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Abstract―The strongly NP-hard problem of partitioning a finite set of points of Euclidean space into
two clusters of given sizes (cardinalities) minimizing the sum (over both clusters) of the intracluster
sums of squared distances from the elements of the clusters to their centers is considered. It is assumed
that the center of one of the sought clusters is specified at the desired (arbitrary) point of space (with-
out loss of generality, at the origin), while the center of the other one is unknown and determined as
the mean value over all elements of this cluster. It is shown that unless P = NP, there is no fully poly-
nomial-time approximation scheme for this problem, and such a scheme is substantiated in the case
of a fixed space dimension.
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INTRODUCTION
The subject of this study is a strongly NP-hard optimization problem. Our goal is to investigate the

approximability of this problem and to substantiate a fully polynomial-time approximation scheme
(FPTAS) for a special case of the problem.

In terms of theory, the considered problem of partitioning a finite set of points of Euclidean space into
two subsets (clusters) is important, for example, in computer geometry [1], statistical analysis of data [2],
and pattern recognition [3]. Among its natural-science and engineering applications, we can note the clas-
sification and interpretation of observations, image processing, etc. (see, e.g., [4–7] and the references
therein).

The problem under consideration is to partition a finite set of points of Euclidean space into two clus-
ters minimizing the sum (over both clusters) of the sums of squared distances from the centers of the clus-
ters to their elements. The center of one of the sought clusters is specified at the desired (arbitrary) point
of space (without loss of generality, at the origin). The center of the other cluster is unknown and deter-
mined as the mean value over all elements of this cluster. In fact, this center is the centroid or geometric
center of the cluster points.

This problem is induced, for example, by the problem of testing the statistical hypothesis of two means
(one being zero, and the other unknown) in an inhomogeneous sample of two multidimensional Gaussian
distributions with identical given covariance matrices containing identical diagonal elements assuming
that the correspondence of the sample units to the distributions is not known. Problems in noise-resistant
data analysis that also induce the considered problem can be found, for example, in [8–13].

The formulation of the problem under consideration is close, but not equivalent to the NP-hard Min-
imum Sum-of-Squares Clustering (MSSC) problem [14]. The latter, which is also referred to as k-means,
is one of the best known (for more than 50 years) problems in cluster data analysis (see [2, 3, 7, 15, 16]).
In the simplest, but nevertheless NP-hard baseline two-cluster case, MSSC is to partition a finite set of
spatial points into two subsets (clusters) minimizing the sum (over both clusters) of the intracluster sums
of squared distances from the elements of the clusters to their desired centroids. In contrast to the baseline
two-cluster case of MSSC, the desired center of one of the sought clusters in the considered problem is
given as input at the origin. The optimal centroid of this cluster may not coincide with the given center,
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which can be seen directly from the objective function of the problem (see the next section). Similarly, in
statistical hypothesis testing, the sample mean (centroid) may not coincide with the Gaussian expecta-
tion. As is well known, the detection of this noncoincidence is a typical problem in statistics.

Recall that new clustering problems in which the desired centers for some of the clusters are given as
input at some points of space were formulated and studied in [8–13, 17–21]. It was proved there that these
problems, which are close to MSSC, are NP-hard even in the 2-cluster case, when only one of the desired
centers is given. Note that the problems in [8–13, 17–21] were equipped with brief names reflecting their
formulation. Specifically, in the last publications, MSSC was referred to as 1-MSSC-F when the cluster
sizes (cardinalities) were given as input [13, 22] or as 1-MSSC-NF when the cluster sizes were unknown
(optimized variables) [23]. Below, both these cases are referred to as Minimum Sum-of-Squares 2-Clustering
with a Given Center. In our view, this name more precisely reflects the essence of the problem and its dif-
ference from and similarity to MSSC. Below, attention is focused primarily on the case of given cluster
sizes (i.e., the sizes of the desired clusters are given as input).

The mathematical formulation of the problem is given in Section 1. Additionally, the characteristics of
existing algorithms are presented. Note that the strong NP-hardness of the problem follows (see below)
from the results of [8–10, 20, 24]. The strong NP-hardness of the problem implies [25] that, unless P = NP,
there is neither an exact polynomial-time nor an exact pseudopolynomial-time algorithm for it. Accord-
ingly, a task of interest is to analyze the approximability of the problem. Specifically, since the problem
has numerical input, the existence of an FPTAS for it is a question of topical interest.

