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INTRODUCTION
The Bessel functions and their zeros play an exceptional role in the solution of natural-science prob-

lems by applying exact or approximate methods. Accordingly, the necessary stage in solving real-world
problems involving these functions and their zeros is the examination of their properties and the design of
methods for their analysis and computation.

Some results concerning Bessel functions and their zeros can be found in numerous books dealing with
differential equations, mathematical physics, and computational mathematics.

These issues are also covered in monographs.
An especially popular book, in fact, encyclopedia of the theory of Bessel functions is Watson’s treatise

[60], which contains important classical results on these functions published up to the 1920s. Many of
these results are still valuable, so the book is widely quoted in the scientific literature.

Numerous results regarding special functions, in particular, Bessel functions can be found in hand-
books and monographs, such as the handbook edited by Abramowitz and Stegun [1], the recently pub-
lished handbook edited by Olver (see NIST Handbook [49]), and the monographs written by Olver [52],
Kratzer and Franz [28], and Gray, Mathews, and MacRobert [19].

Various aspects of the theory of Bessel function zeros are covered in review articles, such as Muldoon’s
[47], where Bessel function zeros are examined as functions of their order; Laforgia and Natalini’s work
[33], which analyzes the monotonicity, convexity, and concavity of zeros as functions of the order; and
Elbert’s work [5], which overviews available (including most recent) publications concerning various
properties of Bessel function zeros. A brief overview of Bessel function zeros can be found in (Finch [16]).

Worth noting are the articles dedicated to the memory of two prominent experts in special functions,
where comprehensive bibliographies of their works on Bessel function zeros can be found: Laforgia, Mul-
doon, and Siafarikas’ paper [32] dedicated to the memory of Hungarian mathematician Árpád Elbert
(1939–2001) and Gautschi and Giordano’s paper [17] dedicated to the memory of Italian mathematician
Luigi Gatteschi (1923–2007).
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Numerous results concerning Bessel function zeros and methods for their computation can be found
in the author’s papers (see Kerimov [23–25]).

Recently, I have made an attempt to write a series of overviews describing the theory of Bessel function
zeros and computational methods for them (for all Bessel functions, i.e., real, imaginary, and complex).
The aim of these overviews is to describe classical results in this area that are still of scientific value and to
present numerous new results published in various papers. Many of these results have not yet been covered
in monographs or handbooks of special functions.

While preparing these papers, I studied and analyzed a large number of works published in various (fre-
quently hard-to-reach) sources (books, articles). Many of them deal with natural-science problems,
which are frequently described in a specific language inherent in the considered application area. Accord-
ingly, results concerning Bessel functions and their zeros had to be described in the usual mathematical
language (of course, with improvements and corrections of found inaccuracies and errors).

The first paper in this series (see Kerimov [25]) covers primarily classical results that are still of impor-
tance. They are basically due to founders of the theory of special functions.

This second paper in the series overviews some new results regarding real zeros of Bessel functions.
Since the basic auxiliary results on Bessel functions and their zeros required for the exposition of new

results were presented in [25], we sometimes refer to that work.
This paper consists of six sections. Section 1 is introductory. It presents the basic definitions and aux-

iliary results. Additionally, generalized definitions of zeros of Bessel functions and their derivatives are
introduced in this section. New results concerning the monotonicity, convexity, and concavity of zeros
and some of their applications are overviewed in Sections 2–6. Many assertions are given with proofs. A
number of improvements of previously known results are made, and overlooked inaccuracies and mis-
prints are corrected.

1. SOME DEFINITIONS AND AUXILIARY RESULTS CONCERNING POSITIVE ZEROS
OF BESSEL FUNCTIONS AND THEIR DERIVATIVES

Let jν, k, , yν, k, , cν, k, and  denote the positive zeros of the Bessel functions Jν(x), ,
Yν(x), , Cν(x), and , respectively, where Cν(x) = Jν(x)cos α – Yν(x)sin α, 0 ≤ α < π, and α is a
parameter. The zeros of these functions are interlaced according to the following laws (see Abramowitz
and Stegun [1, p. 370, 9.51], Watson [60, Section 15.3], Kerimov [25], Olver [51, Section 1, Table 1]):

(1.1)

 (1.1)'

 (1.1)''

Moreover, equality in (1.1)" holds only at ν = 0 and  is defined as the first zero of .

Numerous issues concerning the properties of positive zeros satisfying inequalities (1.1)–(1.1)" were
addressed in the first part of this paper (see Kerimov [25]).

Before describing new results on zeros, we discuss modified notation for Bessel function zeros, which
is more universal than the conventional one when we address some properties of zeros.

For the first time, the modified notation was used by Hungarian mathematician Árpád Elbert. How-
ever, in a somewhat vague form, it goes back to Watson (see, e.g., [60, p. 508, formula (2)]). Elbert and
his followers widely used this notation, which makes it possible to examine the properties of Bessel func-
tion zeros in the case of orders taking not only positive integer, but also negative and real values.

In [9, 10], for positive zeros cν, k of Cν(x), Elbert and Laforgia introduced a modified (generalized)
notation (referred to in [25] as the χ-notation) that covers negative ν, so that cν, k is a continuous function
of ν and cν, k → 0 as ν → α/π – k and, on the interval

ν,' kj ν,' ky ν,' kc ( )ν'J x
( )ν'Y x ( )ν'C x

ν ν+ ν ν+ ν< < < < < < …,1 1,1 ,2 1,2 ,30 ,j j j j j

ν ν+ ν ν+ ν< < < < < < …,1 1,1 ,2 1,2 ,30 ,y y y y y

ν ν ν ν ν ν ν ν νν ≤ < < < < < < < < < …,1 ,1 ,1 ,1 ,2 ,2 ,2 ,2 ,3' ' ' ' ' ,j y y j j y y j j

0,1'j ( )0'J x

α α− < ν < − +
π π

1,k k
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the function cν, k is the first positive zero of Cν(x). Moreover, for χ such that k – 1 < χ < k, where k is a
positive integer, it is true that jν, χ = cν, k, where α = (k – χ)π. Then there is a one-to-one correspondence
between the values of jν, χ and cν, k. Moreover, the above limit relation for cν, k implies that

(1.2)

It is well known (see Watson [60, p. 508]) that the function cν, k satisfies the integrodifferential equation
(referred to as Watson’s equation)

(1.3)

where K0(·) is a modified Bessel function of the second kind, which is positive on the interval (0, ∞) and
has the integral representation

.  (*)

Let jν, χ be a solution of Eq. (1.3) for χ > 0 that satisfies boundary condition (1.2).
For χ = k = 1, 2, …, we obtain the zeros jν, k of Jν(x), while, for k – 1 < χ < k, we have jν, χ = cν, k, where

α = (k – χ)π. For example, in the new notation, for zeros yν, k of Yν(x), we obtain

The right-hand side of Eq. (1.3) satisfies the Lipschitz condition with respect to jν, k > 0. In the case
jν, χ = 0, we have

for any χ > 0. Therefore, the condition

implies that χ' = χ; i.e., Eq. (1.3) with any initial condition (1.2) has a unique solution. Moreover, the
uniqueness implies that, if 0 < χ' < χ", then

(1.4)

which means that jν, χ is strongly monotone as a function of χ. Interesting special cases of Jν(x) and Yν(x)

are the functions at ν = . Then

(1.5)

In special case (1.5), the zeros cν, k can be computed using the formula

(1.6)

or, in χ-notation,

(1.7)

In the case ν = , we obtain the formula

(1.8)
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=,
  0
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1.1. Generalized Definition of Zeros of the Derivative of Cν(x)
The generalized definition of the zeros jν, χ of the function Cν(x) was given above.
Now, in a similar (but more complicated manner), we introduce a generalized definition of the zeros

 of the derivative . Specifically,  =  for ν > 0, where χ = k – , k – 1 < χ < k, k = 1, 2, …,

and cν, k is the first zero of Cν(x). Here, χ is a parameter. Now  solves a more complicated integrodif-
ferential equation (see Watson [60, p. 510], Elbert and Laforgia [8]):

(1.9)

The right-hand side of Eq. (1.9) satisfies the Lipschitz condition with respect to , provided that  > 0 and
 ≠ |ν|, and the solution of Eq. (1.9) satisfying certain conditions is unique at least in the domain where
 > |ν|. This uniqueness is not extended to the case  = |ν|. The authors examine the behavior of 

depending on the parameter α. The results supplement those of Lorch and Newman [39, p. 362] concern-
ing the positive zeros cν, k of Cν(x), namely, the kth positive zero cν, k(θ) of Cν(x, θ) is greater than the
kth positive zero cν, k(χ) of Cν(x, χ) for ν ≥ 0 when 0 ≤ θ < χ < π.

Specifically, it is proved that the χth positive zero  is an increasing function of χ, α = (k – χ)π, and
0 < α < π as long as  > |ν|.

