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1. INTRODUCTION
The main subject of this paper is zero-sum games of complete information, which will be called cyclic.

Let a directed graph without deadlock vertices

be given in which  is the set of vertices,  is the set of directed edges, 
is an integer weighting function on the edges, and  is the initial vertex of the game. The absence of
deadlocks means that each vertex has at least one outgoing edge incident upon it. The vertices are divided
into two nonoverlapping sets—the vertices in which the first player  makes a move (white vertices), and
the vertices in which the second player  makes a move (black vertices). A token is moved by the players
from the initial vertex  through the graph edges. The game continues until a cycle occurs (i.e., as
soon as the token comes to a vertex where it has already been, the game is over). In this paper, we mainly
consider three classes of cyclic games. In sign of weight cyclic games, the first player wins if the total
weight of the cycle edges is nonnegative; otherwise, the second player wins. In the parity cyclic game, the
first player wins if the maximum weight of the cycle edges is even; otherwise, the first player loses. In the
mean payoff cyclic game, the payoff of the first player is the mean weight of the edges in the cycle.

In [1], a potential transformation algorithm was proposed to solve the mean cost cyclic games.
First, an upper exponential bound on the computation time depending on the number of vertices was

obtained. Second, computational experiments showed that the average number of elementary iterations
of the algorithm does not exceed the number of vertices in the graph more than by several fold. Third,
examples of problems in which the number of iterations of the algorithm is exponential in the problem size
are found.

In [2], a pseudopolynomial bound on the complexity of a more general potential transformation algo-
rithm was found.

Another known fact is that these problems are in the class  (see [3]) (parity games are
included in the narrower class  (see [4]).

Parity games can be reduced to a sign of weight cyclic game in polynomial time.
Efficiency considerations are discussed in [5], where the deterministic potential transformation algo-

rithm is considered. To reduce the algorithm execution time, it is proposed to use the rich group of equiv-
alent potential transformations. First, a nondeterministic potential transformation is employed, and the
game is reduced to the canonical form by a deterministic algorithm.

The potential transformations preserve cycle lengths; therefore, we obtain a set of problems that are
equivalent to the original problem. A natural conjecture that the average time of solving the problems in
this set is polynomial occurs. This conjecture was confirmed by computational experiments with known
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hard examples (see [5]). It was proposed to use the nondeterministic algorithm for solving parity games.
The main issue considered in [5] is whether the nondeterministic Gurvich–Karzanov–Khachiyan’s algo-
rithm is polynomial for parity games. In the present paper, a negative answer to this question is given. The
justification is as follows.

First, it is shown that the exponential increase in weight magnitudes repeats on subnetworks in the
course of the deterministic algorithm execution. This helps prove that the deterministic algorithm has an
exponential execution time on a sequence of problems with the exponential growth of weights in networks
with a fixed graph structure. (The intricate examples in [1] are a specific case of the exponential growth
of the network weight magnitudes).

Second, it is shown that the randomness is lost, i.e., beginning with an arbitrary equivalent network,
the same game network is obtained in the course of the algorithm execution with a high probability.
Therefore, it is highly probable that the property of exponential weight growth repeats on subnetworks of
the original problem. This fact enables us to construct examples in which the execution time of the non-
deterministic algorithm is almost surely exponential in the size of the original problem.

Third, we use the fact that the sign of weight cyclic games to which the parity games can be reduced in
polynomial time necessarily have an exponential weight growth. Therefore, it is easy to construct a hard
exponential sequence of parity games for the nondeterministic potential transformation algorithm. Pre-
cise formulations of these claims are given below.

2. STATEMENT OF THE PROBLEM

Let the game network  be given. The set of directed edges of the
graph of the game that begins in the set of vertices  and ends in the set of vertices  will be
denoted by . The directed edge with the head at the vertex  and the tail at the vertex 
is denoted by , and its weight is denoted by . The subgraph of the game graph

 with the subset of vertices and the subset of edges  is
denoted by . The subgraph of  determined by the set of vertices  is denoted by —this
is a subgraph .

