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Abstract—In the present analysis, we have modeled the governing equations of two dimensional
hyperbolic tangent fluid model under the assumptions of long wavelength and low Reynolds number.
The flow is investigated in a wave frame of reference moving with the velocity of the wave. The govern-
ing equations of hyperbolic tangent fluid have been solved using regular perturbation method. The
expression for pressure rise has been calculated using numerical integrations. The behavior of different
physical parameters have been discussed graphically.
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1. INTRODUCTION

Various applications of peristaltic flows in physiology and industry have produced interest among the
researchers [1—8]. Such application include urine transport from kidney to bladder, through ureter, the
movement of chyme in the gastrointestinal tract, the movement of spermatozoa in the human reproduc-
tive tract and the vasomotion of small blood vessels etc. The theoretical idea of peristaltic mechanism was
given by Shapiro [9] which was latter on experimentally tested by Latham [10]. After Latham a large
amount of studies have presented on the peristaltic phenomena [11—16].

In the references cited above [ 1—16] no slip condition has been taken into account. However, in certain
situations standard no slip is not applicable. Recently, Hayat et al. [17] discussed the slip effects on the
peristaltic motion of a viscous fluid through a porous medium in an asymmetric channel. Ebaid [18] dis-
cussed the problem of Hayat et al. [17] incorporating the effects of MHD in the place of porous medium
term. Only a few papers are available in literature in which the effects of partial slip on the peristaltic
motion of non-Newtonian fluids have been taken. In non-Newtonian fluids in the presence of the slip
conditions the governing equations and boundary conditions are highly non-linear and complicated. The
influence of slip on the peristaltic motion of a third order fluid in an asymmetric channel has been dis-
cussed by Hayat et al. [19]. Nadeem and Akram [20] have discussed the peristaltic motion of a Jeffrey fluid
in an asymmetric channel with partial slip conditions. The aim of the present paper is to discuss the effects
of the slip condition on the peristaltic flow of a tangent hyperbolic fluid model. To the best of authors
knowledge no attempt has been made to discussed the slip effects of tangent hyperbolic fluid model. The
governing highly non linear differential equations and boundary conditions are simplified using the
assumptions of long wave length and low Reynolds number. The reduced equations are then solved ana-
Iytically by a well known perturbation technique. The expression of pressure rise has been computed
numerically using mathematics software. The results are discussed through graphs for various physical
parameters of the proposed problem.

2. MATHEMATICAL FORMULATION

For an incompressible fluid the balance of mass and momentum are given by

divV = 0, (D

! The article is published in the original.
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dv .
= = divS + pf, 2
pdt p (2)

where p is the density, V is the velocity vector, S is the Cauchy stress tensor, f represents the specific body
force and d/dt represents the material time derivative. The constitutive equation for hyperbolic tangent
fluid is given by [21, 22]

S = —Pl+1, 3)

T = —[[N., + (Mp+M..)tanh (I7) 171, 4)

in which — Pl is the spherical part of the stress due to the constraint of incompressibility, T is the extra stress
tensor, M, is the infinite shear rate viscosity, 1, is the zero shear rate viscosity, I is the time constant, # is

the power law index and 1_( is defined as

= [y > - i s

Here, IT is the second invariant strain tensor. We consider the constitutive Eq. (4) for the case in which
N = 0and I'y < 1. The component of extra stress tensor therefore, can be written as

= LT = M1 +T7- 1)1y = -no[1+n(7-1)]7. (6)

Let us consider the peristaltic transport of an incompressible hyperbolic tangent fluid in a two dimen-

sional channel of the width d; + d,. The flow is generated by the sinusoidal wave trains propagating with
the constant speed c along the channel walls. The geometry of the wall surface is defined as

Y=H, = Ell+a1cos[%()_(—cf)J,

(7)
Y=~H, = —c_iz—l_)]cos[g{—r()_(—cf)+d)}

where a, and b, are the amplitudes of the waves, A is the wave length, d; + d, is the width of the channel,

c is the velocity of propagation, ¢ is the time and X is the direction of wave propagation. The phase dif-
ference ¢ varies in the range 0 < ¢ < w in which ¢ = 0 corresponds to symmetric channel and the waves out

of phase and ¢ = &, the waves are in phase, further, a,, bi, d, d>» and ¢ satisfies the condition

C_Z? + B% + 26_11510084) < ((_111 + (_12)2.
The equations governing the flow of a tangent hyperbolic fluid are given by

oU oV

U,V _y, )
ox oy

o2 +U6U 7Y - 2 _Tu_ Tu ©

ot oY oX oX oY’

