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Abstract—A method for direct numerical simulation of a laminar–turbulent f low around bodies at
hypersonic f low speeds is proposed. The simulation is performed by solving the full three-dimensional
unsteady Navier–Stokes equations. The method of calculation is oriented to application of supercom-
puters and is based on implicit monotonic approximation schemes and a modified Newton–Raphson
method for solving nonlinear difference equations. By this method, the development of three-dimen-
sional perturbations in the boundary layer over a f lat plate and in a near-wall f low in a compression
corner is studied at the Mach numbers of the free-stream of M = 5.37. In addition to pulsation char-
acteristic, distributions of the mean coefficients of the viscous f low in the transient section of the
streamlined surface are obtained, which enables one to determine the beginning of the laminar–tur-
bulent transition and estimate the characteristics of the turbulent f low in the boundary layer.
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INTRODUCTION
The problem of calculating the laminar–turbulent transition (LTT) in a hypersonic f low around bodies

is one of the main problems of high-speed aerodynamics. The LTT leads to a significant increase in the
heat f luxes and friction drag of a f lying vehicle and influences the efficiency of the propulsion unit and
control devices. Solving this problem requires a deep insight into the physical mechanisms initiating the
transition to turbulence. In the case of small external perturbations, which is typical of the f light condi-
tions, the LTT has three main stages (see [1]): the receptivity to external perturbations; the development
of unstable modes, such as the first and second Mack modes, cross-flow instability, and Görtler vortices;
and the nonlinear breakdown of perturbations, terminating with developed turbulent flow. In Belotserkovskii’s
works, much attention was paid to the initiation and development of turbulence for a wide class of prob-
lems of f luid mechanics (see [2]).

Belotserkovskii called attention to the fact that the integrated calculation of all stages of the LTT is pos-
sible only by the direct numerical simulation (DNS) in which the full unsteady Navier–Stokes equations
are solved without restrictions on the main (unperturbed laminar) f low and the amplitude of perturba-
tions. In addition, in contrast to physical experiments, the DNS gives the full information on the pertur-
bation field, which enables one to distinguish and analyze various mechanisms of the LTT. The modern
methods of parallel computations and the rapid development of multiprocessor systems made possible
numerical experiments for hypersonic boundary layers on simple configurations such as a plate and cone
at a zero angle of attack (see [3]).

In this work, we present a mathematical formulation of the problem of simulation of viscous compress-
ible gas f lows, a method for the numerical integration of the Navier–Stokes equations, and examples of
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application of the approach developed. The numerical method is based on an implicit finite-volume
method of the second-order approximation in both space and time, a Godunov-type quasi-monotonic
TVD scheme, and the implementation on a multiprocessor cluster supercomputer. The suggested
approach is especially efficient if the system of equations in the problem has an increased stiffness, e.g., in
the cases when the computational region contains spacial f low inhomogeneities (such as shock waves and
separated-flow regions) [4] and when modeling gas f lows with allowance for nonequilibrium physico-
chemical processes (see [5]). In [4, 5], this approach was used in the implementation on one-processor
computers.

To verify the method proposed, the comparison with the results of direct numerical simulation of wave
packets developing on a plate at the free-stream Mach number  [6] was performed. For exam-
ple, the development of three-dimensional perturbations in the boundary layer on a f lat plate at

 was studied. Similar calculations for two-dimensional perturbations are presented in [7–9].
With the help of visualization of the fields of three-dimensional perturbation, specificities of the devel-

opment of instability in the linear and nonlinear stages are revealed and discussed. In addition to the pul-
sation characteristics, distributions of the mean viscous friction coefficients in the laminar and transient
sections of the streamlined surface are considered, which makes it possible to determine the beginning of
the LTT and estimate the length of the transition region.

1. PROBLEM FORMULATION
In mechanics of continuous media, the gas motion is generally described by transient three-dimen-

sional Navier–Stokes equations, which also serve as a basis for the direct numerical simulation of a tur-
bulent f low.

