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Abstract—Numerical continuation of solution through certain singular points of the curve of the set of
solutions to a system of nonlinear algebraic or transcendental equations with a parameter is consid-
ered. Bifurcation points of codimension two and three are investigated. Algorithms and computer pro-
grams are developed that implement the procedure of discrete parametric continuation of the solution
and find all branches at simple bifurcation points of codimension two and three. Corresponding the-
orems are proved, and each algorithm is rigorously justified. A novel algorithm for the estimation of
errors of tangential vectors at simple bifurcation points of a finite codimension m is proposed. The
operation of the computer programs is demonstrated by test examples, which allows one to estimate
their efficiency and confirm the theoretical results.
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1. INTRODUCTION
Many mathematical problems that model various physical phenomena are described by systems of

nonlinear algebraic or transcendental equations (or can be reduced to such systems)
(1)

where x ∈ ℝn + 1, F : ℝn + 1 → ℝn, and F is a sufficiently smooth function.
The system of equations (1) determines a locus of points in the space ℝn + 1 of variables {x1, x2, …, xn + 1}

that is called the solution curve of Eq. (1).
The numerical construction of this curve can be a challenging task because the curve can contain stable

and unstable segments, as well as limit and bifurcation points (e.g., see [1–11]).
In [10, 11] when passing through a limit singular point x0, i.e., a point at which the rank of the Jacobian

matrix J(x) of the function F(x)

(2)

is n, the technique of changing the parameter was used, which was first proposed in [12].
In [6], the numerical construction of the solution curve of system (1) using the parametric continua-

tion method was investigated. It was shown that the transformation of the system to the best parameter
(see [13]), which is the length of the solution curve arc, solves the problem of the construction of the curve
at the limit singular points. In this case, no change of parameter is needed.
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In [14], a more intricate and more important for applications case is considered: this is the construc-
tion of the numerical solution to the system of equations (1) in a neighborhood of the singular point x0 at
which the rank of the Jacobian matrix of the function F is less than n:

(3)

Such a point is called the bifurcation point of codimension one. This paper is a logical continuation of
paper [14]. It is devoted to the solution of a more difficult problem of constructing a numerical solution
of the system of equations (1) subject to conditions (2), (3) in a neighborhood of the singular point at
which the rank of the Jacobian matrix of the function F is n – 2 and n – 3. Such points are called the bifur-
cation points of codimensions two and three, respectively.

The localization of the bifurcation point and the analysis of the solution behavior in a neighborhood
of such a point is a difficult problem. The main tools for its solution are local parametric continuation
methods (see [15]). This manifests itself in that the calculation of the Jacobian matrix and its inversion for
finding the nearest points of the solution is an essential feature of these methods. Various versions of the
continuation method that make all the variables equivalent use a unified algorithm for the continuation of
solution at regular and limit points of the solution set of nonlinear systems of equations. The analysis of
the solution behavior at bifurcation points requires additional methods. As the main method, we use
expansion in the Taylor series in the neighborhood of the singular point. It makes it possible to make up
the bifurcation equation (the Lyapunov–Schmidt reduction) that determines both the number of
branches of the solution and their behavior in the neighborhood of the singular point under examination.
The complexity of the analysis depends on the degree of singularity of the Jacobian matrix F '.

The approximate construction and investigation of bifurcation equations, which were started by Lya-
punov in [16] and Schmidt in [17], are studied in numerous works (e.g., see [1, 3, 4, 15, 18–21]). The stud-
ies that are closely related to the topic of the present paper are discussed in [14].

Book [1] is devoted to the computational aspects of bifurcation theory and to various methods for solv-
ing nonlinear equations, while [2] and [6] are devoted to the analysis of the continuation of solution at
singular points of codimension one and two. It is assumed that the solutions to the system of equations (1)
are described by smooth curves х = x(λ), where λ is the curve arc length. This makes it possible to use the
expansion in the Taylor series for the analysis of the behavior at the singular point x0. It is assumed that
the original space ℝn + 1 is decomposed in the direct sum of two subspaces Рr and Ad. The space Ad is
spanned by the vectors that are orthogonal to the rows of the Jacobian matrix J0 = J(x0) the rank of which
is r, and d = n + 1 – r is the degree of singularity of the problem. This makes it possible to obtain two
results: the tangent vector of any branch of the curve belongs to the space Ad, and the analysis of the orig-
inal problem of dimension n + 1 is equivalent to the analysis of another problem of dimension d. This last
problem is to solve the bifurcation equation. In the case of double (rank J0 = n – 1) and triple (rank J0 =
n – 2) singularity, the bifurcation equation is constructed in the first approximation.

