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Abstract—From the Vlasov–Boltzmann kinetic equation for a collisional degenerate plasma, the elec-
tron distribution function is constructed in the quadratic approximation in the electric field strength.
A formula for calculating the electric current is derived. It is shown that nonlinearity leads to the rise
of a longitudinal electric current directed along the wave vector. The longitudinal current is orthogonal
to the known transverse classical current obtained in the linear analysis. When the collision frequency
tends to zero, all results obtained for a collisional plasma pass into the corresponding results for a col-
lisionless plasma. The case of small wavenumbers is considered. It is shown that, when the collision
frequency tends to zero, the expression for the current passes into the corresponding expression for the
current in a collisionless plasma. Graphic analysis of the real and imaginary parts of the current density
is performed. The dependence of the electromagnetic field oscillation frequency and electron–
plasma-particle collision frequency on the wavenumber is studied.
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INTRODUCTION
In this work, we derive formulas for calculating the electric current in a degenerate plasma.
When solving the Vlasov–Boltzmann equation describing the behavior of a degenerate collisional

plasma, we took into account quantities proportional to the square of the external electric field strength.
These quantities were taken into account in the expansion of the distribution function and the collision
integral.

In this nonlinear approach, it turned out that the electric current has two nonzero components. One
component of the electric field is directed along the electric field strength. This component is exactly the
same as in the linear analysis. It is the transverse current. Therefore, in the linear analysis, we obtain the
well-known expression for the electric current.

The second nonzero component of the electric current has the second order of smallness with respect
to the electric field strength; it is directed along the wave vector. It is the longitudinal current.

The longitudinal current is the result of the nonlinear analysis of the interaction between the electro-
magnetic field and a plasma.

The nonlinear effects in plasma have been studied for a long time (see [1–9]).
In [3], the nonlinear current was studied, in particular, in problems concerning the probability of decay

processes. It should be noted that, in [2], the existence of a nonlinear current along the wave vector was
mentioned (see formula (2.9) in [2]).

In experimental work [6], the contribution of the normal component of the surface current in the signal
of the second harmonic was found. In [7, 8], the contribution of the generation of the nonlinear surface
current on the interaction of a laser pulse with metal was studied. Nowadays, collisional plasma is used in
various issues [10–14]. In [15–17], the generation of a longitudinal current by a transverse electromag-
netic field was studied. In [15], the cases of a classical and Fermi–Dirac quantum plasma; in [16], the case
of a Maxwellian plasma; and, in [17], the case of a degenerate plasma were considered. In [18], the gen-
eration of a longitudinal current by a transverse electromagnetic field in a collisional Fermi–Dirac plasma
at an arbitrary temperature (i.e., at an arbitrary degree of degeneracy of electron gas) was studied.
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1. SOLUTION OF THE VLASOV–BOLTZMANN EQUATION
Consider the Vlasov–Boltzmann equation describing the behavior of a collisional plasma with the

BGK (Bhatnagar–Gross–Krook) collision integral:

(1.1)

In Eq. (1.1) f is the plasma electron distribution function; Е and Н are the components of the electro-
magnetic field; c is the speed of light; ν is the effective electron–plasma-particle collision frequency; f(0) =
feq(r, ) is the locally equilibrium Fermi distribution; fеq(r, , t) = Θ(%0(r, t) – %), where Θ(x) is the Heavi-

side step function: Θ(x) = 1, x > 0, Θ(x) = 0, x < 0; %0(r, t) = (r, t)/2 is the perturbed electron energy

on the Fermi surface; (r, t) is the perturbed electron velocity on the Fermi surface; % = /2 is the
electron energy; and p0(r, t) = mv0(r, t) is the perturbed electron momentum on the Fermi surface.

Let P = р/р0 = v/ , where Р is the dimensionless electron momentum, р0 =  is the electron
momentum on the Fermi surface, and  is the electron velocity on the Fermi surface.

Assume that, in the plasma, there is an electromagnetic field corresponding to a running harmonic
wave: Е = E0ei(kr – ωt), Н = H0ei(kr – ωt). The electric and magnetic fields are coupled by the equality
Н = –(ic/ω)rot E.

Suppose that the wave vector is orthogonal to the electric field: kE = 0. We will assume, for definite-
ness, that the wave vector is directed along the x-axis and the electric field, along the y-axis, i.e., k =
k(1, 0, 0) and Е = Ey(x, t)(0, 1, 0). Therefore,

and [v, H]  = 0, because  ~ v.

