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1. INTRODUCTION AND STATEMENT OF THE MIXED BOUNDARY VALUE PROBLEM
In recent years, particular emphasis has been given to the study of f luid dynamic processes in domains

with the boundaries consisting of a number of parts with different physical properties. The mathematical
modeling of such processes requires the investigation of boundary value problems for the equation of f luid
dynamics and magnetohydrodynamics (MHD) under mixed boundary conditions for the velocity and
other components of the solution.

Beginning with the works [1, 2], the mathematical modeling of mixed boundary value problems for the
Stokes and Navier–Stokes equations was studied in a number of papers, among which we note [3–5] and
the references in [5], where the solvability of the corresponding mixed boundary value problems was
investigated. The MHD equations were studied beginning with [6, 7] subject to the “standard” boundary
conditions. These conditions correspond to the situation when the boundary is either a perfect conductor
or a perfect dielectric, or when inhomogeneous analogs of these conditions are specified on the boundary.
Of interest are the papers [8–12], where the solvability of the boundary value and control problems for the
MHD equations were studied under the Dirichlet conditions for the velocity. In [13–15], boundary value
problems under mixed boundary conditions for the velocity were studied. A number of studies were
devoted to the solvability of boundary value problems for the MHD equations under the Dirichlet condi-
tion for the magnetic field (e.g., see [16]) or under the interface conditions on the f luid–nonconducting
medium interface (see [7, 17]).

However, the more general case, which is often encountered in practice, when different parts of the
boundary of the f low region have different electrophysical properties has long remained unstudied in the
mathematical literature. The difficulty of investigating such problems is due to the fact that the solution
can have singularities at the points where the parts with different electrophysical properties described by
different boundary conditions meet. This considerably complicates the analysis of solvability of the cor-
responding problems. Due to these difficulties, the first results concerning the solvability of boundary
value problems for the MHD equations subject to mixed boundary conditions for the electromagnetic
field appeared only in 2014 in [18]. The mathematical apparatus developed in [18] considerably relied on
the new results for the solvability of mixed boundary value problems for the div–curl systems established
in [19–21].

The aim of this paper, which continues the study started in [18], is to analyze the global solvability of
the inhomogeneous mixed boundary value problem for the MHD model of incompressible f luid consid-
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ered in a bounded three-dimensional domain  with the boundary  subject to inhomogeneous
mixed boundary conditions for the electromagnetic field. Under the assumption that the boundary  con-
sists of two parts  and  of which each has certain electrophysical properties, this problem is described
(in the SI system of units) by the equations

(1.1)

(1.2)

(1.3)

Here  is the velocity vector;  is the magnetic field vector; , , where  is the electric
field vector;  is the pressure;  is the density of the f luid; , , where

, , and  or  are the constant coefficients of electric conductivity, magnetic permeability, and kine-
matic or magnetic viscosity, respectively;  is the unit vector of the outward normal to ; , , q, and 
are functions defined on the boundary  or on different parts  and  of . Below we refer to problem
(1.1)–(1.3) with the given functions , , , , , and as to problem 1.

In the special case when , , and , the boundary conditions for the electromagnetic field
in (1.3) correspond to the situation when the part  of  is a perfect conductor and the other part

 is a perfect dielectric. The solvability of the corresponding homogeneous boundary value prob-
lem was proved in [18]. In another special case when  and , the boundary conditions (1.3)
take the form

(1.4)
The boundary value problem (1.1), (1.2), (1.4) was investigated in [10, 11] and in [22], where a scheme for
analyzing its solvability was proposed; using this scheme, the global solvability and the local uniqueness
of the solution were proved under the condition that the vector field  is tangential.

The main difficulty in the analysis of problem (1.1)–(1.3) is due to the inhomogeneity of the boundary
conditions for , , and  in (1.3). For this reason, before investigating the solvability of this problem, we
construct vectors , , and  from certain functional classes that satisfy the corresponding boundary
conditions in (1.3). Following the conventional terminology, we refer to , , and  as to liftings of the
inhomogeneous boundary conditions. The main difficulty is in the construction of the magnetic lifting

 that must satisfy the inhomogeneous mixed boundary conditions for  in (1.3). The key idea used in
this paper for this purpose is to select the lifting  in the subspace of the space  consisting of har-
monic vector fields. Based on this selection of  and the possibility to construct the hydrodynamic lifting

 with an arbitrarily small norm , which was proved in [11], we prove the global solv-
ability of problem 1 and the local uniqueness of its solution using the scheme described in [11, 22].

