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1. INTRODUCTION

At present, the Edgeworth–Pareto principle is a fundamental tool used to solve multicriteria choice
problems of various natures. To many researchers, it frequently seems so obvious and natural that, in their
views, it does not require any substantiation or special argumentation. In fact, they state that the best
choice always has to be sought within the Pareto set. This approach can be called a “naive” Edgeworth–
Pareto principle. It has been used and continues to be applied by thousands of researchers.

It was found over time that this principle is not universal: there are problems in which it “does not
work.” In this context, there appeared an urgent necessity to differentiate choice problems in which the
naive principle is valid from problems in which the Pareto optimal solution is not necessarily the best one.
In other words, there was an urgent need to pass from the naive Edgeworth–Pareto principle to an axiom�
atic one.

The Edgeworth–Pareto principle was axiomatized by the author in [1, 2]. Later, the class of problems
for which this principle is valid was substantially expanded (see [3–8]).

Below, we consider the general multicriteria choice problem with m individual strict preference rela�
tions that can be interpreted as relations of a set of m players or economy participants and with a strict col�
lective preference relation. The last is assumed to be unknown. The concept of a k�effective alternative is
introduced in Section 1. This concept coincides with an effective (Pareto optimal) alternative for k = 1
and represents a weakly effective (Slater optimal) alternative for k = m. For the other integer values of k,
it is intermediate between the above two. In Section 2, the Pareto axiom and the exclusion axiom for dom�
inated alternatives are stated for the general multicriteria choice problem. Assuming that these axioms
hold, a generalized Edgeworth–Pareto principle is established, which was earlier introduced by the author
in the special case k = 1. In Section 3, the results are extended to a fuzzy collective preference relation and
a fuzzy set of initial alternatives.

2. k�EFFECTIVE ALTERNATIVES IN THE GENERAL MULTICRITERIA CHOICE PROBLEM

Consider the general multicriteria choice model , where

Yi is the scale of the ith criterion (abstract set), ;

 is an irreflexive, transitive, and weakly connected binary relation defined on the set , ;

Y is the set of feasible alternatives (tuples) to choose from, ;

 is an asymmetric binary strict preference relation defined on ; as a rule, it is not known in applied
choice problems.
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Recall that a binary relation  defined on a set A is called

irreflexive if  is false for any ;

transitive if, for any ,  and  imply ;

weakly connected if for any  such that , either  or .
The solution of the multicriteria choice problem is a set called a set of chosen alternatives, which is

denoted by . Any attempt to define it rigorously is ineffective. In such conditions, it seems rea�
sonable to derive an upper bound for the unknown set  with the help of certain incomplete informa�
tion on the basic objects participating in the multicriteria choice problem. It is this task that is performed
on the basis of the Edgeworth–Pareto principle.

In terms of the above�mentioned set, the binary relation  can be characterized as
.

Let . The binary relation  on the set  is defined according to the rule

 at least for some  indices  from I

and  for the other .

This relation can be interpreted as a collective (group) preference relation if  are treated as
individual preference relation of m participants (for example, in an economy or game).

For Y, the set of k�effective alternatives is defined as

there is no  such that ,

and the set of nondominated alternatives is defined as

there is no  such that .

 is the set of effective (i.e., Pareto optimal) alternatives, while  is the set of weakly effective
(Slater optimal) alternatives (see [9]). For  we obtain sets that are intermediate between
these two concepts. As was noted above, in applications, the relation  is usually not known and, hence,
the set  is not defined.

It should be noted that, for k greater than a half of m, the binary relation , though somewhat similar
to the well�known majority relation (see [10]), differs fundamentally from it. Indeed, the majority relation
between a pair of tuples  holds if  for more than a half of the indices i irrespective of whether
or not analogous relations hold for the other indices i. Meanwhile, for  to hold, it is required that

 be true for none of the indicated other indices. It can be seen that  is contained (as a set of pairs)
in the majority relation, but not vice versa. Moreover, in contrast to the majority relation,  is transitive.
We can say that, for the indicated k, the relation  is the maximal (by inclusion) transitive part of the
majority relation.

On the set , the relation  is defined by the equivalence

 for some  indices  from I and  for the other .

Clearly, this relation is a subset of , but not vice versa.