In this paper, we show that unless P = NP, there is no FPTAS for Minimum Sum-of-Squares 2-Clus-
tering with a Given Center and given cluster sizes, and such a scheme is constructed in the case of a fixed
space dimension.

1. FORMULATION OF THE PROBLEM AND PREVIOUS AND PRESENT RESULTS

The problem under consideration is formulated as follows (see also [13, 17, 22]).

Problem 1 (Minimum Sum-of-Squares 2-Clustering with Given Center and cluster sizes). Given a set
= = {y1, …, yN} of points of ℝq and a positive integer M, find a partition of = into two clusters # and =\#
minimizing the objective function

 (1.1)

where  =  is the centroid of # under the constraint |#| = М.

In [12] an algorithm was proposed that finds a 2-approximate solution of this problem in 2(qN2) time.
A PTAS having 2(qN2/ε + 1(9/ε)3/ε) time complexity, where ε is the guaranteed relative error, was substan-
tiated in [26]. A randomized algorithm was proposed in [13]. It was shown that, for a prescribed relative
error ε > 0, a given failure probability γ ∈ (0, 1), and a certain value of parameter k, the algorithm finds a
(1 + ε)-approximate solution of the problem in 2(2kq(k + N)) time. Additionally, the conditions were
established under which this algorithm is asymptotically exact and has 2(qN2) time complexity. It was
shown in [22] that the problem is solvable in 2(q2N2q) time, which is polynomial when the space dimen-
sion q is fixed. Additionally, an exact pseudopolynomial-time algorithm was constructed in [22] in
the case of integer-valued coordinates of the input points. The time complexity of the algorithm is
2(qN(2MD + 1)q), where D is the maximum absolute coordinate value in the input set. For a fixed space
dimension, the time complexity of this algorithm is 2(N(MD)q).

The main result of this paper is an FPTAS that, given a relative error ε, finds a (1 + ε)-approximate
solution of Problem 1 in time 2(N2(l/ε)q/2), which is a polynomial in the input size of the problem and in
1/ε in the case of a fixed space dimension.
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2. NONEXISTENCE OF FPTAS
First, we show that the Minimum Sum-of-Squares 2-Clustering with a Given Center is a strongly

NP-hard problem. Indeed, it is easy to see that the objective function (1.1) can be represented in the form

This equality shows that, for a given cardinality of the desired subset #, the minimization of S(#) in Prob-
lem 1 is polynomial-time equivalent to the strongly NP-hard problem of maximizing the norm of the sum
(see [9, 10, 20]) on the right-hand side of the equality, since the minuend sum is a constant. Therefore,
Problem 1 is also strongly NP-hard. In the case of an unknown cardinality of #, Problem 1 is also strongly
NP-hard, since the maximization of the second term on the right-hand side of this equality is a strongly
NP-hard problem (see [8, 24]).

Now we consider the approximability of Problem 1, which is an important issue.
Theorem 1. There is no FPTAS for Problem 1 unless P = NP.

Proof. For any nonempty finite set ] of points of Rq and its centroid  = , we have the

easy-to-check identity

Applying this identity to the subset # and its centroid in the first term of equality (1.1), we obtain

 (2.1)

since |#| = M.
First, we note that, for integer input data, the right-hand side of (2.1) is obviously an integer bounded

by a polynomial in the input size of the problem (since M ≤ N) and in the maximum (in absolute value)
of the coordinates of the points in the input set. Second, the existence of an FPTAS for the minimization
of the right-hand side of (2.1) for a given М implies the existence of an FPTAS for Problem 1 of minimiz-
ing S(#) by virtue of the polynomial equivalence following from (2.1). Then, by Theorem 8.5 from [27],
it follows that there is no FPTAS for the strongly NP-hard Problem 1 with numerical input unless P = NP.
Theorem 1 is proved.