The Navier–Stokes equations in an arbitrary curvilinear coordinate system , , , where
, , and  are the Cartesian coordinates, are written in the divergent

form as follows:

 (1)

here,  is the vector of conservative dependent variables of the problem and , , and  are the vectors
of f luxes in the curvilinear coordinates. The vectors , , and  are related to the corresponding vectors

, , and  in the Cartesian coordinates by the formulas

(2)

where  is the Jacobian of the transformation.
The curvilinear coordinate system  is used for the discretization on a uniform grid. To this end,

a given arbitrary computational grid in the Cartesian coordinates is mapped onto a uniform grid in the cur-
vilinear coordinates. The Cartesian components of the vectors , , and  for the three-dimensional
Navier–Stokes equations have the form

where  is the gas density; , , and  are the Cartesian components of the velocity vector ;  is pres-

sure;  is the total energy per unit volume;  is the total

enthalpy,  is the static enthalpy;  is temperature;  is the specific heat capacity at a constant
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pressure,  is the symmetric viscous stress tensor related to the strain rate tensor s by a linear dependence.
The components of the strain rate tensor s for compressible gas have the form

and the heat f lux vector  is defined by the expression
,

where  and  are the coefficient of molecular viscosity and the heat conductivity, respectively.
System of equations (1) is closed by the equation of state and dependences of the transfer coefficients

on temperature and pressure. In this work, we use the model of ideal gas with the equation of state

where  is the universal gas constant and  is the molecular weight of gas. The coefficient of molecular
viscosity is assumed to be temperature-dependent and is calculated according to the Sutherland law:

where  for air. The Prandtl number  is assumed to be constant.
For the numerical integration, we use the dimensionless form of the Navier–Stokes equations. The

Cartesian coordinates , ,  are related to the characteristic linear size ; time
, to the characteristic time ; the velocity vector components , , and

, to the absolute value of the free-stream velocity ; pressure , to twice the impact
air pressure; and the remaining gas dynamics variables, to their values in the free-stream flow. The bar over
a symbol means that the corresponding variable is dimensionless and symbol “∞” marks the value of this
variable in the unperturbed flow. After this non-dimensionalization, the Navier–Stokes equations acquire
the following similarity parameters: , the adiabatic exponent; , the free-stream
Mach number (  is the speed of sound); , the Reynolds number; and , the Prandtl
number. Most of the calculated data are presented in the dimensionless variables and the overbar is sup-
pressed for simplicity.

On the boundary of the computational region, which coincides with the rigid surface, we impose the
boundary conditions: the no-slip and nonpermeability conditions , , ; the conditions of
adiabaticity ( ) or isothermality ( ) of the streamlined surface, or some condi-
tions of thermal balance. On the outer boundary of computational region, radiation conditions corre-
sponding to a diverging wave are imposed. These boundary conditions in terms of the Riemann invariants
have the form

In this case, at each point on the boundary of the computational region, at η = ηmax, the signs of the
eigenvalues
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which determine the direction of propagation of a perturbation with respect to , are determined.
For  (“input boundary”), the corresponding invariant on the input boundary is calculated from the
values of the gas-dynamics variables of the free-stream flow; for  (“output boundary”), we use the
linear extrapolation of  from the values of the gas-dynamics variables corresponding to internal points
of the computational region.

As the initial approximation, one can use the condition of a uniform free-stream flow followed by the
development of the f low field in the process of solving the unsteady problem. In this case, with forming
the f low pattern, the time step gradually increases, which makes it possible to obtain the solution of the
steady problem.

2. APPROXIMATION OF THE EQUATIONS

The initial boundary value problem formulated above was solved numerically by an integro-interpola-
tion method (the finite-volume method). Being applied to the Navier–Stokes equations (1), it enables
one to obtain finite-difference analogs of the conservation laws:

 (3)

where  is the index of the time layer;  is the time step; and , ,  and , ,  are indices of the nodes
and step sizes in the coordinates , , , respectively.