In [7] Elbert, Kosik, and Laforgia consider only the case ν ≥ 0 and propose a modified (generalized)
definition of  that is more convenient in the case under consideration.

Specifically, the following algorithm is used for this purpose.
Step A. For α = 0, Cν(x, 0) ≡ Cν(x) ≡ Jν(x). If ν > 0, then the zeros of Jν(x) are denoted as usual by 0,

jν, 1, jν, 2, … . By Rolle’s theorem, the sequence , , … of zeros of  is such that

(1.10)

Moreover, a stronger inequality holds (see Watson [60, p. 488]), namely,

(1.11)

Step B. Consider the case 0 < α < π. Since

(1.12)

we have

(1.13)

Therefore, the inequality Cν(x) > 0 holds in a right neighborhood of the point x = 0.
Assume that the equation  = 0 has a solution cν, 1 on the interval 0 < x < ν. Then, according to Mul-

doon and Spigler’s work [48], this can happen only for 0 < α < π/6 (see Fig. 1).

ν χ,'j ( )ν'C x ν χ,'j ν,' kc α
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'
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Fig. 1. Plot of the function C1/2(x, α) for small α.
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Another result from [48] is that the function Cν(x) has a zero on the interval 0 < x ≤ ν if and only if
5π/6 < α < π. Therefore, if 0 <  ≤ ν, then Cν(x) > 0 on the interval 0 < x ≤ ν and the first zero of Cν(x)
satisfies the inequality cν, 1 > ν or, in the χ-notation, –jν, χ > ν, where χ = 1 – α/π.

Recall that Cν(x) is a solution of the Bessel differential equation

(1.14)

Therefore, if  = ν, then ( ) = 0 and  = ν is a double zero of . If 0 <  < ν, then (1.14)
implies that ( ) > 0; i.e., Cν(x) has a local minimum at x = . On the other hand, the differential
equation can be rewritten as

(1.15)

which implies that x  is an increasing function of x on 0 < x ≤ ν, since Cν(x) > 0 on the interval (0, ν].
Therefore,  > 0 and  vanishes another time on the interval (ν, cν, 1). However, it vanishes only
once on the basis of (1.5); x  is a strictly decreasing function on the interval (ν, cν, 1).

Let  be the second zero of . In χ-notation, the zero  is denoted by . Then ν <  < jν, χ,
where χ = 1 – α/π. Proceeding in the same manner, we conclude that there is exactly one zero of 
between the consecutive zeros jν, χ and jν, χ + 1 of Cν(x). This zero is denoted by . It satisfies the inequal-
ities

Step C. Now consider a function Cν(x) that decreases on the interval (0, cν, 1]. For example, it can be
Cν(x, π/2), i.e., Cν(x, π/2) = –Yν(x). Then the zeros of  are , , …, and they satisfy the inequal-
ities cν, 1 <  < cν, 2 <  < … .

Now we have  > ν. This can happen if cν, 1 > ν, while, relying on the above results of Muldoon and
Spigler [48], the case cν, 1 ≤ ν is possible only if α ∈ (5π/6, π), so  cannot belong to the interval (0, ν],
since otherwise we would have α ∈ (0, π/6). Let the zero  be given by the relations

Combining the above properties of , we obtain

(1.16)

ν,1'c

+ + − ν =2 2 2'' ' ( ) 0.x y xy x y

ν,1'c ν''C ν,1'c ν,1'c ( )ν'C x ν,1'c
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Fig. 2. Plot of the function  for –2 ≤ ν ≤ 2, 0 ≤  ≤ 5.
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, (1.17)

assuming that jn, χ – 1 exists.
An advantage of the modified zeros  is primarily that they satisfy inequalities (1.16) and (1.17), espe-

cially the latter, which is sometimes violated in the case of usual notation. This point will be discussed in
more detail below.

Now we establish some properties of the modified zeros . They are stated as the following lemmas.
Lemma 1.1. Let j ' be a zero of the function

that satisfies the inequality j ' > ν. Then there exists a number χ > 0 such that j ' = .
Proof. It is sufficient to show that the above definition of  takes into account all possible cases.

Assume that this is not the case. Recalling the definition, we find that the ignored function Cν(x) must be
monotone on (0, ν) but nonmonotone on (0, cν, 1], i.e., nonmonotone on [ν, cν, 1]. Then  would
have at least one zero c' such that ν < c' < cν, 1. On the basis of (1.15), x  is a decreasing function on
[ν, cν, 1] and C'(ν) > 0. According to our assumption, Cν(x) is monotone on (0, ν) and sign  =
sign  = 1 on this interval.

Among the functions Cν(x) for which 0 ≤ α < π, only Jν(x) is increasing on (0, ν]. However, the zeros
of  were already defined as , , … .

This contradiction shows that the above definition takes into account any function Cν(x), which proves
Lemma 1.1.

Now consider the function  =  defined by the formula

(1.18)

(1.19)

The function  decreases and satisfies the conditions  = 1 and  >  = 5/6.
Lemma 1.2. The function  is defined if χ >  and ν ≥ 0, where  is given by (1.19).

Proof. The function  is defined for any ν > 0. In the case χ > 1, the values of jν, χ – 1 and jν, χ are con-
secutive zeros of Cν(x). Therefore, by Rolle’s theorem,  exists for all ν > 0. Thus, we need to consider
only the case 0 < χ < 1, where χ = 1 – α/π. This case was treated in Step B. Therefore,  is the second
zero of  and

On the basis of (1.15), x  is a decreasing function on [ν, cν, 1]; therefore,

whence

(1.20)

Comparing (1.20) with (1.18), we see that α <  and, on the basis of (1.19),

which proves Lemma 1.2.
Now consider the special case ν = 1/2. Then

ν χ− ν χ ν χ< <, 1 , ,'j j j
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( ) ( )ν ν= ν ≥' ,  0, dC x C x
dx
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and  is a solution of the equation

(1.21)
In χ-notation, we have χ = k – α/π, k = 1, 2, … . Therefore, α = kπ – χπ and Eq. (1.21) becomes

  (1.21)'

According to [1],  = 1.1655…, so, setting

(1.22)

we obtain

and (1.21)' implies that

and

(1.23)

The right-hand side of (1.23) is a convex function for π/2 < δχ < π and has a minimum at δχ = 3π/4, where
it takes the value χ0 = 3/4 + 1/(2π), which belongs to the interval (0, 1). Thus, the function δχ is defined
for χ > χ0 and

(1.24)

Combining what was said above about  yields the following result.

Lemma 1.3. The function  is defined for χ > χ0 > 3/4 + 1/2π = 0.90915… and satisfies the limit rela-
tions

Moreover, this function is strictly increasing and concave.
Proof. On the basis of (1.22) and (1.24), we have

Therefore, according to (1.24), the limit relation for  holds. On the other hand, in view of (1.23), δχ
is a decreasing and convex function of χ. Therefore,  is an increasing convex function. Lemma 1.3 is
proved.

Remark 1.1. We see that δχ = xπ –  is a decreasing and concave function satisfying the condition

 = . Here, the following question arises. Let δν, χ = jν, χ – . For fixed ν ≥ 0, is the function δν, χ

decreasing and convex?
Remark 1.2. The authors conjecture that  is a concave function of χ for all ν > 0. Although this con-

jecture is not proved, the following properties of zeros make it plausible, taking into account the complete
monotonicity of the sequence

i.e., it decreases (see Lorch, Muldoon, and Szego [37]; Vosmanský [58, 59]).
Below is the basic theorem on the modified zeros .

χ1/2,'j

( ) ( )+ α − + α =sin ' 2 ' cos ' 0.j j j

( ) ( )χπ − + χπ − =sin ' 2 ' cos ' 0. j j j
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2
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Theorem 1.1. The zero  is a continuous function of both ν and χ for ν > 0 and χ > (ν), where (ν) is
defined by formula (1.19). Moreover,

(1.25)

and

Proof. First, consider the case of a fixed χ. Then the function  is the solution of the following non-
linear integrodifferential equation (see Watson [60, p 510]) or (1.9):

(1.26)

where j ' = .
The right-hand side of Eq. (1.26) satisfies the Lipschitz condition with respect to j', provided that j' ≠ ν and

j ' > 0. Moreover, we assume that

Therefore, the Cauchy problem for Eq. (1.26) with some initial value has a unique solution. Let χ > χ0,
where χ0 ∈ (0, 1) is the same as in Lemma 1.3. Then a solution of Eq. (1.26) satisfying the initial condition

is the function , assuming that  > ν > 0.
Elbert and Laforgia [8] proved that

(1.27)

Therefore, the inequality  > ν is satisfied for ν ≥ 1/2. The continuous dependence of the solution on
the initial condition guarantees that  is a continuous function of both ν and χ for χ > (ν) > χ0.

Additionally, we assume that

   (1.27)'

as long as  > ν.
To prove inequality (1.27), we first show that

This inequality holds, since, by Lemma 1.3,  is a strictly increasing function of χ. Thus, the unique-
ness of the above initial value problem at ν = 1/2 shows that  =  never holds if  >  > 0. There-
fore, inequality (1.25) is satisfied.

