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INTRODUCTION
Processes concerning the influence of moving sources on various physical media have long been a sub-

ject of interest in physics, engineering, and mathematics. Practical examples of moving action sources
include electron, laser, and ion rays; electric arcs; and currents induced by moving inductors. Additional
types of moving action sources are ions, protons, and other high-speed particles; electric currents (electric
arcs, conduction and induced currents); plasma flows; chemical and nuclear reactions; substance sources
(in diffusion); oscillation sources (mechanical, acoustic, and electromagnetic); and sources of pressure.
These sources are used in many processes, such as metal melting and refining in metallurgy; heat treat-
ment, welding, and microprocessing in mechanical engineering and instrument making; the manufactur-
ing of semiconductors and resistors in microelectronics engineering; and activation, exposure, and drying
in biology, medicine, and agriculture.

Classical results concerning the optimal control of distributed systems can be found in [1–5]. Although
problems with controlled moving sources are of applied importance, they have received the least attention
thus far (see [2, 5–7]). For the first time, the problem of optimal control of moving sources for distributed
parameter systems was theoretically formulated in [2, 5], where numerous examples of systems with mov-
ing sources of various natures were given and the basic features of such systems that prevent addressing
them with well-known methods were indicated.

A major feature of control systems for moving sources is that they are nonlinear with respect to the con-
trol determining the law of source motion. This is especially clear when the control problem is formulated
in terms of moments. The moment problem becomes nonlinear. Accordingly, the method of moments,
which is widely used to find optimal controls in linear systems with distributed and lumped parameters,
becomes unsuitable for systems with controlled moving sources.

Note that only distributed parameter systems were addressed in the indicated practical examples. At
the same time, numerous dynamic systems involve auxiliary elements with lumped parameters that are
essential to control processes. The behavior of such systems is described by a set of ordinary and partial
differential equations with initial and boundary conditions.

In [5] the optimal control of point sources was studied assuming that the control functions are only the
intensities of fixed sources. A variational method for the optimal control of moving sources in the case of
systems described only by the heat equation was considered in [6]. The optimal control of source motion
for systems governed by the heat equation and a system of ordinary differential equations was addressed
in [7]. Specifically, the problem of the most accurate heating was studied; i.e., the task was to find admis-
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sible controls  that, over a fixed time T, drive the system from its initial state 
to one that deviates least (in a certain sense) from the desired state . The right-hand side of
the system of differential equations involved only .

In this paper, a variational method is applied to the problem of optimal control of moving sources for
systems governed by a parabolic equation, in conjunction with sets of ordinary differential equations. The
rms deviation of the system’s state from its desired state at any moment of time is used as an optimality
criterion. For this problem, we prove an existence and uniqueness theorem, establish sufficient conditions
for the Fréchet differentiability of the cost functional, find an expression for its gradient, and obtain nec-
essary optimality conditions in the form of pointwise and integral maximum principles.

1. FORMULATION OF THE PROBLEM

Let  be given numbers, , , , and . In what
follows, we will need the function spaces , , , and , which are introduced, for
example, in [5].

Let the state of a controlled process be described by functions  and . Assume that, inside the
domain , the function  satisfies the parabolic equation

 (1.1)

with initial and boundary conditions

 (1.2)

 (1.3)

where  is a given number,  is a given function,  is the delta function, and  =
 is the control function.

Assume also that the functions  are the solution of the Cauchy problem

 (1.4)

where  is a given number; the functions  ( ) are assumed to be given;

 =  is a control function such that the following constraint on
the position of the moving action is satisfied: : .

The pair of functions  is called a control. For brevity, let 
denote the Hilbert space of pairs  with inner product

and the norm , where 

The set of admissible controls is defined as

 (1.5)

where  and  are given numbers. Consider the functional

 (1.6)
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where  are given parameters and , ,
 and  are given functions.

Let us formulate the following problem: find an admissible control  from the set V and
a corresponding solution  of problem (1.1)–(1.4) that minimize functional (1.6).

2. WELL-POSEDNESS OF THE PROBLEM
Before analyzing the well-posedness of the optimal control problem (1.1)–(1.6), we state an auxiliary

theorem from [8].
Theorem 1 (see [8]). Let H be a uniformly convex Banach space, V be a closed bounded subset of H, 

be a lower semicontinuous functional that is bounded below on V, and  and  be given numbers. Then
there exists a dense subset K of H such that, for any , the functional  reaches
its least value on V. If , then the minimum value of  on V is reached at a single element.

