see [2, 18]). This method is economic and is reduced to forward and reverse cycles over mesh cells that,
in fact, implement an explicit scheme. A detailed description of the solution method is given below.

3. SOLUTION OF THE SYSTEM OF DISCRETE EQUATIONS

Equations (36) are solved using Newton’s iterative method. It leads to a linear system for the iterative
variations , where s is the iterative index:

(37)

Here, is the iterative increment over a time step and is the Jacobian of the
compensating f lux with respect to the vector of conservative variables.

The numerical f lux is linearized approximately with the use of the following simplifying
assumptions. First, although depends on the iterative values, it is assumed to be fixed in the lineariza-
tion. Second, the subgrid-scale interpolations of the computed vector are not taken into account and the
numerical f lux is assumed to depend on the parameter values in the mesh cell, as in the standard first-
order accurate scheme. Third, the numerical f lux is not precisely Godunov’s, but rather its approximation
in Rusanov’s form [12], which is given by (11). Under these assumptions, the linearization of the numer-
ical f lux yields the simple expression

(38)

where is the Jacobian of the f lux in the kth direction with respect to the vector
of conservative variables and the superscript indicates that the parameter value in the mesh cell is taken
from the intermediate level.

In view of Eq. (38), system (37) is reduced to a linear system for the iterative residuals :

(39)

where

(40)

For the subsequent consideration, it is convenient to make inverse linearization on the right-hand side
of Eq. (39) by passing from the product of the Jacobian and the iterative increment of the conservative vec-
tor to the increment of the corresponding f lux vector. Let the spectral radius of the Jacobian be denoted
by . Then the resulting system of equations can be brought to the form

(41)

This system is solved using the matrix-free iterative LU-SGS method [18]. The matrix of the system is
seven-diagonal. In a split operator form, it can be written as

(42)

+ + +δ ⋅ = ⋅ − ⋅1, 1 1,() () ()s n s n s

()+ + −⎛ ⎞Δ Δ δ − δ⎛ ⎞Δ+ δ = −Δ − Δ − − Δ⎜ ⎟ ⎜ ⎟ω ω⎝ ⎠⎝ ⎠

1, , 1/2 , 1/2 .
i

s ss
s s s n sf f k i k ik
w i i w

f i k f i ki

ts ts
I A t t

V h V h
F FFq q F q

+Δ = ⋅ − ⋅1,() ()s n s n = ∂ ∂/w wA F q

+δ , 1/2
s

k iF
ω

() ()ω ωω ω
++ +

+ + +
+ + − +

δ = − ω δ + − ω δ
, ,, ,

, , 11/2 1/2
, 1/2 1 1(1) (1) ,

2 2

s ss s
k i k k i ks s si i

k i i i i i

A u c A u c
F q q

()ω ω= = ∂ ∂, ,
, /s s

k i k i kA A z f q
ω

δ sq

()

()

ωω
+ ++

+

ωω
− −−

−

⎡ ⎤− +Δ − ωδ = − δ⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤+ +Δ − ω δ⎢ ⎥
⎢ ⎥⎣ ⎦

,,
, 1 1/21

1

,,
, 1 1/21

1

(1)
2

(1)+ ,
2

ss
k i ks s s sii

i i i i
k

ss
k i k sii

i
k

A u ctD
h

A u ct
h

q R q

q

() ()

()

ω ω
− +

+

Δ Δ − ω ⎡ ⎤= + + + + +⎣ ⎦ω
Δ⎛ ⎞Δ= −Δ − Δ −⎜ ⎟ ω⎝ ⎠

, ,
1/2 1/2

1,

(1) ,
2

.
i

s ss sf i
i w k ki i

f i k
s

s s n sfk
i i w

k f ii

ts tD I A u c u c
V h

ts
t

h V
FR q F q

= +k kr u c

ω ω ω ω+ −
+ + + − − −

Δ − ω Δ − ωδ = − δ − δ + δ − δ, ,1 1
, 1 , 1/2 1 , 1 , 1/2 1

(1) (1)() ().
2 2

s s s s s s s s si i
i i i k i k i i k i k i i

k k

t tD r r
h h

q R f q f q

δ + δ + δ =() ()D L Uq q q R

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol. 56 No. 9 2016

EFFICIENT PARALLEL SHOCK-CAPTURING METHOD 1659

with the upper triangular matrix operator

and the lower triangular matrix operator

.