2. FUNCTIONAL SPACES: PRELIMINARY RESULTS

Below we will use the Sobolev spaces , ,  ≡ , where  denotes , the bound-
ary , or a part of it . The corresponding spaces of vector functions are denoted by  and

. The scalar products and norms in the spaces  and  are denoted by  and .

The scalar products and norms in  and  are denoted by  and . Along with the space

, we will use the subspace  consisting of the functions  that, when continued
by zero on , belong to . By , we denote the dual space of  with respect to

;  is the dual space of  with respect to the space . For an arbitrary Hilbert
space ,  is the dual of .

As in [18, 20], we assume that the domain  and the decomposition of its boundary  into the
parts  and  satisfy the following conditions:

(i)  is a bounded domain in , and its boundary  consists of  nonoverlapping closed -
surfaces  of which each has a finite area, where  is the outer boundary of .

Ω Σ = ∂Ω
Σ

τΣ νΣ

νΔ + ⋅ ∇ + ∇ − × = , = Ω,( ) curl div 0 inpu u u H H f uû
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(ii)  is a nonempty open subset of  consisting of  nonoverlapping open components
, and there exists a positive number  such that the distance dist  for 

and . The boundary of each component  is either the empty set or a -curve. Define
.

In the general case,  may be a multiply connected domain, and we denote by  the number of
“handles” of . Recall that these numbers  and  are, respectively, the first and the second Betti num-
bers of  (e.g., see [22]).

Let  be the space of infinitely differentiable functions with compact support on ,  be the
closure of  in , ,  = ,  =

,  = ,  = ,

and  := . In addition to the spaces introduced above, we

will use the space  =  equipped with the Hilbert norm

(2.1)

Any vector  defined on the boundary  (or on its part ) can be represented by the sum
of its normal and tangential components  and  as . These components are determined by

 and  ≡ . Here, the scalar  is the normal component of
the vector field  and  is the tangential vector that is orthogonal both to the normal  and to the
vector . It is clear that  on  if and only if . Conventionally, the subscript  in the

notation of the spaces , , or  indicates that the corresponding space consists of the
vector functions of , , or  that are tangential to the boundary  or to its part

.
Below we will use the following Green formulas (see [22, 23]):

(2.2)

(2.3)

(2.4)

Formulas (2.3) and (2.4) also hold in the case when  under the condition that the integrals on
the right-hand sides of (2.3) and (2.4) denote the duality relation  between  and  or

between  and . If  or , the right-hand sides of (2.3)

or (2.4) take the form  or . Using this fact and (2.3), we will say as in [20] that

the function  satisfies the condition  weakly on  if the left-hand side of (2.3) van-
ishes for every function  Similarly, based on (2.4) we will say that the function

 satisfies the condition  weakly on  if the left-hand side of (2.4) vanishes for
every function 

By  ≡ , we denote the natural restriction of the trace  of the func-
tion  to the part  acting by the formula (see [19])
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Here  is the continuation of the function  by zero to . This formula defines the oper-
ator of the partial tangential trace  onto the boundary part , which assigns

to each vector  the restriction  =  of its tangential trace to .
It has already been mentioned that the solvability of problem 1 will be proved following the scheme

proposed in [11] and [22, Chapter 6]. This scheme includes the choice of the functional spaces corre-
sponding to the boundary value problem under consideration, the elimination of the pair , the der-
ivation of a weak formulation with respect to the remaining pair , which has the sense of the weak
solution of the problem, the construction of the required liftings of the inhomogeneous boundary condi-
tions, the proof of the existence of a weak solution and its local uniqueness, and the proof of the feasibility
of this weak solution. The feasibility of the weak solution implies that the eliminated pair  can be
uniquely reconstructed given the weak solution  using the weak formulation of the boundary value
problem. To describe the properties of the magnetic component  of the solution to problem (1.1), (1.2),
(1.4), the following spaces are used in this scheme:

(2.5)

Here and in what follows,  denotes the orthogonal complement of an arbitrary subspace  in
. In particular, the space  plays the role of test functions for the magnetic field.