The outgoing neighborhood of the vertex  is denoted by :

.

In what follows, we will consider sign of weight cyclic games and the use of potential transformations
for such games. A definition of the potential transformation algorithm can be found in [1]. The aim of the
algorithm is to level local extrema in the vertices using potential transformations  =

. Then, the locally optimal strategies in the transformed game are globally optimal. The
potential transformations preserve cycle lengths; therefore, the found strategies are also optimal in the
original game. To understand the results of this paper, the reader must know the algorithm described
in [1]. Let us give a brief description of this algorithm. We will consider the auxiliary algorithm presented
in [1] in the context of parity games. The parity games can be reduced to sign of weight cyclic games; for
this reason, we assume that the boundary is fixed and equal to zero as in [5]. The main points of the con-
struct are as follows.

The auxiliary algorithm is iterative. The vertices are divided into two nonoverlapping classes L and
. The first class  is called the labeled set of vertices. It consists of the vertices with a negative

local extremum and the vertices of critical (zero) local extrema from which the second player can forcedly
(i.e., independently of how the opponent plays) push the game to the vertices with negative extrema. The
complementary class  is defined similarly relative to the second player. The brief formal definition is

 = . Next, we compose the sets  from the critical vertices

 using the following inductive rule.

Let the sets , , , have already be constructed. Then,
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The complementary class  is represented similarly relative to the first player. Next, for the partition
thus obtained, a potential shift under which the set of critical vertices does not decrease (increases at best)
is determined. For each white vertex,  =  is a feasible potential. If
there are no boundary edges , then the feasible potential in such a white vertex is
assumed to be infinite.

Consider the black vertices . Let  be the current black vertex such that, if there is at least one edge
with a nonpositive weight leading to the set L incident upon this vertex, then its potential is infinite. Oth-
erwise, the feasible potential of this vertex is its local extremum taken with the negative sign. The feasible
potential of any critical black vertex is infinite. The feasible potentials of the vertices in the complementary
set are determined similarly. Next, the minimum  of these potentials is found, the potential transforma-
tion of the edge weights , ,  and , , , is per-
formed, and this completes the iteration step. If the minimum potential is infinite or if one of the sets

 is empty, then the auxiliary algorithm terminates. The basic finiteness assertion is that the execu-
tion time of the auxiliary algorithm does not exceed  iteration steps.

Remark 1. The feasible potentials of the white vertices in the labeled set  are determined in the same
way independently of whether these vertices are critical or insufficient . The feasible potentials of the
black vertices in the complement  are determined in the same way independently of whether these ver-
tices are critical or redundant . The nondeterministic potential transformation algorithm first
equiprobably assigns integer numbers  to all the vertices  of the game network, then
applies the potential transformation according to these , and then applies the ordinary potential trans-
formation algorithm [1] with the zero boundary of critical vertices. Since potential transformations pre-
serve the cycle lengths, the validity of the nondeterministic algorithm is obvious.

Definition 1. The game network  is defined as the triple ; E =
, , ; ; ;

 ≤ , ;  ≤
, , , , ,

,  = , , , 

The game network  is an almost acyclic graph. All the edges lead to vertices with greater indexes,
except for the last white and black vertices. The edges incident upon the last white and black vertices form
two loops. The incoming edges of the last vertices begin only in the next to last vertices. The edges that
lead to the white vertex from all the preceding black vertices have the same positive weight, and the edges
that lead to the black vertex from all the preceding white vertices have the same negative weight. The mag-
nitudes of the edge weights increase not slower than the geometric sequence with the quotient 2.