After rewriting system (42) as

, (43)
the solution is then found using its approximate factorization, which consists in dropping the last term on
the right-hand side of Eq. (43). The resulting simplified system is

, (44)
which is efficiently solved in two numerical cycles over cells in forward and reverse directions (over the cell
index), respectively:

(45)

Note that the terms dropped in the approximate factorization are on the order of . Therefore,
the error introduced by the factorization is small when a small time step is used to solve the problem.

4. IMPLEMENTATION ON MULTI-GPU
After introducing the compensating f lux, the structure of SLAE (37) obtained by linearizing the dis-

crete system of equations does not change, since this f lux represents a local addition. Relying on this prop-
erty, we can construct a parallel LU-SGS algorithm in the same manner as in the case of body-fitted grids.
The solution of the system with a factorized matrix can be represented as the traverse of all mesh cells in
forward and reverse directions. The data dependence arising is local and is determined only by the order
of traversing all geometrically neighboring cells with respect to each of them. In other words, correspond-
ing computations are executed depending on whether a neighboring cell is “before” or “after” the current
cell in the traverse. The order of traverse can be chosen arbitrarily, not only based on the geometric neigh-
borhood of cells. This circumstance is used in the design of a parallel algorithm.

Computations in cells can be performed simultaneously only if they are not geometric neighbors. In
this case, the choosing of cell traverse is reduced to the problem of coloring a graph so that two neighbor-
ing vertices are always of different color. In the case of structured Cartesian grids, which are used in the
free boundary method, it is sufficient to use two colors. As a result, a checkered pattern of cell traverse is
generated, i.e., the computations are performed first over black cells and then over white cells. The subset
of each color can be processed concurrently, which yields a parallel algorithm for a single GPU: only white
cells are computed first, followed by computing only black cells. However, in the case of several GPUs,
this algorithm leads to inevitable idle time during the exchange of neighboring cells between the GPUs.
Eventually, this restricts the scalability of the algorithm, since data exchange between GPUs is performed,
in fact, in three stages: from GPU memory to CPU memory, then network transfer to another node, and
copying from CPU memory at this node to GPU memory.

To overcome this limitation, the order of traversing cells is changed. The computational domain is par-
titioned into blocks with a roughly identical number of cells with a topology similar to the mesh partition,
i.e., adjacent rectangles arranged in lines. The blocks are also partitioned in a checkered pattern, and
internal and boundary parts is identified in each of them. The global traverse is as follows: all internal parts
of the black blocks are traversed first; then, in each white block, the first half of the internal cells and then
the boundary part are traversed; next, the boundary parts are traversed in all black blocks; and, finally, the
remaining halves of the internal cells are traversed in white blocks (Fig. 1). In this scheme, the internal
parts of blocks can be computed concurrently with exchange of boundary cells between neighboring
blocks on different GPUs. Each part of the blocks is computed according to the above checkered coloring
of the cells. More details concerning this algorithm can be found in [19].

The software implementation was performed on CUDA C with Stream API and nonblocking MPI
calls, so that the computations were executed in parallel with multiphase data transfer between the GPUs.

ω ω+
+ + +

Δ − ωδ = δ − δ,1
, 1 , 1/2 1

(1)() ()
2

s s si
k i k i i

k

tL r
h

q f q

ω ω−
− − −

Δ − ωδ = − δ − δ,1
, 1 , 1/2 1

(1)() ()
2

s s si
k i k i i

k

tU r
h

q f q

− −+ + δ = +1 1() ()D L D D U LD Uq R

−+ + δ =1() ()D L D D U q R

−

−

δ = − δ
δ = δ − δ

1

1

* [(*)],

* ().s s

D L

D U

q R q

q q q

Δ 2()O t

1660

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol. 56 No. 9 2016

MENSHOV, PAVLUKHIN

All computational operations were executed on the GPUs, while the CPU were used only for internode
exchange.

5. NUMERICAL RESULTS
The method was tested in detail as applied to the f low past the NACA0012 airfoil. The angle of attack

was specified as α = 1.25°, and the free-stream Mach number was M = 0.8. Meshes of two types were used:
a body-fitted structured C-grid with 400 cells along the airfoil boundary and with a general resolution of
1000 × 150 cells and a body-unfitted Cartesian grid with a resolution of 200 × 24 inside a rectangle cir-
cumscribed about the airfoil and with a general resolution of 650 × 324.