The relation  is said to be consistent with the relation  if for any two tuples

it is true that .

Lemma. Let each of the relations  be consistent with the relation , which is transitive on . Then

 for any  implies  for all .

Proof. Assume without loss of generality that, by virtue of , we have ,

.

By assumption, . Using the consistency property, we
obtain the chain of relations

.
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Since the relation  is transitive, it follows that , as required. The lemma is proved.

The implication  means that the relation  is contained in  and, hence, can be
used to construct an upper bound for the unknown relation . According to the lemma, under the lemma
assumptions, an upper bound for the set of nondominated alternatives  can be constructed using

the set  with  replaced by the simpler relation  (see Corollary 1 below).

3. GENERALIZED EDGEWORTH–PARETO PRINCIPLE

Let the following axiom hold.

Axiom 1 (exclusion axiom). For any pair of alternatives  satisfying the relation , it is true
that .

According to Axiom 1, the alternative not chosen from a pair is not chosen from the entire set .
Though natural, this axiom is not universal and can be violated in some applications (see [2]).

Assuming the opposite, it is easy to see that, for any set  satisfying Axiom 1, we have the inclusion

. (1)

In other words, the final choice is made within the set of nondominated alternatives.

Axiom 2 (generalized Pareto axiom). Let . For any two vectors  satisfying the relation
, it is true that .

For k = 1, this axiom coincides with a well�known version of the Pareto axiom (see [4]). A straightfor�
ward consequence of Axiom 2 is that, for any set ,

. (2)

Combining (1) and (2) yields the following result.

Generalized Pareto principle. Let  and Axioms 1 and 2 hold. Then, for any set ,

. (3)

Note that this principle holds irrespective of whether or not the relation  is transitive. Note also that
Axioms 1 and 2 involve the index . Therefore, the generalized Pareto principle contains m generally
different assertions depending on the particular numerical value of k. For k = 1, we have the well�known
Edgeworth–Pareto principle (see [4]). For , the last assertion can be referred to as the Slater princi�
ple: given two tuples, if one of them can be chosen only in the case of domination over all components
simultaneously (i.e., for ), then the final choice has to be made within the set of weakly
effective alternatives (Slater set). For the other k, we obtain a collection of intermediate principles.

Applying the lemma yields the following result.

Corollary 1. Let , each of the relations  be consistent with the transitive relation , and
Axioms 1 and 2 hold with  in the latter replaced by the relation . Then, for any set ,

.

It can be seen that Corollary 1 is similar to the Pareto generalized principle, although it is based on the
relation , which is a subset of . This was achieved due to the additional assumption that the rela�
tion  is consistent and transitive.

Consider the standard multicriteria choice problem (model) , where

 is the set of feasible alternatives (solutions) to choose from;

 ( ) is a set of numerical criteria (vector criterion) defined on  and taking values in

the arithmetic vector space ;

 is an asymmetric binary strict preference relation defined on X. This relation is usually assigned to
a decision maker (DM), although it can also be interpreted as a collective preference relation if the criteria

 are associated with m different participants (players).

Recall that a binary relation  defined on a set A is called asymmetric if, for any elements , 
implies that the relation  is false.
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The feasible alternatives from X to be found by solving the multicriteria choice problem are called cho�
sen alternatives. They form a set of chosen alternatives (chosen decisions), which is denoted by .

In what follows, we also use the set of feasible vectors  and the set of chosen vectors
. It is natural to assume that the strict preference relation  is defined on the set of

vectors , and this relation is adjoint to (consistent with)  as follows:

for all ,

where  is the collection of equivalence classes generated by the equivalence relation  ∼  

 on X. It should be noted that the set  is not necessarily empty, but the particular form
of  on this difference is of no matter in the context of this paper.

In terms of vectors, the standard multicriteria choice problem  contains the set of feasible vectors
 and the strict preference relation  defined on , while its solution is the set of vectors .

Pareto axiom 1. For two any vectors  such that , it is true that .

Here, the inequality  means that each component of the first vector is greater than or equal to
the corresponding component of the second vector; moreover, . This Pareto axiom seems quite nat�
ural if the DM tries to obtain as large as possible values in each of the criteria.