Definition 2. The game network  is defined as the quadruple ; E =
, , ; ;  ≤

;  ≤ , , ,
 =  = , ,  = ,

The game network  is an almost acyclic graph. All the edges lead to vertices with greater indexes,
except for the last white and black vertices. The edges incident upon the last white and black vertices form
a unique cycle. The edges that lead to a white vertex from all the preceding black vertices have the same
positive weight, and the edges that lead to the black vertex from all the preceding white vertices have the
same negative weight. The magnitudes of the edge weights increase not slower than the geometric
sequence with the quotient 2. Figure 1 shows a schematic of the network . To keep the weights not very
large, we retained only the vertex where the corresponding edge ends. The minus symbol marks the neg-
ative edge weight.

Proposition 1. There exists a sequence of game networks , such that the following
conditions are met. Beginning with a positive integer , for the game network  ( ) with equiprobable
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potentials  for arbitrary nonnegative integer, the number of iterations of the

nondeterministic potential transformation algorithm is  with the probability .
The proof immediately follows from Propositions 2 and 3.

Proposition 2. The deterministic potential transformation algorithm makes  iterations on the game
network  (n = 2, …).

Proposition 3. Beginning with a positive integer , for any , the nondeterministic potential transfor-
mation algorithm makes on the game network   iteration with the probability .

Proof of Proposition 3. For definiteness, let .
Consider favorable outcomes of the distribution of the initial random potentials that favor the long exe-

cution time of the algorithm:
(1) ,
(2) ,
(3) ,
(4) .
Consider how the network  is processed.
Proposition 4. Let j be the iteration step at which the vertex  becomes critical for the first time. Then, all

the vertices except for  become critical after this step.
Proof of Proposition 4. The vertices  and  are always insufficient and redundant, respectively,

due to the loop edges incident upon them. Due to the maximum conditions,  becomes critical earlier
than  (the weight  is closer to zero than the weight ).

1. It is clear that at the end of the iteration  the set  of insufficient vertices does not contain white
vertices, except for . Let  ( ) be a white vertex that turned out to be in  as a result of the initial
random transformation. Due to the maximum condition, it holds that .

At the initial time, we have, due to the maximum conditions, , , , .
Therefore, the weights of the edges , ,  will increase identically at each iteration.
For this reason, the first labeled edge that becomes equal to zero is  or the vertex  will become crit-
ical even earlier.

2. Similarly, at the start of the iteration , the set  does not include black vertices except for ,
. The labeled edges will decrease. Therefore, the first edge that becomes

equal to zero is  or the vertex  will become critical even earlier.

3. We show that, at the start of the iteration , the set  does not contain vertices  with , and
the set  does not contain vertices  with .
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Assume the converse. Let the first vertex in  in reversed order  be . We may assume

that  does not contain white vertices with the indices ,  (elsewise, we could reason

symmetrically relative to the first vertex in ).

The negative edges outgoing the vertex  at the start of iteration  can lead only to the complement 
of the labeled set. If there existed a negative edge leading from  to the labeled set , then it would be pos-
sible to descend to the set  on extremal zero edges, i.e. to the vertex  (see the structure of the labeled
set in the description of the algorithm). However, there are no negative paths from  to . Indeed, the
initial paths are positive (the weight of the last edge in such a path is positive, , and the edge
weights increase not slower than a geometric sequence with the quotient 2; therefore, the sign of the total
path weight is determined by the sign of the maximum (in the absolute value) edge weight, i.e., ).
The random addition to the path weight , , is nonnegative. In the course of the algo-
rithm execution, the vertices  are in the same labeled set , therefore, the lengths of the paths
from  to  will remain unchanged (the boundary of  is crossed an even number of times).

Therefore, any negative edge  leads to . Next, one can reach  on zero edges. However, the
weight of the resulting path  is closer to zero than the weight of the edge . This is true
for the initial graph (due to the exponential growth of the network edge weights). In the course of the algo-
rithm execution, the weight of this path and the weight of the edge  increased by the same quan-
tity. Therefore, the negative weight of the edge  is closer to zero than the weight of . Hence,
the vertex  cannot become critical at iteration  (see the choice of the shift potential in the algorithm
description). This completes the proof of Proposition 4.