Consider the case where χ0 in (1.25) can be replaced by (ν). Since  > ν (see Step A above), inequal-
ity (1.27) holds for χ' > χ ≥ 1.

Now consider the case χ, χ' < 1. First, note that the first zero  of the function (x) is equal to .
Indeed, since, for α = π/2, we have Cν(x, π/2) = –Yν(x), the parameter χ can be set equal to 1/2, 3/2,
5/2, … .

The value 1/2 is not suitable, since, by Lemma 1.2, χ must be greater than (ν) and  must lie between
1 and 5/6. Therefore,
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Then, on the basis of (1.27), we obtain  >  and

(1.28)

For fixed ν > 0, assume that (ν) < χ < 1.

In the definition of the zero , we saw that two zeros of the function  on the interval (0, jν, χ)
appear at Step B of the algorithm, namely, the zeros  and  =  satisfying the relations

;

moreover,  < 0 on the collection of intervals

and  > 0 on the interval ( , ). Since

it follows from (1.28) that

(1.29)

for 0 < x < . Therefore,  is an increasing function of χ and ν for fixed x.

Consequently, the function  increases, while  decreases as χ grows. Taking into account (1.27),
we conclude that (1.25) holds as long as  exists. In view of (1.28), we have  < 0 for α = π/2 and
0 < x < . Therefore, on the basis of (1.29), there exists a unique value α* ∈ |0, π/2| or χ* ∈ |1/2, 1| for
α* = π(1 – χ*) such that x =  is a double zero of the function  at α = α*. Therefore,

and the Bessel equation (1.14) implies that  = ν. In view of (1.29) and (1.22), this can happen only if
α* = (ν) or χ* = (ν).

This proves the limit relation in Theorem 1.1. The proof of the theorem is complete.
Remark 1.3. Since the right-hand side of Eq. (1.26) satisfies the Lipschitz condition with respect to j'

for j ' ≠ ν and j ' > 0, it holds not only for ν > 0, but also for ν ≤ 0 and the domain of definition of the above
relations can be continuously extended to ν ≤ 0. The complete pattern of variations in the function  is
demonstrated in the plot for –2 ≤ ν ≤ 2 and 0 < j ' ≤ 5.

Remark 1.4. To confirm the necessity of introducing the modified definition of the zero , we con-
sider a zero of the function :

It is well known from [1] that  = 2.975086. The first two zeros of  are  = 1.165561 and

 = 4.604217. The monotonicity of  as a function of χ as given in (1.27)' can be violated if the first
zero  of  is denoted by  in the old notation, which seems natural.

Now, we analyze the monotonicity of jν, χ/  as a function of ν for fixed χ' > χ. For this purpose, we
consider the determinant

(1.30)

It gives some information on the relation between the zeros of Cν(x) and .
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Similar properties of the zeros  were examined by Laforgia [29, p. 30]. Specifically, it was proved
that

i.e.,  as k → ∞, m = k + 1.
Taking into account the asymptotic formula (see Watson [60, p. 507])

where α is independent of n or ν, it is possible to prove the more accurate result

Now consider the Turanian

and the Wronskian

where  are the zeros of the derivative , while  and  denote the derivatives of the zeros 
and  with respect to ν (except for the case  > ν > ).

It is proved in the work that

The following result was proved in [7].
Theorem 1.2. Let ν0 ≥ 0 and χ' > χ > (ν0). Then the determinant given by formula (1.30) is negative if

δ > 0 for all ν > ν0.

Proof. First, we note that, by Lemma 1.2, the function  is defined for all δ > 0, since (ν) is a
decreasing function. Therefore, (ν + δ) < (ν) < χ and, on the basis of (1.16), we conclude that  >
ν + δ. Using Watson’s formula and (1.26), we obtain

where

Applying formula (1.30) yields A(0) = 0; moreover,
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Let us show that A'(0) < 0. Since cosh(2t) > 1 for t > 0 and  > ν, we have Q( , ν, t) > 1. Recalling that
K0(u) is a decreasing function of u and using the inequality

and (1.17), we obtain . Therefore,

whence A'(0) < 0.
Consequently, A(δ) is negative in a right neighborhood of the point δ = 0. Now we show that A(δ) < 0

for all δ > 0.
Assume that this is not the case. Then there exists δ1 such that A(δ1) ≥ 0.
Define δ0 as

Clearly, δ0 > 0, A(δ0) = 0, and A(δ) < 0 for 0 < δ < δ0. Therefore, A'(δ0) ≥ 0 and, on the basis of (1.30), we
have

Thus,

Now,  > ν + δ0, so Q( , ν + δ0, t) > 1 for t > 0. Applying the inequality  > , we obtain
 < , whence A'(δ0) < 0. However, this contradicts the inequality

A'(δ0) ≥ 0, which was mentioned above. Therefore, A(δ) < 0 for all δ > 0. The theorem is proved.
An equivalent form of Theorem 1.2 is stated as a corollary.
Corollary 1.1. Let χ and χ' be the same as in Theorem 1.2. Then  is a decreasing function of ν

and ν > ν0.
In [39], which was briefly discussed above, Lorch and Newman propose some supplements to the

Sturm theorem on the interlacing of zeros of solutions to second-order differential equations.
It is well known (see, e.g., Ince [21, p. 224]) that the Sturm theorem states that two linearly indepen-

dent solutions of a homogeneous linear second-order differential equation have alternated internal zeros.
Accordingly, the following problem arises. Given two linearly independent solutions of a homogeneous
linear second-order differential equation with isolated zeros, determine which of the solutions has the
largest internal zero of certain rank. A criterion for this is proved in Theorems 1–4 presented in the work.
An internal zero of a solution is defined as a zero lying inside the considered interval consisting of usual
points of the equation. Only internal zeros have prescribed ranks, and these zeros are counted in ascending
order of magnitude. For example, for solutions of the Bessel equations (for Bessel functions), the strictly
positive zeros are all internal, except for x = 0.

A related question arises, namely, whether, under certain conditions, there is a “zero-maximal solu-
tion,” i.e., a solution having the extremal property and such that, among all nontrivial solutions with iso-
lated zeros, there is one having the largest internal zero of prescribed rank. An affirmative answer to this
question is given in Theorem 3.

The corresponding question for the smallest zero of any rank has a negative answer, since there always
exists a nontrivial solution of the differential equation that vanishes at a prescribed point arbitrarily close
to the lower end of an open interval consisting of usual points (see Ince [21, p. 73]).

The proofs of the indicated theorems are not presented here, but corollaries are stated that concern the
Bessel equation, Bessel functions, and their zeros.

Consider the cylinder function Cν(x, θ). The following result is a consequence of Theorem 2 proved in
the work.

Corollary 1.2. The kth positive zero cν, k of the function Cν(x) is greater than a positive zero of the func-
tion Cν(x, ψ) for ν ≥ 0, where 0 ≤ θ < ψ < π.
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Proof. Under the assumptions of Theorem 2, we have

for all sufficiently small positive x.
As an application of Theorem 3 on a solution with the largest zero, the following result holds.
Corollary 1.3. The kth positive zero of the function Jν(x) is greater than the kth positive zero of any

other solution Cν(x) ≡ Jν(x) of the Bessel equation for ν ≥ 0.
The proof follows from the limit relation

The following result is a consequence of Theorem 4.
Corollary 1.4. For ν > 0, ν ≠ 1, 2, …, let j–ν, k and yν, k be the kth positive zeros of the functions J–ν(x)

and Yν(x). Then

for νπ located in quadrants I or III and

for νπ located in quadrants II or IV, k = 1, 2, … .
Proof. It was earlier shown that Jν(x) is the maximum solution with respect to positive zeros. This

establishes an upper bound everywhere, since Jν(x) and J–ν(x) are linearly independent solutions of the
Bessel differential equation when ν is not an integer.

To prove the remaining inequality, we consider the identity (see Erdelyi, et al. [15, p. 4, formula 4])

To apply the general Theorem 4, we set z0 = 0, w1(x) = Jν(x), and w2(x) = –Yν(x).
In quadrant I, let y1(x) = J–ν(x) and y2(x) = –Yν(x). Then αδ – βγ = cos(νπ) > 0 and the middle

inequality is valid (yν, 1 > ν is known to hold for ν > 0).
In quadrant III, let y1(x) = –J–ν(x). Then y1(x) is positive for x close to the point x0 (since Jν(0) = 0,

–Yν(0) = 2) and y2(x) = –Yν(x). Then αδ – βγ = cos(νπ) > 0, which is the case considered earlier.
In quadrant II, let y1(x) = –Yν(x) and y2(x) = J–ν(x).
In quadrant IV, let y1(x) = –Yν(x) and y2(x) = –J–ν(x).
Now let us analyze in more detail Muldoon and Spigler’s work [48], which deals with zeros of the func-

tions Cν(x, θ) and (x, θ) with respect to x on the interval 0 < x ≤ ν.