It is well known (e.g., see [22, Section 6.1]) that, under condition (i), in which the condition 
may be replace with the condition , the space  can be continuously embedded into the space

 such that the coercivity inequality  holds for all with a constant  that
depends on . In addition, the spaces  and  are finite dimensional and ,

, where  and  are the first and the second Betti numbers; furthermore, we have the fol-
lowing orthogonal decomposition of the space  = . These prop-
erties are used in [11, 22] in the proof of the solvability of the boundary value problem (1.1), (1.2), (1.4).

To apply the scheme described in [22] for the analysis of solvability of problem (1.1)–(1.3), denote by
 the closure of the space  with respect to the norm  defined in (2.1) and

define the following spaces:

(2.6)

In particular, the space  consists of the vector fields  that are harmonic in  and for
which the normal component  and the tangential component  vanish (in the weak sense defined
above) on the boundary parts  and , respectively. A similar sense with  replaced with  and vice a
versa has the space .

These spaces were defined and studied in [20, 21], and they were substantially used in [18] for the
investigation of the boundary value problem for system (1.1), (1.2) subject to homogeneous boundary con-
ditions in (1.3). In the case , the spaces , , and  turn, respectively, into the
spaces , , and  defined in (2.5). It is important for the further consideration that in the general
case, when  and , the spaces , , , and  have the properties
similar to the properties of the spaces , , , and , respectively. This enables us to use these
spaces in the proof of the solvability of the mixed boundary value problem (1.1)–(1.3). For the further rea-
soning, it is convenient to formulate the main properties of spaces (2.6) in the following lemma. The
proofs of all its assertions can be found in [20].
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Lemma 2.1. Let conditions (i) and (ii) be fulfilled. Then

(1) the spaces  and  have finite dimensions;

(2) the continuous embedding  holds, and the norm  is equivalent to the norm
 in the space ;

(3) there exist constants , , and  depending on  and  with which the following inequalities hold
true:

(2.7)

(2.8)

(4) the following orthogonal decomposition of the space  holds:

(2.9)

(5)  weakly on  for every , and it holds that

(2.10)

Relation (2.9) implies that any vector  can be represented in the form  + ,
where , , and  are certain functions that are uniquely determined
by .

In addition to the spaces , , and , we define their subspaces

equipped, respectively, with the norms

(2.11)

These spaces will play the key role in the investigation of solvability of problem 1 in the sense that it is in
these spaces , , and  where the velocity  and the vectors  and  of the
magnetic and electric fields that form, together with the pressure , the solution of problem 1 will
be sought. For the investigation of the properties of the electric lifting, we will also need the subspace

equipped with the norm .

We pay special attention to the space , where the magnetic component  of the solution to
problem 1 will be sought. By definition, it consists of the solenoidal vector functions of the space 
introduced above that belong to the space  and are orthogonal in the sense of  to all the ele-
ments of the finite dimensional space . The comparison with the space  in which the
velocity  will be sought shows that the magnetic component  of the solution has weaker differential
properties than the velocity. However, this weakening of the differential properties of  is feasible because
it will be proved in Section 3 that problem 1 has a weak solution  ×  and that
this solution is locally unique. At the same time, the idea of finding the magnetic component  in the
class  makes it possible to considerably weaken the differential properties of the functions  and 
that appear in the mixed boundary conditions for  in (1.3) by choosing  and  in the corresponding
subspaces of  spaces (see conditions (iii) below.
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Recall that, due to the embedding theorems, the space  is continuously embedded into the space
 for  and, with a certain constant , which depends on  and , it holds that

(2.12)

Along with Lemma 2.1, we will use properties of the bilinear and trilinear forms related to the linear
and nonlinear terms in Eqs. (1.1)–(1.3). We formulate them in the form of the following lemma. A proof
of all the assertions of this lemma follows from the results obtained in [22, 23].

Lemma 2.2. Under conditions (i) and (ii), there exist positive constants , , and 
depending on  such that

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

Here, in particular, , where  is the constant appearing in (2.12) for . Furthermore, the following
identities hold true:

(2.18)

(2.19)

3. PROOF OF THE SOLVABILITY OF PROBLEM 1

In this section, we prove the solvability of problem 1. In the investigation of solvability, an important
role is played by the products of spaces  ×  and  ×  (they will be used

as test spaces for the pair ( )) and by the dual spaces  =  and  × .
 and  are the Hilbert spaces equipped with the conventional graph norm  =