An important approach when dealing with singular points is the parametric solution continuation
method, where the best parameter, which is the arc length of the curve containing the singular point, is
used. For example, in [3] various aspects of the application of the parametric continuation method with
the length of the solution curve used as the parameter are discussed. The presentation briefly touches
some issues concerning the detection and analysis of bifurcation points. Note that this approach is highly
efficient, and it has already been used for the numerical parametric approximation of curves (see [22–25]), in
iterative procedures of overcoming limit singular points in the numerical solution of nonlinear boundary
value problems by the shooting method (see [26–28]), and for the numerical construction of curves
(see [29–33]).

2. NUMERICAL CONTINUATION OF SOLUTION AT SINGULAR POINTS
OF CODIMENSION TWO

In this section, we consider the numerical continuation of solution through certain singular points of
codimension two on the solution curve of the system of nonlinear algebraic or transcendental equa-
tions (1) containing a parameter. An algorithm for constructing all the branches of the curve at a simple
bifurcation point of codimension two is proposed, and the operation of a computer program implement-
ing this algorithm is demonstrated using an example. This example confirms the theoretical results.
A novel approach for finding the tangential vectors at bifurcation points of codimension two is proposed.

= −0rank '( ) 1.F x n
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2.1. Behavior of the Solution Curve at a Simple Bifurcation Point of Codimension Two

Let the curve be given be system (1) and F ∈ C3(ℝ(n + 1)).
Definition 2.1. The point x0 is called a simple bifurcation point of codimension two of Eq. (1) if the

following conditions are fulfilled:
(1) F(x0) = 0,
(2) rank F ' = n – 2,

(3) the Hessian matrices of the functions V1(α1, α2, α3) = F(x0 + α1a1 + α2a2 + α3a3) and

V2(α1, α2, α3) = F(x0 + α1a1 + α2a2 + α3a3) have nonzero eigenvalues of different signs at the origin of
coordinates, i.e., at α1 = α2 = α3 = 0.

Here, a1, a2, a3 are linearly independent vectors in the space N(F '(x0)), α1, α2, α3 ∈ ℝ, and w1, w2 ∈
N([F '(x0)]T), where N(·) is the null-space of the corresponding operator.

The point x0 satisfies Condition (2); therefore, the dimension of the null-space of the operator F '(x0)
is equal to three: dim N(F '(x0)) = 3.

Let the vectors a1, a2, а3 form a basis in this space. Let us orthonormalize and transpose the linearly
independent rows of the matrix F '(x0). Denote the resulting vectors by p1, p2, …, pn – 2. It is clear that any
vector х can be represented as

Consider the functions  (ik ∈ 1, 2, …, n; k = 1, 2,…, n – 2) whose gradient components form the
linearly independent rows of the matrix F '(x0) at the point x0. For the functions , we introduce the nota-
tion  = Uk (k = 1, 2,…, n – 2). Let w1, w2 be linearly independent nonzero vectors such that

(4)

The existence of nonzero vectors w1 and w2 is equivalent to the linear independence of the rows of the
matrix F '(x0). Define the functions Vi by

This definition and equality (4) imply

Consider the system of equations

(5)

Lemma 2.1. Finding a solution to system (1) is equivalent to finding a solution to system (5).
This lemma is proved similarly to the proof of Lemma 1 in [14].
Let us parameterize this curve using the best parameter λ:

(6)

that is measured from the bifurcation point x0. In (6), we have ρ = (ρ1, ρ2, …, ρn – 2)T and α = (α1, α2, α3)T.
Theorem 2.1. At the simple bifurcation point х0, it holds that

(7)

This theorem is proved similarly to the proof of Theorem 1 and the corollary to it in [14].

T
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Theorem 2.1 allows us to understand how a solution to the system can be constructed in the first
approximation. In a small neighborhood of the simple bifurcation point, an approximate solution is given
by the intersection of two cones K1 and K2

Let us analyze the matrices of the quadratic forms of the cones K1 and K2 using the same symbols K1
and K2 for the cones themselves. Without loss of generality, we assume that the apexes of the cones coin-
cide with the origin of coordinates.