3. GEOMETRIC FOUNDATIONS OF THE ALGORITHM
To construct an algorithm, we need several auxiliary statements.
Lemma 1 (see [28]). For an arbitrary point x ∈ Rq and a finite set ] ∈ Rq, it is true that

where  is the centroid of ].
Lemma 2 (see [12]). Let ] be a nonempty finite set of points of ℝq and  be the centroid of ]. If a point

x ∈ ℝq satisfies the conditions

then

For a finite set ] of points of Rq, a positive integer М ≤ |]|, and an arbitrary point x ∈ Rq, we define
the set consisting of М elements of ] having the largest projections onto the direction specified by x:

where 〈·, ·〉 is the scalar product.
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Lemma 3 (see [13]). Let ] be a nonempty finite set of points from ℝq and

 (3.1)

Then the following assertions hold:
(1) For any fixed subset @ ⊆  the minimum of functional (3.1) over x ∈ ℝq is reached at the point x =

 =  and is equal to S(@).

(2) If |@| = М, then, for any fixed point х ∈ ℝq, the minimum of functional (3.1) over @ ⊆  is reached on
the set @M(x, ).

Lemma 4. Let #* be an optimal solution of Problem 1. Then, for an arbitrary point x ∈ ℝq,

 (3.2)

where  =  is the centroid of #*.

Proof. The first assertion in Lemma 3 implies the estimate

 (3.3)
while the second assertion yields the inequality

 (3.4)
Applying Lemma 1 to the point x and the set #*, we obtain

 (3.5)

Finally, combining (3.3)–(3.5) gives the estimate

Lemma 4 is proved.
Lemma 5. Let the conditions of Lemma 4 hold and t =  be the point of the set #* nearest

to its centroid. Then, given a fixed ε > 0, for the set @M(х, =) to be a (1 + ε)-approximate solution of Problem 1,
it is sufficient that the point x satisfies the inequality

 (3.6)

Proof. The first assertion of Lemma 3 implies the estimate

 (3.7)
while the second assertion yields the inequality

 (3.8)
Consider the set #* and the point t. Since they satisfy the conditions of Lemma 2, we have

and, hence,

 (3.9)
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Combining (3.6)–(3.9) yields

 (3.10)

Finally, applying (3.10) to the right-hand side of (3.2), we obtain the estimate

which proves Lemma 5.
Lemma 6. Let #* be an optimal solution of Problem 1. Then the point t =  satisfies the

estimate

Proof. The definition of t implies that, for any у ∈ #*,

Summing up both sides of this inequality over у ∈ #*, we obtain

 (3.12)

Since @M(t, =) is a feasible solution of Problem 1 and #* is its optimal solution, we have the inequality

 (3.13)
Combining (3.12) and (3.13) yields the estimate

which proves inequality (3.11). Lemma 6 is proved.

4. FPTAS ALGORITHM
The idea of the algorithmic solution proposed (FPTAS algorithm) can be described as follows. For

each point of the input set, a domain (cube) is constructed so that the center of the desired subset neces-
sarily belongs to one of these domains. Given (as input) the prescribed relative error of the solution, a grid
(lattice) is generated that discretizes the cube with a uniform step in all coordinates. For each lattice node,
a set of М points of the original set that have the largest projections onto the direction specified by this
node is formed. The resulting set is declared a contender for the solution. The contender subset that min-
imizes the objective function is chosen to be the final solution.

For an arbitrary point z ∈ ℝq and positive numbers h and H, we define the set of points

,

which is a cubic lattice of size 2H centered at the point z with mesh spacing h. The number of nodes in this
grid is

Moreover, for any x ∈ ℝq such that ||z – x|| ≤ H, the distance to the nearest node of $(z, h, H) obviously
does not exceed (h )/2.

Note that, in fact, Lemma 6 (the right-hand side of (3.11)) determines the size of the lattice that nec-
essarily contains the centroid of the optimal solution to the problem only if the point t of the input set =
is the nearest to this centroid. Therefore, for the size of the lattice, we set

 (4.1)
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Moreover, Lemma 5 establishes the condition on the lattice mesh spacing under which, among the nodes,
there is one close (in the sense of the guaranteed error ε) to the centroid of the optimal solution. Therefore,
for the mesh spacing, we set

 (4.2)

Let us formulate the following algorithm for solving the problem.

Algorithm !