The computations on these grids were performed using the hybrid explicit–implicit second-order
accurate scheme with the Courant number C = 10. Figure 2 shows the distribution of the pressure coeffi-
cient Cp and the convergence rates to the steady-state solution. It can be seen the results obtained on dif-
ferent grids, including the convergence rate, agree well. A characteristic feature of the f low is a small local
minimum in the pressure distribution arising behind the shock wave on the upstream side of the airfoil.
Evidently, this feature is better reproduced on the Cartesian than body-fitted grid. In fact, the local min-
imum is absent on the latter grid and appears as the grid resolution is increased. This finding is associated
with the orthogonality property, which is inherent in the Cartesian grid and ensures higher accuracy of the
scheme.

Below are the lift and drag coefficients, Cl and Cd, computed on the body-fitted and body-unfitted
Cartesian grids for NACA0012, M = 0.8, α = 1.25°. The difference between their values is less than 1%.

Coefficient Cartesian grid C-grid

Cl 0.3012 0.3036
Cd 0.02184 0.02199

Fig. 1. Schematic of cell traverse in the parallel LU-SGS algorithm.

Fig. 2. (a) Cp distribution and (b) convergence rate on the body-fitted C grid and body-unfitted Cartesian grid for
NACA0012, M = 0.8, α = 1.25°, and a Courant number of 10.

5 10 15 20 25
Time step, ×103

10−6

10−5

10−4

10−3

10−2

10−1

100

101

−1.0

−0.5

Cp
res

0

0 0.2 0.4 0.6 0.8 1.0
x/c

0.5

1.0

C-grid
Cartesian

C-grid
Cartesian

(a) (b)

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol. 56 No. 9 2016

EFFICIENT PARALLEL SHOCK-CAPTURING METHOD 1661

The computations on the body-unfitted Cartesian grid were also performed with different time steps.
As a result, the well-known property of nonuniqueness of solutions to the Euler equations was detected.
In this series of runs, we used the fully implicit scheme () to eliminate the possible dependence of
the stead-state solution on the time step. Figure 3a presents two Cp distributions obtained at Courant
numbers of 0.9 and 5. The grid and the solution method are absolutely identical. It can be seen that these
are two different solutions with different shock-wave positions and profiles (specifically, on the down-
stream side, the shock wave has a sharper profile for the solution with a Courant number of 5). Figure 3b
displays the convergence of the residual and the lift coefficient. It can be seen that both solutions reach a
steady state. The differences in the lift coefficient are about 15%. The nonuniqueness of the solution
revealed in these computations was also observed and investigated in [20–22] in the case of transonic
flows around airfoils.

The validity of the compensating f lux was also tested as applied to the interaction of a supersonic gas
flow (Mach number M = 3) with a wedge (10° aperture) in modes with the formation of a shock and a
rarefaction wave. A uniform body-unfitted Cartesian grid with a resolution of 1200 × 480 cells was used.
The Courant number was specified as C = 4. Below are the shock angle β and the angle γ within which a
rarefaction fan is formed (aperture 10°, M = 3). The corresponding analytical values are also given for
comparison purposes.

To verify the method, we computed the nonstationary problem of a shock wave interacting with a group
of cylinders from [16]. The computation was performed on a uniform Cartesian grid consisting of 1024 ×
1024 cells with the use of 32 GPUs. The numerical results are presented in Fig. 4b, which shows an instan-
taneous numerical schlieren image of the f low. For comparison, Fig. 4a displays the numerical results pro-
duced by a penalization method [16]. The solutions are similar, but the compensating f lux method does
not produce unphysical perturbations near the surfaces of the cylinders. This is explained by the fact that
the penalization method has no subgrid-scale resolution of geometry; geometry in this method has a
coarser representation up to a mesh cell.

Finally, we performed a validation computation of the three-dimensional f low over the DLR-F6
model [23] at the free-stream Mach number M = 0.75 and the angle of attack α = 1° on a grid consisting
of 408 × 520 × 1256 cells. The computations were performed on 162 GPUs of the “Lobachevsky” super-
computer with the use of the hybrid explicit–implicit scheme with the Courant number C = 4. The
numerical results are presented in Fig. 5. It should be noted that the computed lift coefficient was found
to be somewhat higher than the experimental value Clexp = 0.5. A similar excess (of about 0.5–0.6) is also
observed in numerical solutions obtained on body-fitted grids (see [23]) and is explained by the limitations
of the Euler model.