Definition 1. The weak solution of problem (1.1)–(1.4) with control  is a pair of
functions  from , where  satisfies the integral identity

 (2.1)

for any with  while  satisfies the integral equation

 (2.2)

It follows from the results of [9] that, for each fixed control , the boundary value problem (1.1)–(1.4)
has a unique solution from . Let the conditions stated in the formulation of problem
(1.1)–(1.6) be satisfied. Then problem (1.1)–(1.6) has at least one solution. Note that problem (1.1)–(1.6)
with , is ill-posed in the classical sense [10]. Nevertheless, the following result holds.

Theorem 2. There is a dense subset K of H such that, for any , problem (1.1)–(1.6) with
, has a unique solution.

Proof. Let us prove the continuity of the functional

.

Let  be the increment of the control at an element  such that
. Define

It follows from (1.1)–(1.4) that the function  is a weak solution of the boundary value problem
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Let us prove that  satisfies the estimate

 (2.7)

where  is a constant. Multiplying both sides of Eq. (2.3) by  and integrating the result by
parts, we obtain the relation

. (2.8)

Let  with . Setting

in (2.8) yields the integral identity

 (2.9)

By applying the mean value theorem to  in the form

the right-hand side of (2.9) can be represented as

Taking into account (2.9), we obtain the following energy balance equation for problem (2.3)–(2.6):

where .
Applying the Cauchy–Schwarz inequality to the right-hand side of the equation produces

 (2.10)
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Moreover, it is easy to show that

,

,

where  are constants. Then the right-hand side of (2.10) can be bounded from
above:

, (2.11)

where  is a constant. Similarly [12, pp. 166–168 of the Russian edition], for an arbitrary ,
we divide the interval  into a finite number of subintervals with inequality (2.11) satisfied on each of
them. Then, summing up the resulting inequalities for all subintervals, we obtain

,

which implies inequality (2.7). Then  as . Therefore,  as

.

The increment of the functional  can be represented as

.

Combining this relation with the fact that  as , we conclude that  is
continuous.

The functional  is bounded below and, by what was proved above, is continuous in . Moreover,
 is a Hilbert space that is a uniformly convex and reflexive Banach space [13]. Then Theorem 1 implies

the existence of a dense subset  of  such that, for any , problem (1.1)–(1.6) with
, has a unique solution. The theorem is proved.

3. NECESSARY OPTIMALITY CONDITIONS
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and let  be a solution from  of the adjoint of problem (1.4), namely,

 (3.4)

Definition 2. The weak solution of problem (3.1)–(3.4) with a control  is a pair of
functions  from , where  satisfies the integral identity

 (3.5)

ΩΔ ≤ Δ 1,0
2 1 2 23( , ) ( )( , )k L t t Vu s t c u

ΩΔ ≤ Δ 1,0
2 1 2 24( , ) ( )( , )x k L t t Vu s t c u

> > >2 3 40, 0, and 0c c c

==

Ω
= Ω =

∂ΔΔ + ≤ Δϑ Δ
∂

2
2

1,0
2 22 1 2

1 2 1

2
2 2

5(0, ) ( )( , )( )

( , )1 ( , )
2 t

t tt t

L l VL t tt t L t t

u x tu x t a c u
x

>5 0c ∈ [0, ]t T
[0, ]t

Ω
Ω

∂ΔΔ + ≤ Δϑ Δ
∂

1,0
2 2

2

2
2 2

4(0, ) ( )
( )

( , )1 ( , )
2 L l VHL

u x tu x t a c u
x

ΩΔ →1,0
2 ( ) 0Vu Δϑ → 0

H ΩΔ →
2( )( , ) 0Lu x t

Δϑ → 0
H

ϑ0( )J

Ωϑ + Δϑ − ϑ = − Δ + Δ∫ ∫ �

2

2
0 0 ( )