It is clear that if at least one of the quadratic forms is sign definite, then the singular point is isolated;
indeed, in this case at least one equation in (7) has no other real roots except for the trivial one. However,
the isolated point cannot be attained in the process of the well defined parametric continuation of the
solution.

Consider the case when both quadratic forms are not sign definite. Then, each equation in (7) has a
real set of solutions, and finding the solution of the system is reduced to finding the intersection of these
sets.

An algorithm for solving this problem consists of the following steps.

1. Reduction of the cone K1 to the canonical form  = . This is equivalent to finding the eigen-
vectors and eigenvalues of the quadratic form K1.

2. Reduction of the cone K1 to the normal form with the axis 0z:  = .

3. Making up the equation of the cone K2 in the new coordinates:  = (T1T2)TK1T1T2.

4. Finding the intersection of the cones  and  in the plane z = 1. Substitute the points р = (cos φ,
sin φ, 1) into the second cone  and check the residual. If the residual is less than a given ε, then we
assume that the desired point is the intersection point р* of the two cones.

5. Find the intersection points in the original coordinates and return to the original coordinates Р* =
T1T2p*.

6. The vectors ОР* can be considered to be approximations of the tangential vectors of the bifurcation
branches.

Let us discuss this algorithm in more detail. As a result of the transformations made above, K1 became
a circular cone, and its axis coincides with the axis 0z. The second cone K2 generally remains elliptic.

Let us intersect the cones by the plane z = 1. The intersection line of this plane with K1 is a circle, and
its intersection with K2 is an ellipse or a hyperbole, depending on the relative position of the cones. Thus,
the problem of finding the real roots of the last two equations in (7) is reduced to finding the intersection
points of a circle with an ellipse or a hyperbole on the plane z = 1. Various relative positions of a circle and
an ellipse are shown in Fig. 1. It is seen that the number of real roots of the last two equations in (7) can
be in the range from zero through four. Note that the sign indefiniteness of the quadratic forms does not
guarantee the existence of real solutions to the system. This is happens in the cases shown in Figs. 1a–1c.

An unambiguous conclusion about the branching can be drawn only in the cases shown in Figs. 1j and
1k. In the first of them, two branches of the solution intersect at the bifurcation point, and both branches
touch two common generatrices of the cones. Therefore, the solution from the singular point can be con-
tinued in four directions as shown in Fig. 2. In the plane passing through the common generatrices of the
cones, the possible bifurcation pattern is shown in Fig. 3. In the second case, four branches of the solution
touching four common generatrices of the cones intersect at the singular point. Here, the branches do not
lie in the same plane, and the solution from the singular point can be continued in eight directions.

In the cases shown in Figs. 1d–1i, we have the touching cones. The corresponding common generatrix
can be tangent to two or more branches of the solution that touch each other at the singular point. To find
these solutions, the bifurcation equations with account for the higher order terms of the Taylor series must
be considered, and this must be done in the plane that touches both cones on their common generatrix.
This simplifies the analysis because the number of variables is reduced and becomes equal to two; i.e., for
each common generatrix of the cones, a two-dimensional subspace (plane) is singled out, and the bifur-
cation equation should be examined in this subspace.
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Example.
Consider the function F : ℝ3 → ℝ2 defined by

The set of solutions to Eq. (1) with this function is the intersection of two cones.
The matrices of these cones have the form
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Let us illustrate the operation of the algorithm described above. It was implemented in MATLAB.

Reduce K1 to the canonical form

The cone K1 reduced to the normal form with the axis OZ is

and

The cone K2 in the new coordinates is

Let us find the intersection points of  and  in the plane z = 1. The tolerable residual is set to ε = 0.01.
Then,

In the original coordinates, the cone intersection points are given by  = T1T2 . For example,

The vectors  (i = 1, 2) can be considered to be approximations of the tangent vectors of the bifur-
cation branches.
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2.2. Finding All Vectors at a Bifurcation Point Using the Determination of the Tangent Vectors

Consider another method for constructing all branches at a bifurcation point of codimension two.

The sequence of steps below produces the intersection curve of two cones in explicit form.

1. Find the change of coordinates Т that reduces the first cone to the canonical form. Let its axis coin-
cide with the axis 0z; then, the equation of the cone is

2. Parameterize this cone as

(8)

where t ∈ ℝ, –1 ≤ u ≤ 1.