The authors prove that the function Cν(x, θ) has no such zeros if 0 ≤ θ ≤ 5π/6, while (x, θ) has no
such zeros if π/6 ≤ θ ≤ π. This assertion in implicit form is contained in Olver’s work (see [50, p. 707, foot-
note]).

In Lorch and Newman’s work [39, the corollary to Theorem 2], the Sturm method and the monoto-
nicity of Yν(x)/Jν(x) as a function of x were used to prove that the x-zeros of Cν(x, θ) decrease with increas-
ing θ for 0 ≤ θ < π. It is also well known that the first positive zero of Yν(x) is greater than ν (see Watson
[60, p. 487]). Therefore, there is a value θ0(ν) with π/2 < θ0(ν) < π such that the function Cν(x, ν) has no
x-zeros on the interval 0 < x < ν for 0 < θ < θ0(ν).

To derive a result independent of ν, we need to examine the monotonicity of the ratio Yν(x)/Jν(x) and
its limit as ν → ∞.

For this purpose, for ν ≥ 0 and fixed x > 0, let θ1(x, ν) and θ2(x, ν) denote unique numbers satisfying
the inequality 0 ≤ θ1, 2(x, ν) < π and such that the functions Cν(x, θ) and (x, θ) vanish, respectively, at
θ = θ1, θ2. Consider the functions

( )
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The following assertions are proved in the work.
(1) The function θ1(ν, ν) decreases from π to 5π/6 as ν increases on the interval (0, ∞).
(2) The function θ2(ν, ν) increases from 0 to π/6 as ν increases on the interval (0, ∞).
(3) If 0 ≤ θ ≤ 5π/6, then Cν(x, θ) has no x-zero on the interval 0 < x ≤ ν.

(4) If π/6 ≤ θ ≤ π, then (x, θ) has no x-zero on the interval 0 < x ≤ π.

(5)  + Yν(x) < 0 for 0 < ν < ∞.

(6)  < 0 for 0 < ν < ∞.
Remark. In fact, assertion (1) was proved in (Watson [60, p. 515]), while the values at the endpoints

follow from (Spigler [54], formulas (1.9), (1.10)).
The quantities θ1, 2(ν, ν) are the values of θ such that cν, 1(θ) = ν and (θ) = ν, respectively. These

values have been tabulated and can be found in (Spigler [54, pp. 81–82]) for ν = 0.1(0.1)10.
The proof is omitted here. Note only that the above results imply that, for every fixed positive ν, the

function Cν(x, θ) has exactly one x-zero on the interval (0, ν) if and only if θ1(ν, ν) ≤ θ < π, while the func-

tion (x, θ) has exactly one x-zero on (0, ν) if and only if 0 ≤ θ < θ2(ν, ν).

2. CONVEXITY, CONCAVITY, AND MONOTONICITY OF ZEROS OF BESSEL FUNCTIONS
Now we describe some convexity, concavity, and monotonicity properties of zeros of Bessel functions

and their derivatives. These properties are important and interesting in applications.

Let us begin with McCann’s work [43]. The main result of [43] is the assertion that  and 
are strictly decreasing functions of ν. The proof is based on a variational technique applied to the eigen-
value problem

(2.1)

(2.2)
The general solution of problem (2.1), (2.2) is the function

where C1 and C2 are constants, while the eigenvalues λk of the problem are the positive roots of the tran-
scendental equation

(2.3)

Specifically, the nth eigenvalue of problem (2.1), (2.2) is the nth positive root of Eq. (2.3).
Lemma 2.1. For q > 0 and 0 < a < 1, the following assertions hold for the function

.   (2.3)'

(i) fa, q → Jq uniformly as a → 0+ on any interval of the form [α, β], where 0 < α < β ≤ 1.

(ii)  uniformly as a → 0+ on any interval of the form [α, β], where 0 < α < β ≤ 1.
(iii) There are numbers ε, δ > 0 such that fa, q(x) > 0 and Jq(x) > 0 for a ∈ (0, δ) and x ∈ (0, ε).
The proof relies on asymptotic formulas for Jν(z), Yν(z), and their derivatives as z → 0+ (see Temme

[56, p. 208]):
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Assertion (i) follows from Jq(0) = 0 and  → ∞ as a → 0+ for any x > 0. By using the above asymp-
totic expansions, it is easy to show that

uniformly on an interval of the form [α, β], where 0 < α < β ≤ 1. For sufficiently small a, we have

Thus, there are ε, δ > 0 such that fa, q(x) > 0 and Jq(x) > 0 if a ∈ (0, δ) and x ∈ (0, ε).
This proves assertion (iii).
Lemma 2.2. Let zn(a, q) denote the nth positive zero of the function fq, q, and let jq, n denote the nth positive

zero of the function Jq. Then

The complete proof of the lemma is omitted. Note only that it is based on induction and Lemma 2.1.
The study of the eigenvalues of problem (2.1), (2.2) is based on a variational technique. For this pur-

pose, consider the Rayleigh quotient

It is well known (see, e.g., Mikhlin [46, Sections 31, 35]) that if V is the linear set of all functions from
C2(a, 1) that satisfy boundary conditions (2.2), then

Let y1, y2, …, yn be functions from V; A be the subset of V spanned by the collection y1, y2, …, yn; and A1
be the orthogonal complement of A with respect to V. Then

where the maximum is taken over all sets of n functions from V. Here,

where zn(a, 1/p) is the nth positive zero of . Since x2p – 1 ≤ x2q – 1 for x ∈ [a, 1] and p ≥ q, we have
R[p, y] ≥ R[q, y].

Moreover, λn(p) ≥ λq(q) for p ≥ q, which is equivalent to the inequality

Setting t = q–1 and s = p–1 yields

(2.4)

from which, letting a → 0+ and applying Lemma 2.2, we obtain

(2.5)

Theorem 2.1. For positive zeros jq, n of the Bessel function Jq(x), it is true that

Proof. The second inequality is well known. Its proof with the use of the Sturm theorem can be found
in (Bôcher [3]). An alternative proof is given in (Watson [60, p. 508]). It follows from (2.5) that s–1js, n ≥ t–1jt, n.
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Assume that there exist numbers t and s such that 0 < s < t and s–1js, n ≥ t–1jt, n. Then

To simplify the presentation, we assume that s–1js, n = k > 0. Then jp, n = kp for p ∈ [s, t] and we obtain

(2.6)
It is well known (see Watson [60, p. 44]) that Jp(z) is an analytic function of z for all z (except for, pos-

sibly, z = 0) and it is an analytic function of p for all p. Moreover, the series for Jp(z) converges absolutely
and uniformly in any closed domain of z (the origin does not belong to this domain if Re(p) < 0) and in
any bounded domain of p. It follows that Jp(kp) is an analytic function of p on any compact interval not
containing the point p = 0. Therefore, Jp(kp) ≡ 0 on any compact interval not containing p = 0.

It is also well known (see Watson [60, p. 508]) that jt, 1 is an increasing function of t and jt, n ≥ jt, 1 >
j0, 1 > 2.4 for t > 0. If p = 1/k, then J1/k(1) = 0. Therefore, j1/k, n = 1 for some n, which is not possible. This
contradiction proves that s–1js, n ≠ t–1jt, n if s ≠ t, which implies the desired inequality.

Theorem 2.1 states that jt, n/t is a strictly decreasing function of t, which contrasts with the well-known
result that jt, n is a strictly increasing function of t for t > 0 (see Watson [60, p. 508]).

Tricomi’s asymptotic formula (see Tricomi [57])

where ci, k are constants independent of t, implies that

Corollary 2.1. For every n, the function jt, n uniformly satisfies the first-order Lipschitz condition on
any interval 0 < a ≤ t < ∞.

Indeed, let t, s ∈ [a, ∞) and t ≤ s. Then

Therefore,

which implies the desired result.
By applying Theorem 2.1, we can obtain various inequalities for jt, n. The best available upper bound

for jt, 1 (see Watson [60, p. 485], note that the text contains a misprint) is

By using tabulated numerical data from [51], it can be shown that (11.5)–1j11.5, 1 < . Therefore,

if t > 11.5. This illustrates the fact that the estimate for jt, n obtained in the theorem is better than a previ-
ously known inequality.

If the boundary conditions in problem (2.1), (2.2) are replaced by

then the above procedure can be modified in order to prove that  is a strictly decreasing function of t,
where  is the nth zero of the function .

Indeed, consider the function
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Applying Lemmas 2.1 and 2.2 to it yields

Relation (2.4) remains valid if (2.2) is replaced by (2.2)', and we have

Proceeding as in the proof of Theorem 2.1, we see that the following result holds.
Theorem 2.2. The zeros  of the function  satisfy the inequality

Corollary 2.2. For every n, the function  uniformly satisfies a first-order Lipschitz condition on any
interval 0 < a ≤ t < ∞.