(a 7 V‘W) _OP_ Oty Tty (10)
t

oX oY oXx oY

Since flow in laboratory and wave frames are treated unsteady and steady, respectively. The two frames
are related by the transformations

x=X-ct, y=Y, u=U-c, v=V and p(x) = PX1). (11)
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Introducing the following non-dimensional quantities

X = Ea y = 27 u = Izv t = El:a h] = —, h2 - }_27 xx - L’E)’cxa xy — dl ’E)}jw
A d, c A d, d; NoC MNo¢
] ) ) . - (12)
d1 _ d] pCd1 Te d1 — . Yd]
T, = —T,., 0=—, Re="—, We=—, P= p, ¥ = ‘.
P e A Mo d cAng ¢
Usi . oY oY L . .
sing Egs. (11), (12) and values of stream function W(u = 0 v= o ), the continuity equation (8) is
y X
identically satisfied and Egs. (9) and (10) takes the following form
5Re[(a;}'ﬁ_‘lyﬁ)ai’} _ _OP_ 20t Oty (13)
0y Ox 0Ox 0y’ Oy ox ox oy’
33Re[(ai’§ _aijﬁ)aij} = _‘3_1)_52%_5% (14)
Oy Ox Ox 0y Ox oy ox oy’
where
: Y
= 2[1+n(Wey—-1)]—,
T = 2L+ n(Wer - DI
2 2
vy = [+ n(Wei- ) X -2 Y),
oy ox
: Y
T,, = 20[1+n(Wey - 1)]%,
20 2 2 2 2 2upN 24172
7 = {282(6 ‘*I’) +(Q:_P_82Qi’) +262(8 ‘P) } ’
0x0Oy oy’ x> Ox0Oy

in which 6 is the wave, Re represents the Reynolds number and We represent the Weissenberg numbers.
For long wavelength approximation [22] Egs. (13) and (14) reduce in the following form

2 2
oF _ Q[l +n(Wea—lf— 1)}‘9—?, (15)
x Oy oy oy
oP
— = 0. 16
o (16)
Elimination of pressure from Eqgs. (15) and (16) yield
2 2 2
‘3—2[1 +n(Wea—l£’— 1)}5—‘5 - 0. (17)
oy oy oy
The instantaneous volume flow rate in the fixed frame is defined as
H
0= [UX Y1) (18)
H,

In the wave frame the rate of the volume flow is defined as
hy
g = [uxy)dy, (19)
hy
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in which 4, and A, are the functions of x only. Prom Eq. (11), (18) and (19) we obtain
0 = g+ chi(X)—-chy(X). (20)

The time mean flow over a period 7 at a fixed position X is defined as

T
o 1
= = |Qdt. 21
0=-J0 1)
0
Making use of (20) into (21), and after integrating, we get
0 = q+cd —cd,, (22)
The dimensionless time-mean flows Q in the laboratory frame and F in the wave frame are defined as
0 q
== F=1, 23
0 cd, cd, (23)
Therefore Eq. (22) can be written as
Q=F+1+d, (24)

The boundary conditions in terms of stream function ¥ are defined as

oo F ¥ _
2" Oy
Y Ch
27 oy

where a, b, ¢ and d satisfy the following relation

_Brxy_l for y = hl(x)v
(25)

Brxy_ 1 for y h2(x)7

a+b 2abcosd < (1 + d)z.

3. PERTURBATION SOLUTION

For the perturbation solution, we expand ¥, Fand P as
¥ = W+ WeW, + O(We'), (26)
F = Fy+ WeF, + O(We"), (27)

P = Py+ WeP, + O(We). (28)

Substituting above expressions in Egs. (15), (17) and (25), collecting the powers of We, we, obtain the
following systems

3.1. System of Order We°

4
%y, (29)
oy
3
Do -mTie, (30)
ox ay
2
Y, = ﬂ), oy _ B((l—n)a ‘Igoj—l at y = h(x), (31
2 oy oy
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Ry 0%

7’ —'a"y— = —B((I—I’Z)

0

2
¥, = \I;OJ —1 at y = hy(x).
oy

3.2. System of Order We'

2
o, 52(62%]

' n-1g2 5

3 2w )2
Do o270
Ox oy M\ oy

F, 0¥ o'y o’y
\PI = —1’ —"'—1 B[(l_n) 21+n[ 20]ZJ at y = /’l](X),
2 oy oy oy

2 2
¥, = _5, % —B((] —n)a ¥, +n[a TOJ}J at y = hy(x).
2 oy 8y2 6y2

3.3. Solution for System of Order We"

Solution of Eq. (29) satisfying the boundary conditions (31) and (32) can be written as