For a monotonic difference scheme, the f luxes at semi-integer nodes are calculated by solving the Rie-
mann problem of the breakdown of an arbitrary discontinuity. Mathematically, this problem is reduced to
solving a nonlinear system of algebraic equations. An approximate method for this problem may be the
splitting in the generalized coordinates and representation of some averaged state of the corresponding
Jacobi matrix  (for example,  for the direction , where  is the convective component of

the corresponding f lux in the diagonal form: ,  is a diagonal matrix whose entries are six
eigenvaues of the matrix ).
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(see [12]) for solving the Riemann problem of the breakdown of an arbitrary discontinuity. In this case,
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As the function , which provides the entropy condition for the physically correct choice of the
numerical solution, we use the function

where  is the parameter responsible for the dissipative properties of the difference scheme (in most com-
putations, we used ).

To increase the order of approximation (to the third one), the dependent variables are interpolated
to the face of an elementary cell using the WENO (Weighted Essentially Non-Oscillatory scheme) prin-
ciple [13]:

For approximating the diffusion component of the f luxes , , and  on the face of an elementary
cell, we use the central-difference scheme, accurate in the second order. The derivatives are calculated by
the formulas

here,  is the vector of nonconservative (“primitive”) dependent variables of the prob-
lem.

The stencil of the difference scheme on which the full Navier–Stokes equations are approximated con-
sists of 25 points. The resulting completely implicit nonlinear difference scheme, apparently, is stable on
the linear problem.

3. SOLVING THE NONLINEAR DIFFERENCE EQUATIONS
After applying the above finite-difference approximation to the Navier–Stokes equations and the cor-

responding boundary conditions on a certain grid, the integration of the nonlinear equations is reduced
to solving a system of nonlinear algebraic equations

, (4)
where  is the vector of the sought variables (the node values of the gas dynamics variables, including the
boundary nodes of the computational grid). The above-formulated problem is efficiently solved by the
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well-known iterative Newton method, whose main advantage is the quadratic convergence rate. For solv-
ing nonlinear difference equations (4), we used a modified Newton–Raphson method:

where  is the Jacobi matrix,  and  are the iteration indices, , and  is the

residual vector. The expression  is the solution to the system of linear equations

. In the process of numerical solution, the parameter of regularization of the Newton
method with respect to the initial approximation  is determined by the formula (see [14])

With the convergence of the iterative process, we have  and the convergence rate theoretically
becomes quadratic.

The most computation-intensive elements of the algorithm in the implementation of the Newton
method is generating the matrix  and solving the system of algebraic equations with this
matrix.

Since the approximation of the equations in each of the computational cells involves only several
neighboring nodes (in the spatial case, 25 nodes for the TVD scheme), the computational complexity of
generating the Jacobi matrix is on the order of , where  is the number of nodes of the difference
problem. The Jacobi matrix is formed in each iteration by finite increments of the residual vector in the
vector of sought grid variables. This method is universal, because it is easily extended to an arbitrary sys-
tem of difference equations of a preliminary undefined form. Rather frequently, the difference equations
obtained by the approximation of differential equations are complicated and the forming the Jacobi matrix
analytically is very labor-consuming. In particular, this occurs when the Navier–Stokes equations are
solved by means of monotonized schemes. Moreover, when forming the Jacobi matrix analytically, the
necessary number of arithmetic and logical computer operations, generally speaking, may be greater than
when this matrix is formed by the method of finite increments.