Input: a set = and numbers М and ε.
For each point у ∈ = Steps 1–5 are executed.
Step 1. Construct the set @M(y, =).
Step 2. Compute S(@M(y, =)), h, and H using formulas (1.1), (4.2), and (4.1).
Step 3. If S(@M(у, =)) = 0, then return the set @M(у, =) as the result produced by the algorithm and

exit; otherwise, go to the next step.
Step 4. Construct the lattice $(у, h, H).
Step 5. For each point d of the lattice $(у, h, H), construct the set @M(d, =) and compute S(@M(d, =)).
Step 6. In the family {@M(d, =)|d ∈ $(y, h, H), y ∈ =} of sets, choose, as a solution, the set @M(d, =)

for which @M(d, =) is minimal.
Exit.
Theorem 2. For any fixed ε > 0, algorithm ! finds a (1 + ε)-approximate solution of Problem 1 in

2  time.

Proof. Let t =  be the point of the set #* nearest to its centroid. If the equality

S(@M(t, =)) = 0 holds for this point at Step 3, then the set @M(t, =) is an optimal solution of Problem 1,
since, for any set # ⊆ =, it is true that S(#) ≥ 0.

Consider the case S(@M(t, =)) > 0. By Lemma 6, inequality (3.11) holds for the point t. This inequality
and (4.1) imply that ||t – (#*)|| ≤ H. In other words, the centroid (#*) of the optimal set lies within the
grid $(t, h, Н).

Let d* = . Since the distance from (#*) to the nearest node d* of $(t, h, H)

does not exceed (h )/2, we have the estimate

Therefore, the point d* satisfies the conditions of Lemma 5 and, hence, the set @M(d*, =) is a (1 + ε)-approx-
imate solution of Problem 1.

Let us estimate the time complexity of the algorithm. At Step 1, (1) N projections of points of the set = onto
the direction specified by the point y are computed in 2(qN) operations, and (2) in the resulting collec-
tion, М largest projections and the corresponding points of the set = are chosen in 2(N) operations with-
out sorting (see, e.g., [29]). Step 2 requires at most 2(qN) operations, while Step 3 is executed in 2(1)
operations.

The complexity of generating $(y, h, H) at Step 4 is 2(q|$(y, h, H)|).
At Step 5, each of |$(у, h, H)| sets @M(d, =) is constructed in 2(qN) operations, and the same is true

for the computation of S(@M(d, =)).
For each of N points у ∈ = Steps 1–5 are executed in 2(qN|$(y, h, H)|) operations. Step 6 (choosing

the least element) requires at most  operations.
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It remains to be noted that the cardinality of $(у, h, Н) satisfies the estimate

Therefore, the time complexity of the algorithm is . Theorem 2 is proved.

Let us show that algorithm ! is an FPTAS if the space dimension q is fixed. Indeed, if ε ∈ (0, 2q], then

Therefore, under the indicated conditions, the running time of the algorithm is 2(N2(1/ε)q/2), which is
bounded by a polynomial in the input size of the problem and in 1/ε. Thus, the algorithm implements an
FPTAS.

Remark. The FPTAS constructed can be used to solve Minimum Sum-of-Squares 2-Clustering with
a Given Center, in which the cardinalities of the clusters are optimization variables. For this purpose, it is
sufficient to find 2(N) solutions of the problem with the help of the FPTAS for each admissible size of the
desired subset and to choose the best of these solutions. Obviously, the time complexity of this algorithm

is . For a fixed space dimension, it is 2(N3(1/ε)q/2).

CONCLUSIONS
The existence of an FPTAS was analyzed for a strongly NP-hard problem with numerical input,

namely, for the problem of partitioning a finite set of points of Euclidean space into two clusters of given
cardinalities minimizing the sum (over both clusters) of the intracluster sums of squared distances from
the elements of the clusters to their centers. It is assumed that the center of one of the desired clusters is
given at the origin, while the center of the other is unknown and determined as the mean value over all
elements of this cluster.

It was proved that unless P = NP there is no FPTAS for the problem, and such a scheme was con-
structed in the case of a fixed space dimension.

It was shown that the algorithm substantiated can be used to construct an FPTAS for the problem in
which the cardinalities of the clusters are optimization variables. However, a task of interest is to design
another (less expensive) FPTAS without exhaustive search of all admissible sizes of the desired clusters.
The substantiation of such a scheme is an important issue to be addressed in the nearest future.
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