3. Use the matrix Т to make up the equation of the second cone in the new coordinates:

(9)

Substitute (8) into Eq. (9). Since both cones pass through the origin of coordinates and, therefore, the
equations are homogeneous, the parameter t remains undefined.

4. To find the parameter u, the irrational equation F(u) = 0 should be solved:

Let ui be the roots of this equation.

5. The parametric equation of the intersection curve is then written as

6. The tangent vectors to the branches of the curve are found by the formulas

Now, the tangent vectors can be used to obtain approximations of the next point after the bifurcation
point on the branch of interest.

3. NUMERICAL CONTINUATION OF SOLUTION AT SINGULAR POINTS
OF CODIMENSION THREE

Using the Lyapunov–Schmidt reduction, the problem is reduced to constructing the intersection of

three quadric surfaces in ℝ4. The homogeneity of equations makes it possible to reduce the number of
variables. Next, Levin’s method described in [34] is used to write the intersection of two surfaces in a para-
metric form. This parameterization is used for substituting into the third equation. Thus, the problem is
reduced to solving a nonlinear equation in one unknown in a bounded domain. A computational algo-
rithm for passing through simple bifurcation points of codimension three is proposed.

3.1. The Behavior of the Solution Curve at a Simple Bifurcation Point

Let the curve be specified by Eq. (1) and the function F ∈ С3(ℝ(n + 1)).

Let ai be linearly independent vectors in N(F '(x0)), and wi ∈ N([F '(x0)
T), where N(·) is the null-space

of the corresponding operator.

Let rank F '(x(0)) = n –m. Then, the dimension of the null-space of the operator F '(x0) at the point x0

is m + 1: dim N(F '(x0)) = m + 1.

Let the vectors ai form a basis in this space. Let us orthonormalize and transpose the linearly indepen-

dent rows of the matrix F '(x0). The resulting vectors will be denoted by p1, p2, …, pn – m. It is clear that any

vector can be represented in the form

+ − =2 2 2
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Consider the functions  (ik ∈ 1, 2, …, n; k = 1, 2, …, n – m) the gradient components of which form

at the point х0 linearly independent rows of the matrix F '(x0). For the functions , we introduce the nota-

tion  = Uk, k = 1, 2, …, n – m. Let wi be linearly independent nonzero vectors such that

(10)

The existence of nonzero vectors wi is equivalent to the linear independence of the rows of F '(x0).

Define the functions Vi by

It follows from the definition of these functions and from equality (10) that

Consider the system of equations

(11)

Lemma 3.1. Solving system (1) is equivalent to solving system (11).
The proof is similar to the proof of Lemma 1 in [14].

Definition 3.1. The point x0 is called a simple bifurcation point of codimension m of Eq. (1) if the fol-

lowing conditions are fulfilled:

(1) F(x0) = 0,

(2) rank F ' = n – m,

(3) the Hessian matrices of the functions Vi(α1, α2, …, αm + 1) (i = 1, 2, …, m) have nonzero eigenvalues

of different signs at the origin of coordinates, i.e., at α1 = α2 = … = αm + 1 = 0.

Let us parameterize the curve using the best parameter λ by formula (6), where the parameter is mea-
sured from the bifurcation point x0.

Take into account the fact that in (6)

Theorem 3.1. At the simple bifurcation point x0, it holds that

(12)

This theorem is proved similarly to the proof of Theorem 1 and the corollary to it in [14].

3.2. Levin’s Method
Levin’s method makes it possible to explicitly represent the curve of the intersection of two quadric

surfaces.

Assume that Р(х1, x2, x3) = 0 and Q(x1, x2, x3) = 0 are two different quadric surfaces. Construct the

function

For brevity, we will write R(λ) meaning R(λ, x1, x2, x3). In addition, the matrix related to the quadric

surface

(13)

will be denoted by the same symbol Р as the surface itself.
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Then, (13) can be rewritten in matrix form ХTРХ = 0, where X = (x1, x2, x3, 1)T and Р is a symmetric

fourth-order matrix

The submatrix of Р corresponding to the quadratic form will be denoted by Рu:

Theorem 3.2 (see [34]). The solution to the equation R(λ) = 0 is either an empty set or contains one surface
from the table.

Levin’s method consists of the following steps.

1. From the solution to the equation R(λ) = 0, the simple surface in the table is found, which is asso-
ciated with the value of the multiplier λ that is a root of the equation det Ru(λ) = 0.