The storage and processor time required for solving the system of linear algebraic equations in a non-
linear iteration,

,

essentially depend on the sparseness of the matrix . If the Navier–Stokes equations are approx-
imated by the second-order difference scheme described in Section 2, the operator  has a sparse
25-diagonal block structure and its elementary block is a 5 × 5 dense matrix. Preliminary calculations have
shown that the convergence of the iterative method essentially depends on the points in the stencil of
approximation used for the convective component and the direct derivatives of the dissipative component
of the Navier–Stokes equations. The use of “corner” points in the stencil of approximation of mixed
derivatives makes only a small effect on the convergence rate of the nonlinear iterative process. Therefore
and in order to reduce almost by a half the required computer storage and the total number of arithmetic
operations in a nonlinear iteration, the diagonals corresponding to mixed derivatives in the operator

 were omitted. As a result, the operator  for the spatial case has a sparse 13-diagonal
block structure.

The system of linear algebraic equations obtained in a nonlinear iteration is solved by the generalized
minimum residual method GMRes (see [14]), which, in a number of numerical experiments (see [16]), has
been recognized as most reliable and fast.

4. COMPUTATIONAL GRIDS AND THE INTERNAL DATA STRUCTURE
The calculations are performed on structured multi-block grids. The blocks of the grid must join one

another with entire faces, node to node.
Inside each block of the grid, independently of other blocks, we introduce an individual curvilinear

coordinate system , in which the computational grid is uniform on each direction with the step sizes
, , , respectively. It is assumed that the curvilinear coordinates vary within each block from 0 to 1.
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In this curvilinear coordinate system, discretization (3) of the gas dynamics equations is performed. The
conversion to the Cartesian coordinates is carried out according to (2) by means of the inverse metric coef-
ficients , , , , , , , , , and , determined
from the equation

Here, the forward metric coefficients (the derivatives , , , , , ,
, , ) are approximated by finite differences with a second order of accuracy.

The nodes of the grid inside each block have a three-dimensional index  corresponding to the
directions of the grid lines , , , respectively. In addition, to each node, a global one-dimensional index
unique for all blocks of the computational grid is assigned. This global index determines the index of an
element in the vector of solution  and the residual vector  when solving the system of difference equa-
tions (4).

In the discretization of the equations (calculation of the residual vector), near the boundaries of each
block, the values of the dependent variables at the nodes of the adjacent blocks are needed. The access to
these nodes is performed with using the concept of shadow values. Each block is preliminary extended to
several grid surfaces according to the number of points in the discretization stencil so that these new
shadow values correspond to the nodes of the neighboring block. The dependent variables at the shadow
nodes are not calculated in the process of solving but are taken from the adjacent block in a special proce-
dure of exchange with shadow values, which is executed before each time iteration. The additional shadow
nodes are considered belonging to the current block, take into account its sizes, and have their local three-
dimensional indices , but their global indices remain the same as those of “real” nodes in the adja-
cent block. Therefore, the total number of nodes in the computational region remains the same.

The mapping between the local three-dimensional indices (including shadow nodes) and global indi-
ces for each block of the grid is stored in a special list of indices. This list is the base for the work of the
procedure of exchange with the shadow values.

5. IMPLEMENTATION OF PARALLEL COMPUTATIONS ON MULTIPROCESSOR 
SUPERCOMPUTERS

The distributed computations were implemented with the help of the parallelization on the block level.
During the computation, each processor processes at least one block, and the data of blocks (the grid and
the solution at the nodes) is independently stored by each processor. If the number of processors exceeds
the number of blocks in the given grid, an additional division of the grid into a necessary number of blocks
is needed. The computation results and the computational grid are stored in the form of CGNS (CFD
General Notation System) files [17].

In the case of parallel computations, the calculated vector of solution with the global numeration of
elements becomes distributed, i.e., its parts are stored in different processors. Therefore, the residual vec-
tors of the nonlinear grid equations and the Jacobi matrix must be distributed too. Operations with such
vectors and matrices are implemented with the help of subroutines from the PETSc freeware package
(Portable, Extensible Toolkit for Scientific Computation) [18]. For parallel computations, the PETSc
employs the Message Passage Interface (MPI). In the current computational code, some procedures of
the MPI are employed in pure form, but all parallel operations are mainly implemented by means of
PETSc commands.