0 0

( ) ( ) 2 [ ( , ) ( , )] ( , ) ( , )
l T

LJ J u x t u x t u x t dxdt u x t

ΩΔ →
2( )( , ) 0Lu x t Δϑ → 0

H
ϑ0( )J

ϑ0( )J V
H

K H ω = ϑ ∈�

�( ( ), ( ))p t t H
α > =0, 1,2i i

ψ = ψ( , )x t Ω1,0
2 ( )V

∂ψ ∂ ψ+ = − − ∈ Ω
∂ ∂

�

2
2

2 2[ ( , ) ( , )], ( , )a u x t u x t x t
t x

∂ψ ∂ψ= = ∈
∂ ∂
(0, ) ( , )0, 0, [0, ),t l t t T
x x

ψ = ≤ ≤( , ) 0, 0 ,x T x l

( )kq t [0, ]C T

=

∂ ∂ψ= − + ≤ < = =
∂ ∂∑

1

( ) ( ( ), )( ) ( ), 0 , ( ) 0, 1, .
n

k i k
i k k

ki

dq t f s t tq t p t t T q T k n
dt s x

ϑ = ϑ ∈( ( ), ( ))p t t H
ψ( ( , ), ( ))x t q t Ω1,0

2( ( ), [0, ])V C T ψ = ψ( , )x t

[ ]∂η ∂η∂ψ⎡ ⎤ψ + = − η
⎢ ⎥⎣ ⎦∂ ∂ ∂∫ ∫ ∫ ∫ �

21 1
1

0 0 0 0

2 ( , ) ( , ) ( , )
l T l T

a dxdt u x t u x t x t dxdt
t x x



COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 56  No. 3  2016

ON A CLASS OF OPTIMAL CONTROL PROBLEMS 401

for any  such that , while the function  satisfies the integral equa-
tion

 (3.6)

The function

 (3.7)

is referred to as the Hamilton–Pontryagin function of problem (1.1)–(1.6).
Theorem 3. Let the following assumptions hold:
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bounded partial derivatives with respect to  and  for .
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It follows from (3.4) that the function  satisfies the integral identity

 (3.12)

for any  with .
Setting  in (3.12) and  in (3.11) and summing up the resulting relations, we

obtain

.

By the assumption of the theorem, the function  can be represented in the form

,

where . From the last equality, it follows that

which, in view of (2.6) and (3.4), is equivalent to the equation

 (3.13)
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.
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where 

Following the standard scheme [11, p. 94], we can prove the estimate

 (3.15)

where  is a constant.

From this, we have . On the other hand, estimate (2.7) implies that
. Substituting the resulting relations into (3.9) yields

as ,

where

.

Combining this result with the expressions for the Hamilton–Pontryagin function, we obtain

as ,

which implies the Fréchet differentiability of functional (1.6) and the validity of formula (3.8). The theo-
rem is proved.

Theorem 4. Let all the conditions of Theorem 2 hold. Then a necessary condition for the optimality of a con-
trol  is that

 (3.16)

for any . Here,  are the respective solutions of problems (3.1)–(3.3)
and (3.4) with .

Proof. By the well-known theorem [11, p. 28], a necessary condition for the optimality of
 is that

Using relation (3.8) and the expressions for the Hamilton–Pontryagin function, we calculate the gra-
dient of functional (1.6) and, substituting it into the above inequality, conclude the validity of inequality (3.16).
The theorem is proved.
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Proof. Let  be a Lebesgue point inside  for all the functions included in the conditions of prob-
lems (1.1)–(1.4) and (3.1)–(3.4). Let

where  is a sufficiently small number.

The impulse variation of the control is defined as

where  is a constant vector. Let  where  and
. Then the function  satisfies the identity

 (3.17)

for any  with .

Proceeding as in the proof of estimate (2.7), we show that  satisfies the estimate

where  is a constant and . From this and the fact that  is a Lebesgue
point, we conclude that  in  as . Moreover, it follows from (3.15) that the function

 satisfies the estimate

where  is a constant. From this, we conclude that  in  as .

Let  be the solution of the integral identity
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for any  with  The difference  satisfies an integral identity sim-
ilar to (3.18). Combining this result with the fact that  in  as , we conclude that

 in  as .
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The increment of functional (1.6) is computed as

 (3.20)

Proceeding as in the proof of (3.14) and using identity (3.18), we obtain

Combining this relation with (3.20) yields

Then it follows from the form of the Hamilton–Pontryagin function (3.7) that

Since  in  and  in  as , we derive the following formula for the vari-
ation of functional (1.6):

.

The optimality of the control  implies that . From this and the fact that Lebesgue
points are dense everywhere in , we obtain the assertion of the theorem. The theorem is proved.

4. CONCLUSIONS
The optimal control of processes governed by a parabolic equation and a system of ordinary differential

equations was studied. For this optimal control problem, we proved an existence and uniqueness theorem,
established sufficient conditions for the Fréchet differentiability of the cost functional, derived an expres-
sion for its gradient, and obtained necessary optimality conditions in the form of pointwise and integral
maximum principles.
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