. Recall that here  ≡  is a dimensional parameter appearing in the first
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Due to (2.11), (2.7), and (2.13), the bilinear form  is continuous on the space  and
coercive on the subspace  ×  × . In addition, due to (2.7) and
(2.13), it holds that

(3.3)

Let the continuous bilinear form  satisfy the following “  smallness” condition on :

(3.4)

For the arbitrary element , consider the variational problem of finding an element  such
that

(3.5)

The next lemma is a consequence of the Lax–Milgram theorem.
Lemma 3.1. Let under conditions (i) and (ii), the bilinear forms  and  which are continuous on , satisfy

conditions (3.3) and (3.4). Then, (1) the bilinear form  is continuous and coercive on  with the constant
; (2) problem (3.5) has a unique solution  for any element , and the following bound

holds:

Suppose that, in addition to (i) and (ii), it holds that

(iii) , , , , , .
The investigation of solvability of problem 1 is considerably complicated by the inhomogeneity of the

boundary conditions in (1.3) both for the velocity and for electromagnetic field. As was mentioned in Sec-
tion 1, the analysis of solvability of problem 1 is preceded by the construction of the liftings of the inho-
mogeneous boundary conditions in (1.3). The construction of the lifting for the velocity is based on the
following lemma, which was proved in [11].

Lemma 3.2. Under condition (i), for any function  and any number , there exists a vector
function  such that  on  and it holds that

(3.6)

Here, the constant  depends on  and .
Remark 3.1. It should be emphasized that Lemma 3.1 on the existence of the hydrodynamic lifting 

satisfying bounds (3.6) holds in the case when , i.e., when . To my knowledge, the
issue of the existence of a solenoidal lifting  satisfying bounds (3.6) for an arbitrary function

 with  remains open.

The role of the electric lifting can be played by any vector  such that

(3.7)

The existence of such a vector  follows from the condition on  in (iii), which is close to the necessary
existence condition for the electric field appearing in model (1.1)–(1.3). Note that this lifting  satisfies
the formula

(3.8)

To derive (3.8), it is sufficient to apply Green’s formula (2.4) to the pair , where , and
use relations (3.7), the condition , and the equality

which is true due to the results of [19] for the function .
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: × →â X X R δ Z

,Ω ,Ω, , , ≤ δ + ∀ , ∈ , ≤ δ < ν .2 2
1 1

ˆ| (( ) ))| ( ) ( ) 0 *a Zv v v vûΨ Ψ Ψ Ψ

∈ *XF , ∈( ) Zu H

, , , + , ∀ , = , , ∀ , ∈ .ˆ(( ) ( )) (( ) ( )) ( ) ( )a a Zu H v u H v F v vΨ Ψ Ψ Ψ

a â X
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As for the magnetic lifting, its construction is considerably complicated by the specific features of the
mixed boundary conditions (1.3) for the magnetic field . Typically, in the investigation of inhomoge-
neous mixed boundary value problems additional assumptions about the existence of at least one function
satisfying the given boundary conditions are made. This is often used in the analysis of solvability of mixed
boundary value problems for the f luid dynamics equations (e.g., see [3, 5]). In this paper, the role of this
hypothesis is played by the following assumption that is a generalization of the corresponding assumption
in [24]:

(iv) there exists a vector field  such that

(3.9)

Here,  is a constant independent of  and .
Note that condition (iv), which has the sense of the regularity and consistency of the boundary data

 for the magnetic field , is satisfied under certain additional conditions on the decomposition
of the boundary  into the parts  and . In particular, it holds when each part  and  consists of
a finite number of connected components of , i.e., in the case when

(v) , .
To justify this hypothesis, we use Theorem 4.2 in [25]. First, we introduce certain notation. Denote by

 the number of connected components of ; and by  ( , ), we denote the internal
connected components of  contained in . It is clear that , where  is defined in (i), and 
in the case  and  if . Similarly we denote by  (or ) the number of handles of

 (or ). It is clear that , where  is the number of handles of the boundary  defined in Sec-
tion 2.

It is well known (e.g., see [25]) that, under conditions (i) and (v), the dimension of the space 
is exactly , and the basis of the space  consists of the gradients  of the harmonic func-

tions  ( ) satisfying the boundary conditions , , and
 and the harmonic vector fields  ( ) satisfying the condition

 for any cycle  ( ) contained in  and non homotopic to zero in .