The proof is similar to that presented above for the zero jt, n.
Corollary 2.3. It is true that

As proof, we note that t <  < jt, 1 (see Watson [60, pp. 485, 487]).
Between any two consecutive zeros of the function Jt(x), there is only one zero of  (a consequence

of the mean value theorem). Moreover, it holds that

so

The monotonicity of zeros jν, k of the function Jν(x) was also examined by McCann and Love [45].
The main result proved in [45] is stated as follows.
Theorem 2.3. Let jν, 1 be the first positive zero of the function Jν(x). Then the ratio jν, 1/(ν + α) is a strictly

decreasing function of ν for fixed α ≥ 0 and sufficiently large ν if the following conditions are satisfied:
(i) α ≤ 1.1 and 3.5 ≤ ν;
(ii) α ≤ 2.411 and 20.5 ≤ ν;
(iii) ν > α and K(ν) > 2αν/(ν – α).
Moreover, jν, 1/(ν + α) → 1 as ν → ∞. Here, K denotes the smallest positive integer m such that jν, 1 < ,

where  is the first zero of .
In other words, for any α > 0, the function jν, 1/(ν + α) is strictly decreasing when ν takes sufficiently large

values. For every α, a lower bound for ν is indicated that ensures the monotonicity of jν, 1/(ν + α).
Proof. The theorem is proved by applying the variational method to a boundary eigenvalue problem of

the form

(2.7)

(2.8)
where 0 < a < 1, 0 < p, and A ≡ A(p) = 1 – αp on the interval (0, α–1), α > 0.

The general solution of problem (2.7), (2.8) is given by

and the eigenvalues λn(p, a) coincide with the positive roots of the transcendental equation
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Consider the Rayleigh quotient

It is well known (see Mikhlin [46, Sections 31 and 35]) that the eigenvalues {λn(p, a)} of problem (2.7),
(2.8) can be obtained from the Rayleigh quotient.

Let V(a) be the linear space of all functions from C2([0, 1]) that satisfy boundary conditions (2.8). Then

If y1 is the eigenfunction of problem (2.7), (2.8) corresponding to the eigenvalue λ1(p, a), then

The eigenfunction y1 is given by

where λ1 ≡ λ1(p, a).
The subsequent results are based on 14 lemmas given with complete proofs. We omit the proofs of these

lemmas and the theorem based on them, but present only the following lemmas.

Lemma 2.3. For ν > 0, let jν, 1 and  be the smallest positive zeros of the functions Jν(x) and , respec-
tively. Let K(ν) be the smallest positive integer satisfying jν, 1 < . Then there exists K(ν) such that

(i) for fixed λ ≥  such that K(λ) ≥ 3, it is true that K(ν) ≥ 3 for all ν ≥ λ;

(ii) for fixed ν ≥ 5 such that K(λ) ≥ 4, it is true that K(ν) ≥ 3 for all ν ≥ λ.

The existence of K(ν) for all ν > 0 follows from the fact that jν, 1 >  and  > μ for all μ > 0 (see
Watson [60, p. 485]).

Lemma 2.4. Let K(ν) be the same as in Lemma 2.3.
Then the following assertions hold:
(i) K(ν)→ ∞ as ν → ∞.

(ii) If m is a positive integer, then  > 0 if and only if K(ν) ≤ m.
(iii) K(ν) ≥ 2 if ν > 0.
(iv) K(ν) ≥ 3 if ν ≥ 3.5.
(v) K(ν) ≥ 4 if ν ≥ 18.5.
Theorem 2.3 implies an upper bound for the zero jν, 1. For example, using assertion (ii) from the theo-

rem, we obtain

(2.9)

where j20,5, 1 is taken from (Watson [60]).
The best previously known upper bound for jν, 1 is

(2.10)

(see Watson [60, p. 487]).

[ ]
( ){ }−

−

− + +

=
∫

∫

1
2 1

1
2 1 2

' '

, , .a

p

a

xy A x y ydx

R p y a

x y dx

( ) [ ] ( )λ = ∈ ≠1 , min , , , , 0.p a R p y a y V a y

( ) [ ]λ =1 1, , , .p a R p y a

( ) ( ) ( )
( ) ( )λ

= λ − λ
λ

1/2
/ 11/2 1/2

1 / / 11/2
/ 1

/
/ /, , ,

/

p
A pp p

A p A pp
A p

J a
y p a x J x p Y

p
x

Y a
p

p

ν,1'j ν )'(J x

ν+ ,1' mj

1
4

ν,1'j μ,1'j

( )ν+ ν,1' mJ j

( ) ( ) ( )−
ν < ν + < ν +

< ν + < ν

1
,1 20.5,1 2.411 22.911 1.133 2.411

1.133 2.732 for 20.5 ,
j j

( ) ( ){ }ν < ν + ν +
1/2

,1
4 1 5
3

j



1192

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 56  No. 7  2016

KERIMOV

Computations show that the upper bound in (2.9) is better than (2.10) for 20.5 < ν. The theorem can
also be used to obtain a lower bound for jν, 1. Since jν, 1 < 2.405 and jν, 1(ν + α)–1 > 1 if α ≤ 2.44 and 20.5 ≤ ν, we
have jν, 1 > ν + jν, 1 for 20.5 ≤ ν. Using tables from [51, 19, 29], we find that

Therefore, for 0.05 < ν,

The following result was also proved in the work.
Theorem 2.4. If jν, 1 is the smallest positive zero of the function Jν(x), then

(2.11)

Proof. It is well known (see Watson [60, p. 508]) that, for ν > 0,

Using the relation

(see Watson [60, p. 152, formula (5)]), we obtain

The recurrence formula

yields

Therefore,

From the table in (Grey, Mathews, MacRobert [19, p. 317]), we find that jν, 1 < 2.4817 on the interval [0, 005].
Therefore, on this interval,

which implies that jν, 1 > ν + jν, 0 for ν ∈ (0, 005].
Combining what was said above, we complete the proof of the theorem. The best known lower bound

for jν, 1 is

(see Watson [60, p. 486]).
Obviously, ν + jν, 0 > {ν(ν + 2)}1/2 for all ν > 0.
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It was proved in (McCann [43]) that  Clearly, for ν > 0, we obtain ν + jν, 1 >

(ν2 + )1/2.

In (Hethcote, [20]) it was proved that

(2.12)

The strict inequality (2.11) becomes equality at ν = 0, while (2.12) holds as equality at ν = 1/2. Therefore,
for ν ∈ [0, 1/2], neither (2.12) nor (2.11) follow from one another. Inequality (2.11) holds for all ν > 0,
while (2.12) is valid only for ν ∈ [0, 1/2]. Inequality (2.12) can physically be interpreted as follows. Con-
sider a membrane in the form of a circular sector 0 ≤ r ≤ 1, 0 ≤ θ ≤ α, where α < 2π, with fixed boundaries.
The fundamental frequency of its transverse vibrations is proportional to the Bessel function zero .
The theorem implies that the fundamental frequency is a superlinear function of α–1.

A task of interest is to examine the behavior of the function

Using the tables from (Olver [51]) for ν = k/2, k = 0, 1, …, 41, we see that the function f(k/2 increases
from f(0) = 1.0000 to f(4.5) = 1.1850 and then decreases to f(20.5) = 1.1332.

Theorem 2.3 shows that f(ν) then decreases to 1. The behavior of this function is illustrated in Theorem 2.4.

3. CONCAVITY OF ZEROS jν, k OF THE BESSEL FUNCTION Jν(x)

Now we analyze Elbert’s work [4], where the concavity of zeros jν, k of the Bessel function Jν(x) with
respect to ν is examined.

For ν ≥ 0, consider the kth positive zero jν, k of the Bessel function Jν(x). The behavior of jν, k as a func-
tion of ν for fixed k was investigated by Watson [60, p. 373], Erdelyi, et al. [15], Lewis and Muldoon [34],
Tricomi [57], Makai [42], and McCann [44].

In his seminal work [4] on Bessel function zeros, Elbert studied the concavity of the zero jν, k of the Bes-
sel function Jν(x) with respect to ν.

Before describing this work, we recall Watson’s well-known formula (1.3) (see Watson [60, p. 508])
with cν, k replaced by jν, k for any real ν, which implies that jν, k is an increasing function of ν. Recall also
Tricomi’s asymptotic formula (see [57]) for the kth zero jν, k:

where ci, k are constants independent of ν or k.
The definition of jν, k implies that the number sequence c1, 1, c1, 2, c1, 3, … is nondecreasing.