The discretization of the equations in each block is performed independently by each processor. In this
case, a fraction of the globally distributed residual vector is formed. The connection between processors
corresponds to the connectivity between blocks and is provided by the conception of shadow nodes. The
exchange with shadow values is implemented by means of intrinsic structures and the “Scatter” functions
from the PETSc. In this case, the mapping list between the global interblock indices and the local intra-
block indices, formed on the preprocessing of the grid, is used.
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The Jacobi matrix in each iteration of solving the difference equations is formed in a parallel manner
by finite increments of the residual vector in the sought grid variables. The resulting Jacobi matrix is fully
distributed. The linear system with this matrix is solved by a parallel version—implemented in PETSc—
of the generalized minimum residual method GMRes (see [15]) with a block Jacobi-type preconditioner.

Thus, each stage of the implemented numerical method is executed in parallel in each block of the
computational domain. Therefore, the acceleration of computations is close to perfectly linear, if the
delays for the communication between processors are neglected. Preliminary computations have shown
that the PETSc parallel procedures efficiently pass data between processors so that the scaling proves to
be really good.

The relative delays for the interprocessor communication can be reduced by increasing the time spent
by each processor for the processing of its own set of data independently from the others. In other word,
one should increase the dimensions of grid blocks and/or their number per processor.

The method described above was implemented in the HSFlow (High Speed Flow) software package.

6. VERIFICATION OF THE METHOD
To verify the method developed, we used the results of [6], obtained by another numerical method for

solving the Navier–Stokes equations. In [6], hybrid nonmonotonic difference schemes accurate in the
fourth and higher orders were employed. The characteristics of the free-stream flow in this work were the
same as in [6], namely, ,  1/m, , , and  K.

The non-dimensionalization length in the calculations was  m; in this case, .
These parameters correspond to their experimental values on the edge of the boundary layer on a sharp

cone, which was studied in a shock tube at ,  1/m, and  K.
The computational domain was a rectangular parallelepiped with the dimensions  in

the horizontal, vertical, and cross directions, respectively, in dimensionless units. On the lower boundary
of the domain, coinciding with the surface of the plate, the no-slip conditions were imposed. The wall was
assumed isothermic with a temperature  K ( ). On the boundaries  (right)
and  (front), we used the linear extrapolation of the dependent variables , , , , and  (the
nonreflecting boundary condition in a supersonic f low). On the boundary  (back), the condition of
symmetry was imposed. The computations were performed on an orthogonal grid with the dimensions

 in the horizontal, vertical, and cross directions, respectively (with a total of  mil-
lion nodes). Near the streamlined surface, the grid was condensed in the vertical direction so that
120 nodes fell within the boundary layer. The computations were performed on a high-performance com-
puter cluster involving 512 processor cores.

Perturbations were introduced into the boundary layer through a small round hole on the surface of the
plate by forced pulsations of the vertical velocity component. These pulsations were specified by the tran-
sient boundary condition on the wall:

where , , , , , and  is the dimensionless
frequency. In order to provide the nonlinear development of perturbations, the amplitude was taken suf-
ficiently large:  (5% of the free-stream velocity). The above form and parameters of perturbations
fully correspond to those used in [6].

The problem was solved in two stages. At first, the stationary unperturbed flow field was calculated.
Then perturbations were introduced by switching the unsteady boundary condition simulating an actuator.

The forced perturbations introduced into the boundary layer by a short local pulse form a three-dimen-
sional wave packet propagating downstream. Figure 1 shows an instant pressure perturbation field on the
surface of the plate after a sufficiently large time since the pulse. Hereinafter, the perturbation field is cal-
culated by subtracting the basic steady field from the instant perturbed field. We see that the wave fronts
forming a packet are rectified near the central line z = 0. Here, the domination of plane waves with the
amplitudes increasing downstream begins. This behavior agrees with the linear theory of stability, accord-
ing to which plane waves (the so-called second Mack mode waves) are amplified faster than oblique ones.
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Beside the central part of the packet with pronounced plane fronts, waves running in front of the main
perturbation are observed.