2. Using the linear transformation Т, this simple surface is reduced to the canonical form. For this sur-
face, the corresponding parameterization from the table is substituted into the equation

3. In the domain of feasible values of the variable u, the parameter  is represented in terms of u, and
 = (u) is substituted into the parameterization of the simple surface

Thus, we obtain a parameterization of the intersection of the surfaces P = 0 and Q = 0.

4. Using the transformation Т, return to the original space; i.e., the desired parameterization has the
form ТХ(u).
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3.3. Implementation of the Continuation Algorithm at a Simple Bifurcation Point

The system of equations (12) implies that its solution is reduced to finding the intersection of three
quadric surfaces

The left-hand side of each equation is a homogeneous function.

The method consists of the following steps.

1. Make the change of variables  = , which reduces the system dimension.

2. Using Levin’s method, find the intersection of two quadratic forms in parametric form.

3. Substitute this parameterization into the third equation. Thus, the problem is reduced to solving an
equation in one unknown.

3.4. The Error of Calculating the Tangent Vectors: The Case rank F '(x0) = n – m.
The Error of Calculating the Quadratic Form

An algorithm for calculating the tangent vectors was described above. Below, we will use the same
notation.

Find the subspace in which the bifurcation occurs.

This problem is equivalent to finding the vectors a1, а2, …, am + 1 that form a basis in this subspace.

These vectors can be found from the condition

(14)

Here F '(x0) is the Jacobian matrix and x0 is the singular point. System (14) can be solved as follows
(see [35]). Extend the matrix F '(x0) by zero rows and denote the resulting square matrix by А. Use the
decomposition

(15)

where Q is an orthogonal matrix and R is an upper triangular matrix

Here, R1 is a matrix of size (n – m) × (n + 1), and О is a zero matrix of size (m + 1) × (n + 1). Using (15)
and the equality QT = Q–1, we obtain

Here we took into account that Q can be represented as a union of two block matrices Q1 of size (n + 1) ×
(n – m) and Q2 of size (n + 1) × (m + 1). The vertical line within the parenthesis separates the blocks of
the matrix. The matrix Q2 contains the last m + 1 columns of Q, which are the orthonormal vectors a1,
a2, …, am + 1.

The approximation vectors Qi of the vectors ai are found by formulas similar to (14):

(16)

where (RT)i (i = n – m,…, n) are the last columns of the matrix RT.

We may consider the deviation of the vectors from the space formed by the vectors аi, (i.e., from the

null-space N(J)) as the error in determining these vectors. This is related to the fact that the vectors аi are

determined not uniquely. The deviation of the ith vector can be found by the formula

(17)

The number ε = maxi|εi| can be considered as a measure of deviation of the system of vectors Qi from

the space N(J).
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Theorem 3.3. The error ε satisfies the equality

where εij = (Qi, pj) and pj (j = 1, 2, …, n – m) are orthonormal linearly independent row vectors of the matrix J.
Proof. Since ai form a basis in the space N(J), the error vectors εi do not belong to N(J). Therefore,

εi are orthogonal to N(J).

Let pj be vectors such that |pj| = 1 and (pj, ai) = 0 for i = 1, 2, …, m + 1 and j = 1, 2, …, n – m.

Multiply equality (17) by pj. Since pj are orthogonal to ai, we have

In addition, the preceding equality implies the decomposition

Define the norm

Then, the error can be determined by the formula

The theorem is thus proved.

The vector  that is tangent to the curve at the bifurcation point can be represented by

where αi =  + Δαi, ai =  + Δai, and  and  are the exact values of the vectors to be found and of the

expansion coefficients.

Therefore, the error of determining the tangent vector can be bounded above as follows:

Here, c1i = , c2i = .

The number εi is the error of the computation of the vector ai; i.e., it is equal to ||Δai||.

The error |Δαi| of the computation of the coefficient αi can be found based on the following consider-

ations. To find αi, we should solve the system of equations

Therefore, αi = αi(a1, …, am + 1), and the approximate expression for the error can be obtained from

the approximation

In the computations, the derivatives  may be replaced by their finite difference approximations.

To clarify the situation, consider a simpler case obtained from the general case when the rank of the
Jacobian matrix rank F '(x0) = n – 1, i.e., when m = 1. Then, a corollary to Theorem 3.3 is as follows.

Corollary. The error ε satisfies the equality

where εij = (Qi, pj) and pj (j = 1, 2, …, n – 1) are the orthonormal linearly independent row vectors of the
matrix J.