The behavior of jν, k/ν was examined independently by Lewis and Muldoon [34], Makai [42], and
McCann [44]. Specifically, it was shown that this ratio is a strictly increasing function. Combining this
result with Tricomi’s formula yields

Elbert was the first to extend the definition of jν, k from the domain 0 ≤ ν < ∞ to –k < ν < ∞ for k = 1,
2, … . For this purpose, we consider the following series for Jν(x):

Since Jν(x) is an analytic function of both x and ν, except at x = 0, the zeros of Jν(x) can be continued ana-
lytically as long as they are positive. First, consider a neighborhood of ν = –l and x = 0 in the (ν, x) plane,
where l = 1, 2, … .
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The function f(ν, x) defined by the formula

is analytic in the indicated neighborhood, provided that the latter is sufficiently small. Since f(–l, 0) = 0
and (–l, 0) = 1 ≠ 0, the equation f(ν, x) = 0 has a unique analytical solution of the form

for sufficiently small x (see, e.g., Bieberbach [2, p. 192]). Moreover, a1 = … = a2l – 1 = 0, a2l = 2–l/[l!(l – 1)!],
and am are real numbers. This function has an inverse x = j(ν) (see Bieberbach [2, p. 190]):

(3.1)

where bl = 2|[l !(l – 1)!]1/(2l)| > 0 and the coefficients bm are all real. The function w = z1/(2l) is 2l-valent. We
choose the branch that maps real values of z to positive values of w. Then the function j(ν) is positive for
sufficiently small positive ν + l. If we choose a different branch of w = z1/(2l), then the function j(ν) is nei-
ther real nor positive for small positive ν + l. Therefore, on the basis of formula (3.1), the function j(ν) is
only a real and positive zero of Jν(x) for such ν. Consequently, j(ν) coincides with one of the positive func-

tions  in a right neighborhood of ν = –l. Since j(ν) is unique in the above-indicated sense, there is
no other function jν, k that vanishes at ν = –l. Then there is no negative noninteger ν at which any function

from  vanishes. Since these functions are increasing in ν for fixed k, the function jν, 1 vanishes at
ν = –1 and exists only for –1 < ν < ∞. Then jν, 2 must vanish at ν = –2 and so on. Thus, only the functions
jν, k + 1, jν, k + 2, … are defined on the interval –k – 1 < ν < –k, k = 0, 1, 2, …, and jν, k + 1 is the first positive
real zero of the function Jν(x). It should be noted that, by the Hurwitz well-known theorem on zeros of
Jν(x) (see Watson [60, p. 483], Kerimov [23, 24]), the function Jν(x) with –k – 1 < ν < –k, k = 0, 1, 2, …,
has only 2k complex zeros; all real zeros are ±jν, k + 1, ±jν, k + 2 …; and Jν(x) has only real zeros if ν > –1.

To prove the main result of the paper under discussion, namely, the fact that jν, k is a concave function
of ν, we need the following assertion.

Lemma 3.1. Let j = jν, k for k = 1, 2, … . Then

(3.2)

(3.3)

Remark 3.1. It follows from (3.1) and (3.2) that the ratio jν, k/(ν + 1/2) is a strictly decreasing function
for –k ≤ ν < ∞. This strengthens the above-described results on the behavior of jν, k/ν. A decrease in the
ratio jν, k/(ν + k) for –k < ν < ∞ is not considered by the author. This issue was considered in part above
in the analysis of McCann and Love’s work [45] on the first zero jν, 1.

The proof of Lemma 3.1 is rather complicated, so it is given only in part.
The proof of the lemma in the case –k < ν ≤ 0 is omitted. Consider the case ν > 0. Since sinh t > t for

t > 0 and K0(x) is a strictly decreasing function of x, Watson’s formula (1.3) implies that

(3.4)
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where u = jt and j = jν, k. The integral on the right-hand side is evaluated using a well-known formula (see
Watson [60, p. 388]). Consider the function α = α(ν) defined as

(3.5)

On the basis of (3.4), α(ν) is defined for all ν ≥ 0. Since j/ν is a strictly decreasing function, α(ν) is a
strictly increasing one. Therefore, combining (3.5) with the definition of α(ν) yields

and, on the basis of formula (3.1), we obtain

(3.6)

The function (π/2 – α)/cos α takes its maximum value π/2 at α = 0. Therefore, on the basis of (3.4), we
have j ' < π/2. In the case 0 ≤ ν ≤ 1/2,

since j0, 1 = 2.4048… . Thus, the lemma is valid for these values of ν.
The proof of the lemma for 1/2 < ν < ∞ is omitted.
Theorem 3.1. The zeros jν, k of Jν(x) are concave functions of ν on the interval 1/2 < ν < ∞ for k = 1, 2, … .
Proof. Setting u = jν, k t in (1.3) and differentiating it with respect to ν, we obtain

(3.7)

Integration by parts of the first term on the right-hand side of the formula gives

The first term on the right-hand side is zero, since

The function K0(x) is given by the asymptotic formula

(see Watson [60, p. 202]).
After some computations, we obtain

(3.8)
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Let the expression in curly brackets be denoted by I, i.e.,

If we prove that I > 0, then, on the basis of formula (3.8), the theorem will be proved. Since j ' > 0 and
tanh t < 1, we have

It follows that, if ν ≤ –1/2, then I > 2t > 0. If –1/2 < ν < ∞, then, by Lemma 3.1, it is true that (ν + 1/2)j < j.
Using the inequality tanh t < t for t > 0, we obtain

which completes the proof of the theorem.

4. MONOTONICITY AND CONCAVITY OF ZEROS cν, k OF THE BESSEL FUNCTION Cν(x)
In [30] Laforgia and Muldoon examined the monotonicity and concavity of Bessel function zeros jν, k,

yν, k, and cν, k regarded as functions of ν. Specifically, Elbert’s results [8] concerning the zeros jν, k were
extended to the zeros cν, k of the function Cν(x). It was proved that cν, k (k = 2, 3, …) is a concave function
of ν on the interval 0 < ν < ∞ for any α. For the first zero cν, 1, the same result was proved for 0 ≤ α ≤ π/2.
This case also covers the important special case of the zero yν, 1.

The main idea behind the proof is to use the inequality

(4.1)

whence cν, k/(ν + 1/2) is a decreasing function of ν. Combining this with Watson’s formula for dcν, k/dν,
namely,

we can prove that cν, k is a concave function of ν.
The concavity property can be used to prove various inequalities for cν, k that are stronger than (4.1). In

the case of the interval 0 < ν < ∞, some of the proved results improve Elbert’s ones for the special case of
zeros jν, k, but, in contrast to Elbert’s, they cannot be extended to ν < 0. For these values, Elbert used an
indirect version of the Sturm comparison theorem and arguments based on Watson’s formula. Only some
of these arguments can be extended to the zeros cν, χ.

The following general theorem is proved in the work.
Theorem 4.1. For k = 1, 2, …, let α be fixed so that 0 ≤ α < π, and let cν, k = cν, k(a) be the kth zero of the

function Cν(x, α). Let f be a positive, nondecreasing, and differentiable function on (a, b), where a ≥ 0. Assume
that

(4.2)

Then

Proof. In view of Watson’s formula for dcν, k/dν, it suffices to prove that

(4.3)
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Combining sinh t > t, t > 0, with inequality (4.2) and the fact that K0(x) is a decreasing function, we con-
clude that the integral on the left-hand side of (4.3) is less than the function

(4.4)

Making a substitution of variables gives

where y = 2ν[2ν + πf(ν)]–1 is a number lying between 0 and 1. The last infinite integral is calculated
according to (Watson [60, p. 388]), so we obtain

Therefore, inequality (4.3) holds if we show that

(4.5)

where x = arccos y. It follows from (4.5) that

so (4.5) is reduced to the form

(4.6)

To prove (4.6), we write

Then g(0) = g(π/2) = 0 and

It follows that there exists a number x0, 0 < x0 < π/2, such that g'(x) > 0 for 0 < x < x0 and g'(x) < 0 for x0 <
x < π/2. Therefore, g(x) > 0 for 0 < x < π/2 and relation (4.6) holds. Theorem 4.1 is proved.

4.1. Linear Comparison Functions

Now we consider the special case of the theorem when f(ν) = 1/2.
Theorem 4.2. Suppose that the positive zero cν, k = cν, k(α) of the cylinder function Cν(x, α) satisfies the

inequality

(4.7)

where a is a fixed number such that a ≥ 0. Then

(4.8)

and

(4.9)

Specifically, inequalities (4.8) and (4.9) are satisfied with a = 0 for k = 2, 3, … and any α. If k = 1, then (4.8)
and (4.9) hold with a = 0 for α satisfying 0 ≤ α ≤ π/2.