For comparison, Fig. 1 also shows the perturbation field obtained in [6]. We see not only a good qual-
itative agreement between the results but also the same structural features of the perturbation and a quan-
titative agreement in the dominating wave length. Thus, the numerical method applied in this work can be
used for studying the development of three-dimensional perturbations in hypersonic f lows.

7. DIRECT NUMERICAL SIMULATION OF THE INITIAL STAGE
OF THE LAMINAR–TURBULENT TRANSITION

As an example of calculation of the laminar–turbulent transition, we consider a hypersonic laminar
boundary layer over a plate in which perturbations are artificially introduced by periodic injection–suc-
tion of gas through a local region on the wall.

7.1. Parameters of the Flow and the Computational Domain

The calculations are performed for a hypersonic f low above a sharp f lat plate with a free-stream Mach
number , a Reynolds number  =  1/m, and temperature

. The wall is isothermic with a surface temperature ; . These
parameters of the f low fully correspond to the parameters used in [9], where the compression angle was
studied. The coordinates are related to the characteristic scale  m (in [9], this is the distance
from the leading edge to the line of fracture of the streamlined surface), which corresponds to a Reynolds
number . The computational domain in the plane  is shown in Fig. 2; in the cross
direction ( ) it has a depth of 0.2 dimensionless units.

∞ =M 5.373 ,1
* * *Re /U∞ ∞ ∞ ∞= ρ μ 617.9 10×

* 74.194 KT∞ = * 300 KwT = 4.043wT =

0.3161L =

6Re 5.667 10∞ = × ( , )x y
z

Fig. 1. Verification of computational codes; the comparison with [6]. Instant perturbation pressure field (the trace of a
wave packet) at the time  ms: (a) – the current work and (b) [6].
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The boundary conditions are as follows: the no-slip conditions  on the lower ( )
boundary of the computational domain; the free-stream conditions , , , and 
on the left ( ) and upper ( ) boundaries; the linear extrapolation  = 0 from
inside the domain for the dependent variables , , , , and  on the right ( ) and front
( ) boundaries (“soft” boundary conditions); the conditions of symmetry  =

 and  on the rear ( ) boundary.

The computations were performed on an orthogonal  grid, in which the number of
nodes  in the vertical direction varied from 126 to 376 over the length of the computational domain,
depending on the position of the shock wave. The grid contains a total of 251 × 106 nodes. The grid is con-
densed near the surface so that 55% of nodes lie within the boundary layer. The size of 160 cells near the
right edge of the computational domain gradually increases from  to . This part of
the computational domain (for ) forms a “buffer” zone, the solution in which is not used for the
analysis but where the unsteady perturbations must dissipate due to grid viscosity. The resulting three-
dimensional grid is obtained by the equidistant multiplication of the 2D grid.

7.2. The Generator of Perturbations

The problem is solved in two steps. At first, the stationary laminar f low field (the main f low) is calcu-
lated by the relaxation method. Then, on the steady solution, we impose a unsteady perturbation: a per-
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6001 151yn× ×
yn