Relying on the above results, for the standard multicriteria choice problem under consideration, the
generalized Pareto principle for k = 1 can be stated as follows.

Edgeworth–Pareto principle. Let Axiom 1 and the Pareto axiom hold. Then, for any set , we have
the inclusion

, (4)

where the right�hand side is the Pareto set defined as

there is no  such that .

For the first time, this principle was presented in the form of (4) in [1]. It should be noted that the
“best” alternatives were chosen from the Pareto set even before the overwhelming majority of studies con�
cerning multicriteria problems had appeared. In fact, researchers followed the naive Edgeworth–Pareto
principle, i.e., they treated it as an axiom, although it is not an intuitively evident statement, as required
by the axiom concept. Meanwhile, from the DM’s point of view, Axiom 1 and the Pareto axiom are fairly
clear statements that can be accepted or rejected with reason. Moreover, it was found that these two axioms
make up a minimum set in the sense that the elimination of at least one of them may lead to the violation
of the Edgeworth–Pareto principle. It follows that at least one of them will necessarily be broken by
choosing the best alternative outside the Pareto set. Accordingly, making such a choice, the DM must real�
ize this situation. Similar conclusions can be drawn for the generalized Edgeworth–Pareto principle.

4. GENERALIZED FUZZY PARETO PRINCIPLE

Recall (see, e.g., [11]) that a fuzzy set  on a set A is defined by a membership function  given on
A and taking values in the interval [0, 1], while a fuzzy relation on A is defined by a membership function

 given on  and taking values from [0, 1]. The support of a fuzzy set  is defined by the equality
. A fuzzy relation  is asymmetric if the inequality  always implies that

 for all . A fuzzy set А with a membership function  is a subset of a fuzzy set В with
a membership function  (i.e., ) if    for all .

Let us show how the Pareto principle can be formulated for multicriteria choice problems with a fuzzy
preference relation and fuzzy set of alternatives.

Consider a fuzzy multicriteria choice problem (model)  , where

Yi is the scale of the ith criterion (crisp set), ;

 is an irreflexive, transitive, and weakly connected binary relation defined on the set , ;

Y is the fuzzy set of feasible alternatives with membership function  defined on the Cartesian prod�

uct ;
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 is the membership function of an asymmetric binary fuzzy relation of strict preference defined

on .

The solution of this problem is a fuzzy set of chosen alternatives with a membership function 

defined on  such that  for all . The last inequality means that the set of chosen alterna�
tives is a subset of .

Pareto axiom 2. Let . For any two alternatives  satisfying , it is always true that
.

Fuzzy exclusion axiom. For any pair of alternatives  such that , it is true

that   .

The membership function of a set of k�effective vectors is defined as

and the membership function of a fuzzy set of nondominated alternatives is defined as

.

Then the generalized fuzzy Pareto principle can be formulated as follows.

Theorem. Let . Under the Pareto and fuzzy exclusion axioms, for any fuzzy set of chosen alternatives

with a membership function ,

(5)

Proof. Consider an arbitrary fixed fuzzy set of chosen alternatives with a membership function .
First, we prove the inequality

(6)

By the fuzzy exclusion axiom,    for all . Passing to the infimum over  on the
right�hand side of this inequality, we obtain

Combining this result with  for all  yields (5).

Now we prove the inequality

. (7)

Assume the opposite, i.e., for some , it holds that  > . Then, obviously,

 and either  or . The alternative  is not possible by the

definition of . Therefore, . By the definition of , its value at y is equal to  or 0.

Since the inequality  is not possible, as was proved above, we conclude that . There�
fore, there is an alternative  such that the relation  holds. Combining this result with the
Pareto axiom yields  and, by the definition of a fuzzy set of nondominated alternatives, we

obtain the contradiction , which proves (7).

Inequalities (6) and (7) imply (5), as required.

Corollary 2. Under the conditions of the theorem, let the set Y be crisp. Then, for any fuzzy set of cho�

sen alternatives  with a membership function , it is true that  for all , which
means that inclusion (3) holds for fuzzy sets.

It is easy to show that, for a crisp collective preference relation and a crisp set , the assertion of the
theorem completely coincides with the generalized Edgeworth–Pareto principle obtained in Section 3.
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