Numerical solution, β° Analytical solution, β° Numerical solution, γ° Analytical solution, γ°
17.4 17.383 13.2 13.24

ω = 0

Fig. 3. (a) Cp distribution and (b) Cl as a function of time and the convergence rate for Courant numbers of 0.9 and 5 on
a body-unfitted grid, NACA0012, M = 0.8, α = 1.25°.

−1.0
0.35

0.30

0.25

0.20

0.15

0.10

−0.5

Cp Cl

0

0 0.2
5 10 15 20

0.4 0.6 0.8 1.0
x/c

0.5

1.0

cfl = 0.9
cfl = 0.9

cfl = 5
cfl = 5

Time step, ×104

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100
(a) (b)

1662

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol. 56 No. 9 2016

MENSHOV, PAVLUKHIN

Fig. 4. Numerical visualization of the f low past a set of cylinders, М = 3: (a) penalization method [20] and (b) the present
method of compensating f luxes.

0
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 0

0.5

1.0

1.5

0.5 1.0 1.5 2.0

(a) (b)

Fig. 5. DLR-F6 model, M = 0.75, α = 1°: (a) pressure field in the plane of symmetry and streamlines and (b) the lift coef-
ficient Cl vs. time.

0.7
Cl

0.6

0.5

0.4

0.3

0.2

0.1

1500 3000
Time step

4500 6000
0

1.050

1.025

1.000

0.9750

0.9500
Max: 1.308
Min: 0.4677

Var: Pressure

(а) (b)

Fig. 6. Computation time vs. the number of GPUs; the dashed line shows linear scalability.

6.4
Time, s

3.2

1.6

0.8

0.4

0.2

0.1
32 64 128 256 512 768

#GPUs

Actual, 1 × dt

Linear, 1 × dt

6.8
3.55

1.81

0.92
0.54

0.38

0.283
0.425

0.85

1.7

3.4
6.8

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol. 56 No. 9 2016

EFFICIENT PARALLEL SHOCK-CAPTURING METHOD 1663

The overall performance of a large number of GPUs was analyzed as applied to a problem with a fixed
grid of 150 million cells on the “Lomonosov” supercomputer. The code demonstrated good scalability to
several hundred GPUs: the efficiency of the computation was 75% on 768 GPUs (Fig. 6). This result was
achieved due to the original cell traverse scheme allowing for simultaneous computations and data
exchange between the GPUs and due to its software implementation with the use of asynchronous CUDA
and MPI functions.

CONCLUSIONS
An efficient numerical method was proposed for computing complex three-dimensional unsteady gas

flows on simple body-unfitted Cartesian grids. The method is based on a hybrid explicit–implicit
Godunov scheme ensuring the minimum involvement of the implicit component, while preserving the
MND property. A method for implementing boundary conditions on a Cartesian grid was proposed that
relies on introducing special compensating f luxes into the right-hand sides of the original equations. As a
result, we passed from the boundary value problem in a bounded domain to equations with a compensat-
ing f lux in the entire space; i.e., in fact, the boundary value problem was replaced by an initial value one.
The discrete equations were solved by applying approximate LU-SGS factorization, which considerably
simplified the algorithmic part of the method. This property (computational primitivism) made it possible
to develop an efficient algorithm for parallel computations on hybrid CPU/GPU computing systems. The
presented test results and comparison with alternative computations on body-fitted grids conclusively
show the validity and good performance of the method, as well as its high scalability and efficiency.

The technique proposed is easy to formally extend to viscous f lows. Viscous f luxes can be included in
the baseline hybrid explicit–implicit scheme, for example, as described in [24], and the compensating f lux
in a mixed cell can be modified by adding viscous friction on the body surface. Here, the basic difficulty
is to compute viscous friction at high Reynolds numbers, in which case the maximum possible (in terms
of practical implementation) mesh adaptation to geometry cannot ensure the grid resolution required for
the boundary-layer near-wall f low. In this case, special near-wall models will possibly have to be con-
structed and included in the numerical process (see, e.g., [25]). These issues are under development and
will be addressed elsewhere.

ACKNOWLEDGMENTS
This work was supported by the Russian Science Foundation, project no. 14-11-00872. The part of this

work concerning the adaptation of the algorithm to hybrid computing systems was supported by the Rus-
sian Foundation for Basic Research, project no. 14-01-31480.