Proposition 5. At iteration , the labeled set  does not contain white vertices (except for ), and
the complement  does not contain black vertices (except for ).

Proof of Proposition 5. Assume the converse. The sets ,  are organized as shown in Fig. 2а.
1. We prove that  does not contain additional white vertices. Assume that  contains an additional

white vertex  as shown in Fig. 2a. Let us show that the weight  is closer to zero than the weight
. The solid lines in Fig. 2a show the extremal zero edges:

, (1)

where  and  are the complete potentials of the vertices  and  (the initial random ones and
those obtained in the course of the algorithm execution):

 (2)

Let the path  got a zero weight; then,

,

where  is the negative initial weight of the path . This formula implies  =
. Plug this expression into (1) and subtract (2) to obtain

.

Indeed,  > 0 (due to the exponential growth), , and .
The last inequality holds because the vertices bn and bn + 1 belonged to ; therefore, the potential is zero
in the course of the algorithm execution; hence, only the initial random potential remains. Since ε(bn),
ε(bn + 1) > 0 are, respectively, the third and the second maximums, we obtain the desired inequality. Since
the weights [ai, bn]' and [an, bn + 1]' are negative, we conclude that the weight [ai, bn]' is closer to zero than
the weight [an, bn + 1]'. The transition of the vertex an to the set of critical vertices at iteration j is impossible.

2. Let us show that the set  does not contain additional black vertices at the iteration j.
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Assume that  contains an additional black vertex as shown in Fig. 2b. We show that the positive
weight [bian]' is closer to zero than the negative weight [anbn + 1]':

, (3)

. (4)

Let the path  got a zero weight. Then,

,

where  is the initial positive weight of the path . This formula implies ε(bi) = –[as, bn] – Δ + ε(bn).
Plug this expression into (4) and add (3) to obtain

Indeed, [as, bn] – [bi, an] – [an, bn + 1] > 0 (due to the exponential growth); –Δ < 0; – ε(bn) + ε(bn + 1) ≥ 0.
The latter inequality holds because the vertices bn and bn + 1 were in the set ; therefore, the potential during the
algorithm operation is zero, and only the initial random potential remains. Since ε(bn), ε(bn + 1) > 0 are, respec-
tively, the third and the second maximums, we obtain the desired inequality. If the weights [ai, bn]' and
[an, bn + 1]' are negative, then we conclude that the weight [ai, bn]' is closer to zero than [an, bn + 1]'. Hence,
the transition of the vertex an to the set of critical vertices at iteration j is impossible.

Therefore, the positive weight [bian] is closer to zero than the negative weight [anbn + 1]. This completes
the proof of Proposition 5.

Proof of Proposition 3. After the next iteration step j + 1, there emerges the zero transition from the
black vertex bn to the vertex an + 1. Therefore, we obtain the following organization of the labeled set and
its complement. The labeled set has the following form: the white vertices a1, …, an – 1 have zero transitions
to the black vertex bn, which, in turn, has a zero transition to the vertex an + 1, and there is a negative loop

L
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incident upon the latter vertex. The complement of the labeled set has a symmetric form: the black vertices
b1, …, bn – 1 have zero transitions to the white vertex an, which, in turn, has a zero transition to the vertex
bn + 1, and there is a positive loop incident upon the latter vertex.

Since the weights in the initial graph [a1, bn], …, [an – 1, bn] are identical and the weights [b1, an], …,
[bn – 1, an] are also identical, the common potentials of the vertices a1, …, an – 1 are identical and the poten-
tials of the vertices b1, …, bn – 1 are identical as well. Therefore, the subnetwork determined by the vertices
a1, …, an – 1, b1, …, bn – 1 repeats the game network Hn – 1 up to the initial shift ε(a1) =, …, = ε(an – 1) < 0;
ε(b1) =, …, = ε(bn – 1) = 0. The vertices an – 1, bn, and an + 1 always remain in L, and the vertices bn – 1, an,
and bn + 1 remain in . By Proposition 2, the number of the remaining iteration steps on such a network
of the potential transformation algorithm is Ω(2n).