Let us transform the locally equilibrium electron distribution function in a degenerate plasma. We have

Here, P0(x, t) = p0(x, t)/p0 = v0(x, t)/  is the dimensionless perturbed electron momentum (velocity).
Let us consider the linearization of the function feq(P, x, t) about the Fermi surface by setting P0(x, t) =

P0 + δP0(x, t) (here, P0 = 1, because, on the Fermi surface, P0 = p0/p0 = 1):

where δ(x) is the Dirac delta function and f0(P) = Θ(1 – P).
Now Eq. (1.1) can be rewritten as

(1.2)

We will seek the solution of Eq. (1.2) in the form

(1.3)
where

We find δP(x, t) from the law of conservation of particle number:
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From this equation, we find that

Note that  =  = 4π. Therefore,

Now Eq. (1.2) can be transformed to the integral equation

(1.4)

In this problem, we have two length parameters: l1 = /ω and l2 = 1/k. Assume that, at both lengths l1 and
l2, the variation in the electron energy under the action of the electric field Е is much smaller than the elec-

tron energy on the Fermi surface, %0 = , i.e., α1 = |eE| /(%0ω) and α2 = |eE|/(k%0) are considered
small parameters. We will use the method of successive approximation, assuming that α1 ≪ 1 and α2 ≪ 1.
Then, Eq. (1.4) by virtue of (1.3) is equivalent to the equations

(1.5)

and

(1.6)

From Eq. (1.5), we find that

where

(1.7)

Introduce the dimensionless parameters

Here, q is the dimensionless wavenumber, k0 =  is the Fermi wavenumber, and Ω is the dimensionless

oscillation frequency of the electromagnetic field.
In the previous equation, let us pass to the dimensionless parameters:

(1.8)
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Note that  ~ Px and  ~ Py. Therefore,
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From Eq. (1.8), we find that

(1.9)

Substituting (1.9) into Eq. (1.7) yields the equality

It is easy to see that the integral on the right-hand side of this equality is zero. Therefore, А1 = 0 and,
according to (1.9), the function f1 has been constructed and is defined by the equality

(1.10)

In the second approximation, substituting f1, according to (1.10), into Eq. (1.6) yields the equation

where

(1.11)

Passing in this equation to dimensionless parameters, we obtain the equation

Set

From the last equation, we find

(1.12)

To find A2, substitute (1.12) into (1.11). From the resulting equation, we find A2:

Here,

Substituting A2 into (1.12), we find the function f2 in the explicit form:
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2. ELECTRIC CURRENT DENSITY
Let us find the electric current density

(2.1)

From equalities (1.4)–(1.6), it is evident that the vector of the current density has two nonzero com-
ponents:

Here, jy is the transverse component of the current density:

This current is directed along the electric field; its density is determined only by the first approximation
of the distribution function.

The second approximation of the distribution does not contribute to this current.
The transverse component of the current density is determined by the equality

This current is proportional to the first degree of the electric field strength.
According to the definition of the transverse component of the current density, we have

Hence, by virtue of (1.6), we obtain

(2.2)

In the integral of the second term in brackets, the inner integral with respect to Py is zero:

In the first integral in the brackets in (2.2), the inner integral with respect to Px is integrated by parts:

As a result, equality (2.2) is substantially simplified:

The inner integral with respect to Py is integrated by parts:
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The inner integral in the plane (Py, Pz) is calculated in polar coordinates:

In addition,

Equality (2.3) is reduced to a one-dimensional integral:

,

or

where

Let us find the number density of plasma particles, corresponding to the degenerate Fermi distribution

where k0 is the Fermi wavenumber, k0 = .

In the expression preceding the integral in (2.4), let us separate the plasma (Langmuir) frequency ωp =

 and the number density N and express the latter via the Fermi wavenumber. As a result, we
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In addition,

As a result, we find

Represent equality (2.5) in the form

(2.6)

where σl, tr is the longitudinal and transverse conductivity,

and J(Ω, у, q) is the dimensionless current density,

Here,

After introducing the transverse field

equality (2.6) can be rewritten in the invariant form:
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formula from [15] from a collisionless plasma:
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one another and become undistinguishable. At first, the real part has the minimum and, then, the maxi-
mum. With an increase in the dimensionless electron collision frequency, the imaginary part of the cur-
rent density has one maximum.

Figure 2 shows the behavior of the real (Fig. 2a) and imaginary (Fig. 2b) parts of the longitudinal com-
ponent of the current density as a function of the dimensionless wavenumber q for y = 0.05. Curves 1, 2,
and 3 correspond to the values of the dimensionless oscillation frequency of the electromagnetic field
Ω = 0.1, 0.2, and 0.3. At first, the real part has the minimum and, then, the maximum. At large values of
the dimensionless wavenumber, curves 1, 2, and 3 approach one another and become undistinguishable.

Figure 3 shows the behavior of the real (Fig. 3a) and imaginary (Fig. 3b) parts of the longitudinal com-
ponent of the current density as a function of the dimensionless wavenumber q for y = 0.05. Curves 1, 2,
and 3 correspond to the values of the dimensionless oscillation frequency of the electromagnetic field
Ω = 1, 1.1, and 1.2. At first, the real part has the minimum and, then, the maximum. The imaginary part
has one maximum. With an increase in the dimensionless wavenumber q, curves 1, 2, and 3 approach one
another and practically coincide.

CONCLUSIONS
In this work, we have considered the influence of the nonlinear character of the interaction of the elec-

tromagnetic field with a degenerate collisional plasma. It turned out that the presence of nonlinearity of
the electromagnetic field in the Vlasov–Boltzmann equation leads to generation of an electric current
orthogonal to the field.
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