0.0005xΔ = 0.1xΔ =
2.917x >

Fig. 2. Computational domain in the plane . The boundaries of blocks in which the grid is divided for parallel com-
putations are shown. The dashes line marks the boundary of the confidence domain.
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manently acting injection–suction through two holes in the wall, which is simulated by the following
boundary condition on the perturbation of the vertical mass f lux:

where  and  are the boundaries of the domain of the action in the longitudinal
direction (the same as in [9]) with the center at  and  =  are
the boundaries in the cross direction. This gives a rectangular region with an aspect ratio of 2 (see Fig. 3a).
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0
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Fig. 4. Steady laminar streamlining of a plate. The Mach number field in the plane of symmetry and the pressure field on
the surface. The vertical plane at  marks the beginning of the “buffer” zone of the computational domain excluded
from the analysis, where the cells of the grid have increased sizes for dissipation of ingoing perturbations.
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Fig. 7. Frequency and wavenumber spectra for different x.
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Fig. 8. Time-averaged friction coefficient Cf on the surface: (a) the Cf field in the (x–z) plane; (b) (laminar) Cf in the
unperturbed flow; (RANS) Cf in a two-dimensional f low calculated via the Reynolds-averaged Navier–Stokes equations;
(DNS, avg(t, z)) Cf time- and amplitude-averaged within the wedge marked by the dashed lines; (DNS, avg(t), z = 0) Cf
time-averaged on the line z = 0.
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The perturbation from the generator develops into a three-dimensional wave train propagating down-
stream. The generator is situated at a relatively small distance from the front edge so that the induced per-
turbation propagates through the regions of instability of both the first and second modes. This choice is
also motivated by the assumption that, in natural conditions, instabilities are excited most efficiently near
the front edge.

The calculations were performed at a frequency , corresponding to the fre-
quency parameter  = , typical of the instability of the first Mack mode (see [1]).
We consider the level of forcing , at which perturbations initially develop in a linear manner.
It should be noted that the numerical error of the steady solution should be much smaller than the ampli-
tude of the perturbation, i.e., the steady field should be calculated with a high accuracy.

The spatial form of the forcing action and its Fourier spectrum (the absolute values of the Fourier
transform) are shown in Fig. 3, where  is the x-component and  is the z-component of the wavenumber.
In the spectrum of the generator in the -plane (see Fig. 3b), we see the presence of the components
of the action at  with a wide spectrum with respect to . They can generate longitudinal vortices.

7.3. Results

The calculated stationary laminar f low field around the plate is shown in Fig. 4. We see a front shock
wave forming on the leading edge as a result of the displacing action of the boundary layer. The vertical
size of the computational domain was chosen so that the shock wave do not intersect the upper face, in
order to avoid the interaction with the boundary condition and possible nonphysical reflection. In the fig-
ure, we see a damping “buffer” zone with strongly increased grid cells. The solution in it is not exact and
is not shown in the subsequent figures.

Figure 5 shows the instant perturbation field of nondimensional pressure on the surface of the plate.
Hereinafter, the field calculated in the region  is mirrored to  (in accordance with
the symmetry condition at ). The perturbation field is obtained by subtracting the main f low field
from the field at a given instant of time.
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We see that, up to the cross section , the core of the perturbation has a chess-like structure and,
on the edges of the core, oblique waves dominate. This is typical of perturbations of the first unstable
mode of the boundary layer. We also see low-amplitude circular wave fronts propagating far from the wave

1.5x =

Fig. 9. Vertical profiles of quantities time-averaged in the cross-section х = 2.5; avgz is the profile amplitude-averaged
within the turbulent wedge: z = 0.01, 0.02, 0.03, and 0.04 are the profiles at the corresponding values of the z-coordinate
corresponding to the amplitude.
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train. Apparently, these waves are fast acoustic waves of the continuous spectrum. Downstream from the
cross section , the regular structure of the core of perturbations begins the breakdown, so that
downstream from , the perturbations at the center take a completely chaotic form: the laminar–
turbulent transition begins and a “young” turbulent wedge forms. The form of perturbations in the core of
the turbulent wedge in the plane of symmetry z = 0 is shown in Fig. 6 by a shadow pattern (the Laplacian
of density, ).