The asymptotic probability of favorable outcomes can be easily obtained using the integral estimation
of the corresponding sums. Thus, Proposition 3 is proved.

Proof of Proposition 2. The proof is by induction on the parameter n. For n = 2, the potential transfor-
mation algorithm makes three iteration steps. Suppose that, for the game network Hn, the algorithm makes
2n – 1 iteration steps, where n ≥ 2. Let us prove that this also holds for n + 1. Assume that –[an, bn + 1] <
[bn, an + 1] and [a1, b2] is the closest to zero weight of edges in Hn + 1.

Consider the first iteration step j at which the vertex an first becomes critical. It is even simpler to prove
that all the vertices, except for an + 1, bn and bn + 1, are critical after iteration j. Proposition 4 is proved using
a minor modification. When the vertex an got a zero weight edge leading to bn + 1 for the first time, there
are no other vertices with extremal zero weight edges that lead to the vertices bn + 1 and an + 1 (if we con-
versely assume that there is a vertex ai, i < n, [ai, bn + 1] = 0 at iteration j, then [ai, bn] > 0 because the edges
[ai, bn], [ai, bn + 1] = 0 were changed identically; in the same way, there exists no vertex bi, i < n, [bi, an + 1] = 0
at iteration j). Next, we exactly repeat the proof of Proposition 4.

By the inductive assumption, j = 2n – 1. Indeed, at the iterations 1, …, j – 1, the vertices bn and bn + 1

are redundant and the vertices an and an + 1 are insufficient; therefore, the weights ,  for i =
1, …, n – 1 and  change identically. Therefore, the additional edges ( ) do not affect the pro-
cessing of the subnetwork consisting of the first n vertices a1, …, anb1, …, bn at the first j iterations.

After the next iteration j + 1, a zero transition from the black vertex bn to the vertex an + 1 emerges.
Therefore, the labeled set and its complement are organized as follows. The labeled set consists of the
white vertices a1, …, an – 1, which have zero transitions to the black vertex bn, which, in turn, has a zero
transition to an + 1.

The complement of the labeled set has a symmetric form: the black vertices b1, …, bn – 1 have zero tran-
sitions to the white vertex an, which, in turn, has a zero transition to the vertex bn + 1. Now we prove that
the subnetwork defined by the vertices a1, …, an – 1, an + 1b1, …, bn – 1bn + 1 is an Hn network on n vertices up
to the initial shift.

Find the weighting function of the edges of this subnetwork Hn. The potentials can be reconstructed
from the extremal zero edges. Various orders of the absolute weights of edges are considered in a similar
fashion.

Consider the case when [bn, an + 1] ≥ –2[an, bn + 1] and [a1, b2] is the closest to zero weight of the edges
of the network Hn + 1.

Consider the potentials of the following vertices:

ε(bn + 1) = 0—this vertex is always in the complement  of the labeled set;

ε(an) = –[an, bn + 1]—the edge’s weight is set to zero;

ε(bn) = 0—this vertex is always in the complement  of the labeled set;

ε(an + 1) = [bn, an + 1]—the weight of the incoming edge (bn, an + 1) is set to zero;

ε(b1) = … = ε(bn – 1) = –[bn – 1, an] – [an, bn + 1]—the weights of the edges (bi, an) for i = 1, …, n – 1 are
set to zero;

ε(a1) = … = ε(an – 1) = –[an – 1, bn]—the weights of the edges (ai, bn) for i = 1, …, n – 1 are set to zero.