Similarly, the basis of the space  consists of the gradients  of the harmonic functions

 ( ) satisfying the boundary conditions , , and
, and the harmonic vector fields  ( ) satisfying the condition

 for any cycle  ( ) contained in   and non homotopic to zero in .

Consider the following mixed Dirichlet–Neumann homogeneous (with respect to the right-hand sides
of the div–curl system) problem:

(3.10)

(3.11)

Denote by  the surface divergence of the vector field  on the part  of the boundary  (a detailed
discussion of this concept see in [22, 25]). Theorem 4.2 proved in [25] and the result of [26] on the regu-
larity of the solutions to the Maxwell equations in the case of  boundary data imply the following result.

Lemma 3.3. Let, in addition to conditions (i) and (v), the conditions

(3.12)

be satisfied. Then, there exists a unique solution  of problem (3.10), (3.11), which satisfies the
bound  ≤ , where the constant  is independent of 
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Set . This vector  satisfies all the conditions in (3.9); therefore, it is the desired magnetic lift-
ing. Using the constructed liftings , , and , we now proceed to the investigation of the solvability
of problem 1.

Assume that the quadruple  ×  ×  is a classical

solution to problem 1. Multiply the first equation in (1.1) by the function , the first equation
in (1.2) by , where , integrate the result over , and use Green’s formulas (2.2)–(2.4)
and relation (2.19). Since, due to the relations  in , , , and (3.7), we have

we obtain the identities

(3.13)

(3.14)

Sum the restriction of identity (3.13) to the space  with (3.14) to obtain the problem of
determining the pair  from the equation ,  in , and the relations

(3.15)

(3.16)

Here,  is the linear functional acting by the formula

(3.17)

Conditions (iii) imply that , and, due to (2.8) and (3.1), it holds that

(3.18)

The simple analysis shows that all the terms in (3.15) are well defined and  and  satisfy the solenoi-
dality conditions ,  in  if  and . Hence, we define the weak
solution to problem 1 as a pair  ×  satisfying (3.15) and (3.16). In addition to
the definition of the weak solution, we also define the electric component of the solution to problem 1—
this is any vector  satisfying, together with the weak solution , the first equation in
(1.2) and the identity

(3.19)

Identity (3.19) contains useful information about the boundary condition  in (1.3). Moreover,

if we succeed in proving the inclusion  for the electric component , then (3.19) will take

the familiar form  in .
Note that (3.15) does not include the pair . However, the pair  can be uniquely recon-

structed from the pair  × , which satisfies (3.15), so that the identities (3.13),
(3.14), (3.19), and all the relations in (1.2) hold true. This is a consequence of the following lemma, which
proves the feasibility of the weak solution to problem 1.

Lemma 3.4. Suppose that, under conditions (i)–(iii),  ×  is a solution to prob-
lem (3.15), (3.16). Then, there exist a unique pair  ×  such that the triple 
satisfies identities (3.13), (3.14), and  is the electric component satisfying identity (3.19) and, together with

, relations (1.2). Moreover, the following bounds on the norms  and  in terms of the norms 
and  hold true:
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(3.21)

Here , , and  are the constants defined in Lemma 2.2.

Proof. Assume that the pair  ×  is a solution to problem (3.15), (3.16).
As usual, the pressure  is reconstructed (so as to satisfy identity (3.13)) using the de Rham the-
orem and the inf–sup condition (2.17) (details can be found in [22, 23]), while identity (3.14) is obtained
from (3.15) if we set  in (3.15).

To prove the existence of the electric component ,  satisfying, together with the pair
, all the relations in (1.2) and identity (3.19), consider identity (3.14). Taking into account (2.10),

(2.19), and (3.8), we rewrite it in the form

(3.22)

(3.22) means that the vector  ∈  is orthogonal to the vector
, where  is an arbitrary function. Due to (2.9), this can be true if and only if

(3.23)

Here  is the scalar potential,  is a vector (harmonic vector potential), and the

pair  is uniquely determined by the vector . Since  and , we have

 and, therefore,  in . This implies that . Now multiply (3.23)
by , integrate over , and apply Green’s formula (2.4) to the term . This yields the identity

(3.24)

Subtract (3.24) from (3.14) to obtain (3.19). Together with (3.23), this implies that  is the desired electric
component.