Corollary 4.1. For every k = 1, 2, …,
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Proof of Theorem 4.2. The validity of (4.5) follows from Theorem 4.1. To prove inequality (4.6), we use
the method applied in (Elbert [4]) for the case cν, k = jν, k. In this situation, all of Elbert’s arguments hold
and they lead to the formula

where

For t > 0 and ν > a, it follows from (4.5) that f(ν, t) > 0. Therefore, (4.6) is satisfied. For k ≥ 2, we have

The last inequality holds in view of the strict inequality

(4.10)

(see Laforgia and Muldoon [31, formula (2.4)]). Therefore, inequalities (4.8) and (4.9) hold for a = 0.
Without imposing additional constraints on α, the inequality

(4.11)

is not satisfied for 0 < ν < ∞. However, we can show that (4.11) holds on some interval a(α) < ν < ∞ irre-
spective of the value of α. Assume that 0 ≤ α ≤ π/2. Then cν, 1 ≥ yν, 1, which can be seen by inspecting the
graph of Jν(x)/Yν(x). Therefore, to complete the proof, we need to show that

(4.12)

The remark following the lemma in [8, Section 2] implies that

if y0, 1 > 1/4. Combining this result with the fact that y0, 1 = 0.89, we conclude the validity of (4.12). The-
orem 4.2 is proved.

Proof of Corollary 4.1. This result follows from Theorem 4.2.
Now we use (4.9) to sharpen (4.8) and well-known inequalities for zeros cν, k.
Theorem 4.3. Let cν, k = cν, k(α) be a positive zero of the cylinder function Cν(x, α), where α takes arbitrary

values for k = 2, 3, …, but 0 ≤ α ≤ π/2 for k = 1. Then

(4.13)

and

(4.14)

where αk is a positive number defined by the formula

  (4.14)'

Proof. Under the assumptions made, Theorem 4.2 implies that cν, k is a concave function of ν. Com-
bining this result with the limit relation cν, k ~ ν as ν → ∞ yields (4.13). This inequality also follows from
(Elbert and Laforgia [8, Remark 2.1]). The slope of the tangent at (ν, cν, k) is less than the slope of the
chord joining the point (0, c0, k) and (ν, cν, k), i.e.,

(4.15)

To prove (4.14), we need the inequality

which follows from (4.15) if we prove that
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This inequality follows from the concavity of the zero cν, k. It expresses the fact that the graph of cν, k lies
below its tangent at the point (0, c0, k). This completes the proof of Theorem 4.3, which can be used to
prove the following result.

Theorem 4.4. Under the conditions of Theorem 4.3,

Proof. This inequality can be proved using two methods. On the one hand,

where the value of the integral over the infinite interval is known (see Watson [60, p. 388, formula (8)].

Thus, ak defined by formula (4.14)' satisfies the inequality ak >  and the desired result follows from

(4.14). On the other hand, this result can be obtained by applying Theorem 4.1 with f(ν) = , a = 0,

and b = ∞ and using formula (4.13).
In view of (4.8) and (4.14), which give lower bounds of the form ν + const for cν, k|dcν, k/dν|–1, we may

assume that there are upper bounds of the same form for this function. However, this is not the case, which
follows from the asymptotic formula for zeros for large ν (see Olver [50], Tricomi [57]).

4.2. The Case of a Nonlinear Comparison Function
The asymptotic formula (see Tricomi [57])

can be used to examine the monotonicity of the zero jν, k|ν + cν1/3|–1, where c is a constant. The following
result holds for the function jν, 1.

Theorem 4.5. The function

decreases with increasing ν, 0 < ν < ∞, where

Proof. To prove this result, we use Theorem 4.1 with cν, k = jν, 1, f(ν) = a1ν1/3, a = 0, and b = ∞. Before

applying this theorem, we need to show that

For ν ≥ 1, this inequality was proved in (Hethcote [20]), while, for 0 < ν < 1, it follows from (4.10), since
j0, 1 > aν1/3 for 0 < ν < 1.

Note that the monotonicity proved in Theorem 4.5 is stronger for large ν and weaker for small ν than
the properties based on inequality (4.8) or (4.9).

5. CONVEXITY OF ZEROS cν, k OF THE BESSEL FUNCTION Cν(x)
Elbert’s results [4] concerning the convexity of zeros jν, k (k = 1, 2, …) of the Bessel function Jν(x) were

described above.
Applying the methods used in [4], Laforgia and Muldoon [31] proved that, for k ≥ 2, the zeros cν, k(α)

of Cν(x) are concave functions of ν on the interval (0, ∞) and cν, 1(α) is a concave function on (0, ∞) at
least for 0 ≤ α ≤ π/2.

In [10] Elbert and Laforgia proved that this result on the behavior of cν, k is not true when α takes values
close to or smaller than π.
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More specifically, it was shown that there exists a number ε (= 0.336697…) such that, if π – ε < α < π,
then cν, 1(α) ≤ ν + ε – 1/2 and cν, 1(α) becomes a convex function of ν on the interval [1/2, ∞).

To prove the main result, we have to recollect some well-known formulas and assertions. All of them
are valid in both k-notation and generalized χ-notation. As was noted above, Elbert [4] proved that the
zeros jν, k, k = 1, 2, …, are concave functions in their entire domain of definition, and Laforgia and Mul-
doon [31] extended this result to the zeros cν, k or, in χ-notation, to jν, χ. It was shown that jν, χ is a concave
function for χ ≥ 1/2 and ν ≥ 0. Simultaneously, a question arose as to whether jν, χ is a concave function
for any χ > 0.

In [10] Elbert and Laforgia answered this question in the negative and showed that, for sufficiently
small χ, the function jν, χ is convex at least for ν ≥ 1/2.

To prove the main result, we recall some well-known formulas.
Specifically, it is well known that

(5.1)

(see Watson [60, p. 388]) and

(5.2)

 (5.2)'

(see Elbert [4]). Although, in the indicated work, these formulas were obtained for zeros jν, k with k = 1,
2, …, they are also valid for zeros jν, χ for all χ > 0.

Recall the formula

(5.3)

It follows from (5.3) that K0(x) is a decreasing function of x and exK0(x) is strictly decreasing on the interval
0 < x < ∞. The last property is expressed by the inequality

(5.4)
First, we prove the following lemmas.
Lemma 5.1. There exists ε0 > 0 such that

for ε > ε0 and t > 0. The value of ε0 lies between 0.16330286 and 0.16330298.
Proof. Consider the function

Find ε0 such that f(t, ε) > 0 for all t > 0 and ε > ε0. Since 2sinh t – t > 0 for t > 0, we obtain

for t > 0. The function g(t) satisfies the conditions limt → +0g(t) = 0 and limt → +∞g(t) = 0. Moreover, g(t) > 0 for
t > 0. Therefore, g(t) is bounded above and ε0 =  = g(t0) > 0 for some t0 ∈ (0, ∞). Consequently,

f(t0, ε0) = 0 and, due to the constraint f(t0, ε0) ≥ 0, we have f(t0, ε0) = 0.

To determine t0 and ε0, we note that the function
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is convex for 0 ≤ t < ∞, (∂/∂t)f(0, ε) = 2ε > 0, and

for any ε > 0.
Let us show that the function (∂/∂t)f(t, ε0) has exactly two simple zeros. Suppose that this is not the

case. Then, since (∂/∂t)f(t, ε0) is convex, there is a double zero at t = t0. Therefore, (∂/∂t)f(t, ε0) is nonneg-
ative and f(t, ε0) is nondecreasing. However, f(0, ε0) = f(t0, ε0) = 0. Therefore, f(t, ε0)  0 on the interval
0 ≤ t ≤ t0, which contradicts (∂/∂t)f(0, ε0) = 2ε0 > 0.

Assume that ε is in a neighborhood of ε0. Let t1(ε) and t2(ε) be zeros of (∂/∂t)f(t, ε) such that t1(ε) < t2(ε).
Then f(t, ε) has a local maximum at t = t1(ε) and a local minimum at t = t2(ε). At t = t2(ε), the second deriv-
ative (∂2/∂t2)f(t, ε) must be positive. Thus, t0 and ε0 can be computed according to the following algorithm.
Define t2(ε) as t2 > 0. Then ε = ε(t2) = g(t2). Verify the inequality

Computations show that it holds if t2 ≥ 1. Let F(t2) = f(t2ε(t2)). Then we solve the equation F(t) = 0. For
t(1) = 1.65513 and t(2) = 1.165514, we find that F(t(1)) = 1.5 × 10–7 and F(t(2)) = –2.8 × 10–7. Therefore, the
desired value t0 lies between t(1) and t(2), so

as required.
The following lemmas characterize the local behavior of the function jν, χ.