L

[ ]i nv v 1[ ]i n+v v

1[ ]n n+v v 1i n+v v

L

L
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At the iteration j + 1, which we now consider, the set of labeled vertices L and its complement  have
the form a1, …, an – 1, bn, an + 1 and b1, …, bn – 1, an, bn + 1, respectively (Fig. 3). In the resulting network, the
weight of the boundary edge that is closest to zero is

To prove this fact, we make the shift

then, we obtain partitions of the set of labeled vertices L and its complement  (L = {a1, …, an – 1, bn, an + 1}
and  = {b1, …, bn – 1, an, bn + 1}).

Below we show that, in the network determined by the vertices {a1, …, an – 1, an + 1} and {b1, …, bn – 1,
bn + 1}, the weights grow exponentially as required (the weight [a1, b2] is the closest to zero). Therefore, at
the iteration j + 1, the closest to zero weight in the network is [a1, b2]'. By the inductive assumption, the
remaining execution time of the algorithm is 2n – 1 iterations on the network Hn. (The black vertex n will
be labeled and the white vertex n will be unlabeled in the course of the remaining algorithm operation
because there always is an extremal zero transition to V– and V+, respectively. Therefore, the subnetwork
determined by the vertices {a1, …, an – 1, an + 1} and {b1, …, bn – 1, bn + 1} is processed in the same way as Hn.
This can be proved by induction on the iteration index using the remark on the description of the potential
transformation algorithm.) Let us find the new weights of the edges:

L

1 2 1 2 1 1 1[ , ]' [ , ] [ , ] [ , ] [ , ].n n n n n na b a b a b b a a b− − += − + +

1 2 1 2 1 1 1( ) [ , ]' [ , ] [ , ] [ , ] [ , ];n n n n n nL a b a b a b b a a b− − +ε = − + = − −

L
L

1 1 1 1 1 1 1 1[ , ]' [ , ] [ , ] [ , ] [ , ] [ , ],n n n n n n n n n n n na b a b b a a b b a a b+ + + + + − − += + + − −

1 1 1 1 1 1 1 1[ , ]' [ , ] [ , ] [ , ] [ , ] [ , ],n n n n n n n n n n n nb a b a b a a b b a a b+ + + + + − − += − − + +

1 1 1 1 1 1 1 1 1[ , ]' [ , ] [ , ] [ , ] [ , ] [ , ] [ , ],n n n n n n n n n n n n n na b a b a b a b b a a b b a− + − + − − − + −= − + − − = −
1 1 1 1 1 1 1

1 1 1 1

[ , ]' [ , ] [ , ] [ , ] [ , ]
[ , ] [ , ] [ , ] [ , ],

n n n n n n n n n n

n n n n n n n n

b a b a b a a b b a
a b b a a b a b

− + − + − + +

− − + −

= − − − −
− + + = −

Fig. 3.
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To verify the exponential growth, we use the following fact. The sign of any subset (without repetition of
elements) of the set of integers with an exponential growth of their absolute values (the quotient of the geo-
metric sequence is not less than 2) is defined as the sign of the maximum absolute value of the numbers
in this subset. Therefore, the total execution time of the algorithm is 2n + 2n – 1 = 2n + 1 – 1. Propo-
sition 2 is thus proved.

The basic Proposition 1 is derived as follows. Create n5 copies of the network Gn. This is the game net-
work Sn. The execution time of the algorithm on a set of disjoint networks is not less than its execution
time on each of its components. It is highly probable that at least on one of these subnetworks the distri-
bution of the maximum values of the potentials will be favorable. The probability of failure is estimated in
the standard way by

This completes the proof of Proposition 1.
Here is the formulation of the main lemma.
Lemma 1. Let  be a sequence of game networks with the same structure of graphs as in the sequence in

Proposition 1. The weighting function in each copy is the same. The black vertices 1, 2, …, n + 1 have the odd
weights 1, 3, …, respectively; and the white vertices 1, 2, …, n + 1 have the even weights 2, 4, … . The nonde-
terministic potential transformation algorithm applied to the problem obtained by the natural reduction using a
transformation that preserves the signs of subsets has an exponential execution time on this sequence of problems
with the unit asymptotic probability.