REFERENCES
1. Lin Fu, Zhenghong Gao, Kan Xu, and Fang Xu, “A multi-block viscous f low solver based on GPU parallel

methodology,” Comput. Fluids 95, 19–39 (2014).
2. A. Jameson and E. Turkel, “Implicit schemes and LU decomposition,” Math. Comput. 37 (156), 385–397

(1981).
3. V. P. Kolgan, “The principle of minimal derivative values as applied to the construction of finite-difference

schemes for the computation of discontinuous gas f lows,” Uch. Zap. Tsentr. Aerogidrodin. Inst. 3 (6), 68–77
(1972).

4. W. K. Anderson, J. L. Thomas, and B. van Leer, “Comparison of finite volume f lux vector splitting for the Euler
equations,” AIAA J. 24 (9), 1453–1460 (1986).

5. B. van Leer, “Towards the ultimate conservative difference scheme: V. A second-order sequel to Godunov’s
method,” J. Comput. Phys. 32, 101–136 (1979).

6. J. E. Fromm, “A method for reducing dispersion in convective difference schemes,” J. Comput. Phys. 3, 176–
187 (1968).

7. S. K. Godunov and V. S. Ryaben’kii, Difference Schemes (Nauka, Moscow, 1977) [in Russian].
8. G. D. van Albada, B. van Leer, and W. Roberts, “A comparative study of computational methods in cosmic gas

dynamics,” Astron. Astrophys. 108, 76–84 (1982).
9. S. K. Godunov, “Difference method for computing discontinuous solutions of f luid dynamics equations,” Mat.

Sb. 47 (3), 271–306 (1959).
10. S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, A. N. Kraiko, and G. P. Prokopov, Numerical Solution of Mul-

tidimensional Problems in Gas Dynamics (Nauka, Moscow, 1976) [in Russian].
11. E. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics (Springer, Berlin, 2009).

1664

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS Vol. 56 No. 9 2016

MENSHOV, PAVLUKHIN

12. V. V. Rusanov, “Third-order accurate shock-capturing schemes for computing discontinuous solutions,” Dokl.
Akad. Nauk SSSR 180, 1303–1305 (1968).

13. I. Menshov and Y. Nakamura, “Hybrid explicit-implicit, unconditionally stable scheme for unsteady compress-
ible f lows,” AIAA J. 42 (3), 551–559 (2004).

14. I. S. Menshov and M. A. Kornev, “Free-boundary method for the numerical solution of gas-dynamic equations
in domains with varying geometry,” Math. Model. Computer Simul. 6 (6), 612–621 (2014).

15. I. S. Menshov and P. V. Pavlukhin, Preprint No. 92, IPM RAN (Keldysh Inst. of Applied Mathematics, Russian
Academy of Sciences, Moscow, 2014).

16. O. Boiron, G. Chiavassa, and R. Donat, “A high-resolution penalization method for large Mach number f lows
in the presence of obstacles,” Comput. Fluids 38, 703–714 (2009).

17. L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Nauka, Moscow, 1986; Butterworth-Heinemann, Oxford,
1987).

18. I. Menshov and Y. Nakamura, “An implicit advection upwind splitting scheme for hypersonic air f lows in ther-
mochemical nonequilibrium,” Collection of Technical Papers of 6th International Symposium on CFD (Lake
Tahoe, Nevada 1995), pp. 815–821.

19. P. V. Pavlukhin, “Implementation of a parallel LU-SGS method for gas dynamic applications on cluster GPU
systems,” Vestn. Nizhegorod. Gos. Univ., No. 1, 213–218 (2013).

20. A. Jameson, “Airfoil admitting nonunique solutions to the Euler equations,” AIAA Paper, No. 91-1625 (1991).
21. M. M. Hafez and W. H. Guo, “Nonuniqueness of transonic f lows,” Acta Mech. 138 (3), 177–184 (1999).
22. A. G. Kuzmin, “Instability and bifurcation of transonic f low over airfoils,” AIAA Paper (2004).
23. K. R. Laflin, S. M. Klausmeyer, T. Zickuhr, et al., “Data summary from second AIAA computational f luid

dynamics drag prediction workshop,” J. Aircraft 42 (5), 1165–1178 (2005).
24. V. E. Borisov, A. A. Davydov, I. Yu. Kudryashov, A. E. Lutskii, and I. S. Menshov, “Parallel implementation

of an implicit scheme based on the LU-SGS method for 3D turbulent f lows,” Math. Model. Computer Simul.
7 (3), 222–232 (2015).

25. A. E. Lutskii and A. V. Severin, Preprint No. 38, IPM RAN (Keldysh Inst. of Applied Mathematics, Russian
Academy of Sciences, Moscow, 2013).

Translated by I. Ruzanova