The two-dimensional spectra in the  plane are shown in Fig. 7 in different cross sections with
respect to x. In the cross section х = 1.00, in the perturbation, oblique waves with the transverse wavenum-
ber  and the frequency  dominate. These waves correspond to the instability of the first
mode. At х = 1.50, harmonics with frequencies multiple of the main frequency appear, which is connected
with the nonlinear interaction of harmonics. At х = 2.00, the waves of multiple frequencies are amplified
and the zero-frequency harmonic corresponding to the variation in the mean field appears—the boundary
layer begins reconstruction. At х > 2.25, the spectrum becomes substantially wider and harmonics of ali-
quant frequencies appear, which indicates nonlinear breakdown.

1.5x =
2.25x =

2∇ ρ

β − ω

300β ≈ 125ω =

Fig. 10. Vortex structures in the perturbed boundary layer at the time t = 7.3125: visualization by a Q-criterion isosurface
(Q = 100) colored in accordance with the horizontal velocity component; (top) side view, (middle) top view, and (bottom)
perspective view.
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The onset of the laminar-turbulent transition can be confirmed by the value of the surface friction
coefficient

on the wall of the plate. Figure 8 shows the field of the friction coefficient  time-averaged over the
interval  of dimensionless units. We see that, downstream from the cross section

,  begins to increase in the longitudinal direction, which is typical of the laminar–turbulent
transition. The increase varies in the spanwise direction: in the (x–z) plane, we see banded structures. Fig-
ure 8 also shows the distribution  obtained on solving the Reynolds-averaged Navier–Stokes equa-
tions with using the two-parametric  model of turbulence. This gives an estimate of  for a fully
turbulent boundary layer. We see that the  obtained in the direct numerical simulation approaches
the turbulent value.

Figure 9 shows the pulsation characteristics of a perturbed flow in the cross section х = 2.5. Here, the
time averaging is performed in the interval . We see that the profile of the mean veloc-
ity qualitatively resembles the case of a fully turbulent boundary layer (the RANS line).

Figure 10 shows three-dimensional vortex structures in the form of Q-criterion isosurfaces Q = 100,
colored according to the horizontal velocity component. Small-scale hairpin vortices fill the central part
of perturbations and are surrounded with oblique waves. As a whole, vortices of many scales are present,
which is typical of a turbulent boundary layer, but some regular structure is observed, i.e., the f low is not
yet fully turbulized.

This example demonstrates that the numerical method enables one to simulate the process of transi-
tion from the linear phase up to the end of the nonlinear breakdown.

CONCLUSIONS

A method for the direct numerical simulation of unsteady three-dimensional perturbations leading to
the laminar–turbulent transition at hypersonic f low velocities has been developed and implemented. The
simulation is based on solving the full three-dimensional transient Navier–Stokes equations. The numer-
ical method is oriented to application of supercomputers and is based on implicit monotonic approxima-
tion schemes and a modified Newton–Raphson method for solving nonlinear difference equations.

The direct numerical simulation of the propagation of three-dimensional perturbations in the bound-
ary layer on a plate at a free-stream Mach number  has been performed. Perturbations were intro-
duced into the boundary layer by means of an unsteady boundary condition on the vertical velocity com-
ponent, which simulate a short pulse through a circular hole. This pulse formed a three-dimensional wave
packet propagating downstream in the boundary layer. It has been shown that, in this packet, plane waves
corresponding to the second unstable Mack mode dominate. Weak nonlinear effects of the interaction
between plane and oblique waves have been demonstrated. A good agreement with a similar numerical
study from [6] has been obtained, which confirms the correctness of the method employed in this work
and its applicability to the study of the development of three-dimensional perturbations in hypersonic
boundary layers.

With the help of this method, the development of three-dimensional perturbations in the boundary
layer on a plane plate at a free-stream Mach number  has been studied. Typical structures of the
perturbation field in the linear and nonlinear stages of the laminar–turbulent transition have been
revealed. The mean viscous friction coefficient distribution in the linear and transient parts of the stream-
lined surface has been obtained, making it possible to determine the beginning of the LTT.
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