Proof. For the nth equivalent cyclic game, the growth of the absolute values of the weights is not lower
than that of the geometric sequence with the quotient n5 > 2, where n > 1; i.e., the equivalent game net-
work is a Gn network. By Proposition 1, the execution time of the potential transformation algorithm is
Ω(2n) with the probability Ω(1 – 1/exp(n)).

This implies that the nondeterministic potential transformation algorithm with a fixed zero boundary
of the critical vertices is exponential with the unit asymptotic probabilityс. The fixed zero boundary can
be obtained with probability 1.

Remark 2. In the general statement proposed in [1] when the boundary is set at the half of the sum of
the maximum and minimum extrema, the nondeterministic potential transformation algorithm is expo-
nential.

Consider the network Sn, i.e., n5 copies of game networks Gn (in every Gn, the weights of edges grow
exactly as the geometric sequence with the quotient 2, and the maximum weight is 2n). The number of ver-
tices in Sn is nk, where k = const. Add to Sn the components K1, …, Km, where m = 25nk + 1nk + 2. Each com-
ponent is a pair of a white and black vertices connected by a pair of edges. The weight of the edge leading
from the white to the black vertex is +8*2n, and the weight of the edge leading from the black vertex to the
white one is –8*2n. Thus, we obtain the game network  on which the potential transformation algorithm
makes Ω(2n) iteration steps with the asymptotic probability 1. Let N = poly(n) be the number of vertices
in the network. After a random distribution of potentials, the zero boundary will be set with the unit
asymptotic probability. The addition of components does not accelerate the processing of the copies Gn
because the graph is unconnected.

It suffices to show that the maximum and minimum extrema occur in one of the added components
due to the large number of these components. Therefore, the maximum and minimum extrema in the
entire game network are symmetric about zero. Firstly, we may assume that the bound of the random
potentials h is not less than 2n (otherwise, the maximum and minimum extrema would be attained in the
additional components, and the bound in this case would be zero because all the weights of loops in these
components are zero).

Secondly, the probability of two identical potentials is asymptotically equal to zero. The probability of
the opposite event is

(h(n) grows exponentially with n, and N(n) grows polynomially).

[ , ]' [ , ], 1,..., 2, 1,..., 1,i j i jb a b a i n j i n= = − = + −

[ , ]' [ , ], 1,..., 2, 1,..., 1.i j i ja b a b i n j i n= = − = + −

5 4 5 4ln(1 const/ ) ( const/ ) const( ), const 0.n n n n ne e e− − −≤ ≤ >

'nS

'nS

( 1)...( 1)/ 1N nh h h N h →∞− − + ⎯⎯→
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Thirdly, we can guarantee that the added components contain a large region with regular potentials
(positive potentials in white vertices and negative potential in black vertices) with probability 1. It can be
shown that the number of regular components is at least 1/25th of all m components with the asymptotic
probability 1; i.e., there are nk + 1nk + 2 regular components.

Fourthly, let us call a set of nk + 1 regular components an assembly. Then, we have nk + 2 assemblies of
which each contains nk + 1 regular components with probability 1. The assemblies are large to guarantee
that the maximum and minimum potentials in them are greater than in the main part of Sn. Indeed, the
probability of the complementary event is bounded above by the quantity nk/(nk + nk + 1), which asymp-
totically tends to zero. Lastly, we use a large number of assemblies to guarantee that the maximum and
minimum potentials of the assembly belong to the same component in it.

The probability of identical potentials is zero. Therefore, in each assembly we have equiprobable com-
binations of nk + 1 positive potentials with the same number of negative potentials. Hence, the probability
that the maximum potential is not in the same component as the minimum potential is not greater than
(1 – 1/nk + 1)nk + 2  0.
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