ε = ε = − = −… …max max , , , 1,2, , ,ij
i j

i n m n j n m

ε = = ε = − = −… …( , ) ( , ), , , 1,2, , .ij i j i jQ p p i n m n j n m

−

=

ε = ε = −∑ …

1

, , , .

n m

i ij j

j

p i n m n

ε = ε = − = −… …max , , , , 1,2, , .i ij
j

i n m n j n m

ε = ε = ε = − = −… …max max max , , , , 1,2, , .i ij
i i j

i n m n j n m

v

= α = α + Δα + α Δ + Δα Δ∑ ∑ ∑ ∑ ∑� �� � ,i i i i i i i i i ia a a a av

α� i �ia �ia α� i

− α ≤ Δα + Δ + Δα Δ∑ ∑ ∑ ∑1 2 .i i i i i i i ia c c a av

�ia α� i

α =( ) 0,V

α = 1.

∂αΔα ≈ Δ
∂∑ .i

i j
j

a
a

∂α
∂

i

ja

ε = ε = − = −…max max , 1, , 1,2, , 1,ij
i j

i n n j n



1562

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 56  No. 9  2016

KRASNIKOV, KUZNETSOV

In this case, the vector  that is tangent to the curve at the bifurcation point can be written as

where αi =  + Δαi, ai =  + Δai,  and  are the exact values of the vectors to be found and of the

expansion coefficients.

Therefore, the error of determining the tangent vector can be bounded above as follows:

Here, c1i = , c2i = .

The number εi is the error of the computation of the vector ai; i.e., it is equal to ||Δai||.

The error |Δαi| of the computation of the coefficient αi can be found based on the following consider-

ations. To find the coefficients αi, the following system of equations should be solved:

Let, for definiteness, Н11 ≠ 0. Then, using the change of variables t = , we solve the quadratic equa-

tion H11t2 + 2H12t + H22 = 0. The roots ti (i = 1, 2) depend on Hij = Hij(a1, a2).

Finally, we obtain

Therefore, αi = αi(a1, a2), and the approximate expression for the error can be found from the approx-

imation

In the computations, the derivatives  may be replaced by their finite difference approximations.

3.5. Test Example of the Operation of the Program of Passing through Bifurcation Points of Codimension Three

Consider the function F : ℝ4 → ℝ3 defined by

We are interested in the set of solutions to Eq. (1) with this function. It is clear that the origin of coor-
dinates is a bifurcation point of codimension three for the Jacobian matrix of this system of equations.
Since the function is homogeneous, the program reduces the number of variables by dividing each equa-

tion by t2, and the system of equations (1) takes the form

(18)

Next, using Levin’s method, the intersection curve of the surfaces specified by the first two equations
in (18) is found. The auxiliary surface

(19)
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is determined. The matrix of this surface is constructed:

The determinant of the matrix of the surface quadratic form is calculated:

Then, the equation det Ru(λ) = 0 is solved:

The simple surface

is constructed, which is obtained upon the substitution of λ = –1 into Eq. (19). An appropriate parame-
terization

for this surface is selected from the table. By substituting this parameterization into the second equation
х2 + у2 – 1 = 0 of system (18), we obtain

The parameter  is found as a function of the variable u:

Thus, the program yields a parameterization of the intersection curve of two surfaces:

Upon the substitution of this parameterization into the third equation х2 – 1 = 0, we obtain

As the final result, the program produces the desired parameterization of the intersection curve of
three surfaces

CONCLUSIONS

Conditions under which the numerical solution can be continued beyond the bifurcation points of
curves specified in the (n + 1)-dimensional space by a system of equations whose Jacobian matrix at these
points has the rank n – 2 or n – 3 are obtained. Algorithms and computer programs are developed that
implement the procedure of discrete parametric continuation of the solution and find all branches at sim-
ple bifurcation points of codimension two and three. Corresponding theorems are proved, and each algo-
rithm is rigorously justified. New results that complement and improve the results obtained by the authors
earlier in [1–4, 7] are obtained.

A novel algorithm for the estimation of errors of tangential vectors at simple bifurcation points of cod-
imension m is proposed.

Test examples demonstrate the efficient operation of computer programs implementing the proposed
algorithms.

It follows from the above presentation that, in order to find the branches of solution at a singular point
of codimension greater than three, a large number of situations must be examined. This makes the prob-
lem tedious and computationally complex. The study of this issue is not finished yet.
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