Lemma 5.2. Given an arbitrary real χ > 0 and a fixed ν0 > 0, if

then

Proof. We introduce the following notation:

It follows from (5.2) that

Therefore, we have

On the other hand,

Since ν0 > 0, the function on the right-hand side decreases from 1 to –∞ as t increases from 0 to ∞.
Therefore, I(t) is convex for small t and concave for larger t. This property of I(t) shows that there is t0 such

( ) ( )
→∞

∂ ∂ ε = ∞lim / ,
t

t f t

≡

( ) ( )
( )= ε=ε

∂ ∂ ε >
2 2

2 2

,
/ , 0.

t t t
t f t

( )( ) ( )( )ε = < ε < ε =2 2
00.16330286 0.16330298,t t

χν

ν χ

ν ≥
ν

0,

0

0

,

1,
dj

j d

ν χ
ν=ν

>
ν

0

2

,2 0.d j
d

χν ν χ ν χ
ν=ν ν=ν

= = =
ν ν0,

0 0

2

0 0 , 0 ,2
' ' , and .d dj j j j j j

d d

( ) ( )
( )

ν= = + −0 0 0
2 2

0 0

''2 21 tanh0 0, ' 2.
cosh cosh

j j tI I t
j jt t

( ) ( )
→∞

⎛ ⎞ν
⎜ ⎟= − = − >
⎜ ⎟
⎝ ⎠

0 0

0

'
lim ' 2, ' 0 2 1 0.
t

jI t I
j

( ) = − ν + −4 2
0 0 0'( /2 )cosh '' 2 sinh cosh 1 2 sinh .j j tI t t t t



1202

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 56  No. 7  2016

KERIMOV

that I(t) > 0 for 0 < t < t0 and I(t) < 0 for t > t0. Now we use the property that K0(x) decreases for x > 0.
It follows from (3.2) that

where

Integration by parts in I2 yields

For ν0 > 0, the first term on the right-hand side is zero, so

i.e.,  > 0 and Lemma 5.2 is proved.
Lemma 5.3. For ν0 < ε0 and χ > 0, let 0 <  < ν0 – ε0, where ε0 is defined in Lemma 5.1. Then

Proof. Using inequality (5.4), setting x = 2ν0sinh t and y = 2j0sinh t, and applying Watson’s formula,
we obtain

By Lemma 5.1,

so, substituting x = 2ν0sinh t and taking into account (5.1), we obtain

which proves Lemma 5.3.
Lemma 5.4. Given an arbitrary χ > 0 and ν0 > 0, if 0 <  ≤ ν0, then

Proof. Using Watson’s formula and (5.1) yields

as required.
Lemma 5.4 is proved.
Now we present the main result of [10].
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6. MONOTONICITY AND CONCAVITY OF ZEROS  OF THE DERIVATIVE  
OF THE BESSEL FUNCTION Cν(x)

In the preceding sections, we described results concerning the monotonicity, convexity, and concavity
of positive zeros cν, k of the Bessel function Cν(x). The basic tool was Watson’s formula for the derivative
dcν, k/dν (see (1.9)). However, in the study of the properties of zeros , instead of Watson’s formula (1.9),
we have to use the more complicated integrodifferential equation

(6.1)

In the subsequent study, we apply the well-known formulas

(6.2)

(see Watson [60, p. 388]) and the inequality

(6.3)

(see Watson [60, p. 487]). Additionally, the following result is used.
Lemma 6.1. For a > 1, it is true that

(6.4)

Proof. Since  = , we need to show that the function

is positive. Since f(1) = 0, it suffices to prove that f '(a) > 0 for a > 1. We obtain  = ,

which is positive for a > 1.
Passing to χ-notation and setting χ = k – α/π, we consider the function  defined by the formula

where χ is a parameter. Then  solves integrodifferential equation (6.1). It can be shown that the right-
hand side of this equation satisfies the Lipschitz condition with respect to , provided that  > 0 and

 ≠ |ν|. Moreover, the Cauchy problem for Eq. (6.1) with a certain initial condition has a unique solution
in the domain c > |ν|. This uniqueness does not hold for c = |ν|, and the case 0 < c' < |ν| requires a special
consideration. What was said allows the authors to examine various properties of the zeros  with respect
to α.

The results obtained supplement similar ones in [39] concerning positive zeros cν, k of the func-
tion Cν(x). Specifically, it is shown that jν, χ is an increasing function of χ (α = (k – χ)π).

For this purpose, we first consider the case ν = 1/2. Then
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and the function γ = γ(χ) =  satisfies the relation

(6.5)
where Γ = Γ(χ) = γ + (k – χ)π. If γ = 1/2, then

Differentiating Eq. (6.5) with respect to χ, we obtain γ'(1 – 2cos2Γ) = π.
Consider only the case γ(k) > 1/2. Then it follows from (6.5) that Γ > 1. Therefore, cos2Γ < 1.2 and

γ' > 0 if χ > χ0. This means that  is a strictly increasing function of χ.
Now consider the solution σ = σ(ν) of the integrodifferential equation

(6.6)

with initial condition

(6.7)

If γ(χ) > 1/2, then the uniqueness of the solution to the initial value problem (6.6), (6.7) implies that
σ(ν) =  and

(6.8)

Since α = (k – χ)π, the kth zero  of  is a decreasing function of α for 0 < α < π as long as  > |ν|.
This proves the assertion in the general case.

It is proved in the work that  is a concave function of ν if  > |ν| > 0. It follows that  is a concave

function for any χ = 2, 3, … . In the case of zeros  of Jν(x), this property also holds at k = 1 for any

ν ≥ 0. Thus, the main result of this important work is stated as follows.
Theorem 6.1. If

(6.9)

then

(6.10)

i.e., if jν, χ > |ν| for χ ≥ 1, then  is a concave function of ν.
The complete proof (which is lengthy) is not presented here. It requires a separate analysis of the

cases (a) 0 < ν ≤ 1/2 and (b) ν > 1/2 and is based on the following lemmas, which are of interest on their own.
First, formula (6.6) is rewritten as

where

Differentiation with respect to ν gives the expression

(6.11)

where fσ = ∂/f∂σ, fν = ∂f/∂ν, and σ' = dσ/dν.

χ1/2,'j

Γ = γtan 2 ,

χ = χ = + = …
π0

3 1 0.90915 .
4 2
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( ) ( )
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ν σ − ν ∫

2 2 2
02 2

0
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d

( ) ( )σ = γ χ χ > χ01/2 for .
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2 , , 2 sinh ,d f t K t dt
d
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σ ν
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2
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'2 2 sin' h 2 2 sinh 2 sinh ,'d f f K t dt fK t tdt
d
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Integrating the second integral in (6.11) by parts, we see that it is equivalent to the relation

(6.12)

where the term in square brackets vanishes due to the asymptotic formula for K0(x).
For the integral on the right-hand side of (6.12), we obtain

so

Further simplifications yield the following formula the second derivative of σ(ν):

(6.13)

Now we prove the following lemmas.
Lemma 6.2. Let σ(ν) be the solution of integrodifferential equation (6.6) in a neighborhood of ν = ν0 and

σ(ν0) > |ν0|. Then

(6.14)

Proof. It is well known (see Watson [60, p. 388]) that

Substituting x = 2σsinht into this integral, we obtain

To prove inequality (6.14) with the use of (6.6), it is sufficient to show that

which holds since σ > |ν|.

Corollary 6.1. Let  > |ν0|. Then  >  + ν – ν0, ν > ν0.

Proof. This result follows from the fact that  – ν is an increasing function of ν; i.e., by Lemma 6.2,
where σ(ν) = , we obtain

Lemma 6.3. If the function σ(ν) satisfies the same conditions as in Lemma 6.2 and the additional condition

( ) ( )

( ) { }

∞ ∞

∞

σ σ⎡ ⎤σ σ = σ
⎢ ⎥⎣ ⎦σ

σ− σ
σ
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σ cosh

'2 sinh tanh ,

tf K t tdt f tK t
t

dK t f t dt
dt

{ } = + 2
1tanh tanh ,

cosh t
t

d f t f t f
dt
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∞
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2

02 2

0

' ' 12 ' tanh 2 sinh .
cosh

t
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dt
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then

Proof. Under the assumptions made, we have

Then, in view of (6.13), it suffices to show that

Since σ' > 1, ν – σσ' < 0, and

we obtain

which proves Lemma 6.3.
According to Lemmas 6.2 and 6.3, the function  is concave if ν ≤ 0. To prove this fact in the case

ν > 0, we need to impose an additional constraint on  in order to satisfy the condition νσ' < σ in
Lemma 6.3. This constraint is formulated in the second condition in (6.9) in Theorem 6.1. The proof of
the theorem is dropped because of its cumbersomeness.

Corollary to Theorem 6.1. For x ≥ 1 and ν ≥ 0,  is a concave function of ν. The same holds for χ ≥ 1 and
ν < 0 under the additional constraint  > |ν|.

Proof. If ν ≥ 0, then the well-known inequality

(see Watson [60, p. 487]) implies that  satisfies the conditions of Theorem 6.1, since  is a concave
function. The same holds for  if x > 1, since jν, χ > jν, 1.

In the case ν ≥ 0, the assertion of the corollary follows from the lemmas.

CONCLUSIONS
Numerous new results concerning the properties of positive real zeros of first and second kind Bessel

functions, Bessel general cylinder functions, and their derivatives were overviewed. The monotonicity,
convexity, and concavity of zeros with respect to the order were analyzed in detail. The overview covers
nearly all important works having been published to date in the literature. Many of the results are given
with detailed proofs.
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