It remains to derive bounds (3.20) and (3.21) for the pair . In order to prove (3.20), we use the
inf–sup condition (2.17) due to which, for the function  indicated above and any number ,
there exists a function  ( ) such that the inequality  ≥  holds
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Using the inequality  ≤  for the numbers , , , we hence obtain

(3.29)

Finally, using (2.12) for  and (3.27), we derive from (3.29) bound (3.21) for .

Proceed to problem (3.15), (3.16). To prove that it has a solution  × , set the
number  mentioned in Lemma 3.2 equal to , where

(3.30)

Here  and  are the constants introduced in (2.14) and (2.15). (We assume that .) Set

(3.31)

Here  is the constant corresponding to the number  in (3.30), which was introduced in Lemma 3.1,
and  and  are the constants introduced in (3.18) and (3.9). We now prove the following result.

Theorem 3.1. Under conditions (i)–(iv), there exists a weak solution  ×  of
problem 1, and the following bounds hold:
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Proof. Based on the boundary conditions in (3.16) for the velocity  and the magnetic field , we will
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To prove the existence of the solution  ≡  to problem (3.35), we use Schauder’s
fixed point theorem. To this end, define the mapping  acting by the formula ,
where the pair  is a solution to the linear problem

(3.38)

obtained by the linearization of problem (3.35). Here, the bilinear form  is defined by

(3.39)

It is easy to verify that the mapping  is well defined. Indeed, the results of Section 2 imply that the
form  is continuous and coercive on , and, for the bilinear form  defined in (3.39), we have due to
(2.18), (2.14), (2.15), and (3.30)

Since  due to (3.37), Lemma 3.1 applied to problem (3.38) implies that, for each pair ,
there exists a unique solution  to problem (3.38), and it satisfies the independent of  bound

(3.40)

Consider the ball  ∈  in the space . It follows from (3.40) that the oper-
ator  defined above maps this ball  into itself. Reasoning as in [11], it can be shown that  is compact
and continuous on . Then, Schauder’s theorem implies that  has a fixed point  = .
This fixed point  is the desired solution to problem (3.35), and it satisfies bounds (3.40). There-
fore, the pair , where  and , is the desired solution to problem (3.15), (3.16),
and bound (3.32) for  is an obvious consequence of bound (3.40) and the first bound in (3.6), where we
should set . Next, using (2.11), (2.8), (2.12), (3.9), and (3.34), we conclude that

(3.41)

Now, (3.41) and (3.40) imply bound (3.33) for .
Let  be a weak solution to problem 1 the existence of which follows from Theorem 3.1. Recall

that, due to Lemma 3.4, there exists a pair the pressure , the electric field ,
which is uniquely determined by the pair , and the pair  satisfies bounds (3.20), (3.21). These
bounds and bounds (3.32), (3.33) for  and  imply the following bounds on  and  in
terms of the norms of the data of problem 1:

(3.42)

(3.43)

Now we formulate sufficient conditions for the data of problem 1 that ensure the uniqueness of its solution.
Theorem 3.2. Let, in addition to the conditions of Theorem 3.1, the functions , , , , , and  be small

or the “viscosities”  and  be large in the sense that

(3.44)

Then, the weak solution  of problem 1 is unique in the class of functions for which the magnetic component
 can be represented as , where  is the magnetic lifting satisfying (3.9) and  is a

function.
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Proof. Let , where  for a certain function , be a weak solution to prob-
lem 1 the existence of which was proved above. Denote by  another weak solution to problem 1 for
which  for a certain function . It is clear that ,  =

, and the pair ,  satisfies the equation

(3.45)

Due to (2.14), (2.15) and bounds (3.32), (3.33), which hold for the pair ( ), we have

Using these bounds, (2.7), and (2.13), we derive from (3.45) the inequality

(3.46)

Under conditions (3.44), inequality (3.46) implies that , . Therefore  and ,
which completes the proof of the theorem.

We have proved the global solvability of the mixed boundary value problem (1.1)–(1.3) for the steady-
state MHD equations and proved the local uniqueness of this solution. To analyze the solvability of prob-
lem (1.1)–(1.3), an approach that made it possible to considerably weaken the differential properties of the
functions involved in the boundary conditions for the magnetic field  in (1.3) by choosing them from 
spaces was used. This fact will play an important role in the solution of applied problems and, in particular,
boundary control problems for the MHD model under consideration. The investigation of these problems
and the analysis of unsteady-state analogues of problem (1.1)–(1.3) will be carried out in future works.
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