-1
Yo = 3
2(h = hy) (=6A+ h,—h,)

o S+ —ho)(hy + 1) 5P ]
(hy—hy)’ (=64 +hy = 1)2" (b= h,) (64— hy + hy)

R2(Fy+hi=h)

—6Fh hy—3h hy(h, = hy))y + 3 P
(hy—hy) (64— h, + hy)3!

where
A = B(l-n).
The axial pressure gradient at this order is
dPy  12(1—n)(Fy+h,—h,)
AX (b= ) (6A—hy 4 hy)
For one wavelength the integration of Eq. (38), yields

1
dx
0

3.4. Solution for System of Order We'

(= 6AFy(hy = hy) + (h} + h3)

1903

(32)

(33)

(34)

(35)

(36)

(—6AFy(hi = h3) + Fo(hi + h3) = 3Foh hy(hy + hy) = 20, ho(hi + h3))

(37)

(38)

(39)

Substituting the zeroth-order solution (37) into (33), the solution of the resulting problem satisfying

the boundary conditions take the following form

2 3 4
¥, = C+Cy+ C5)2’—! + 04% + Bc%,
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where

12
Ci = 2 2(F‘(h1_h2)2(6’4_h1 +h2)_6B(F0+h1_h2)2(h1 +hy)),
(hy=hy) (6A—hy + h,)

1
(hy=h) (6A—hy +hy) (<24 +h, - hy)

C5=

(72A4,(hy = hy)*(Fy + hy = 1,) + 6 F,(hy = h,) (24 = hy + hy)

X (64— hy+hy)(h,+h,) + 12B(Fy+ h,— hy)’(h} + 3hh, — by — 3h,h,(44 + h,))),
1

Cs = - : (=T24°F\(hy = hy)’ = 124,(hy = hy) (Fy + hy = hy)*(hy + hy)
(hy—=h,)) (6A—h,+hy) (-2A+ h,—h,)
+ 24A°F,(h, - hy)(2h} = Th,hy + 2h3) = 6 F,(h, — hy) (h,hy(hy — hy) + A(h} — 10h,h, + h3))
— 12B(Fy + hy = hy)’(hy + hy) (hyhy(hy = o) + (B = 4hhy + 13))),
C, = ! (T24°F,(hy + hy)(hy = hy)’ = 124°F, (hy + hy) (hy = )’

- 2(h, = hy) (64— h, + hy) (=24 + h, — hy)
x (5hT —12h,hy + 5h3) — (hy — hy)(=12h,hy(Fy + hy — hy) (64, h, — 6A,h, + Bh,hs))
— (hy = hy) Fy(hy = hy) (hy + hy) (B} = 4R by + 13) + 24ABh hoy(Fy + hy — hy)’ (= 3hyhy + h3)
+ 2F,A(h, — hy) (hy + hy)(Th = 22h,hy + Th3)),

The axial pressure gradient at this order is
Ef_& _ 12(1 —n)
X (hy=hy)' (6A—hy+hy)

S(Fy(hy =) (6A—hy + hy) =6 B(6A—hy + h,)’(h, + h,))

i (41)
144n(Fy+ h,—hy) (h, + h,)
(hy=hy) (64— hy + hy)(~6A+ hy — hy)
For one wavelength the integration of Eq. (41), yields
1
AP, = Ifl-{)ldx. 42)
dx
0

Summarizing the perturbation results for small parameter We, the expression for stream functions and
pressure gradient can be written as

-1
v = 3
2(hy—hy)) (-6A+h,—h,)

(=6AFy(h: — h3) + F(h, + h3) — 3Fh,hy(h, + h,) = 2h,h,(h: + h3))

_ 2
+ 6(F+/’l; hz)(h1+h2) y_'+ - -1 (—6AF(hl—h2)+(h?+h;) (43)
(= hy) (=64 +hy = hy) 2L (hy = hy) (64— hy + hy)
_ 3 2 3 4
6 hy= 3oy~ b))y + — L) (e s ol e O 4 BCTL,
(hy = hy) (64 —hy + hy)3* 203 A

where
12(F+h,—h,)

C, = : ,
(hy = hy) (64—, + hy)
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Ap
10 T T T

-10
0 0.5 1.0 1.5 2.0
Q

Fig. 1. Variation of AP with Q for different values of We. The other parametersare a = 0.7, b=0.5,d=0.9, ¢ = /6,
n=0.06, 3 =0.04.

' 12
C, = ; S(=6B(F+hy —hy)’(hy + 1)),
(hy=hy) (64 —h,+hy)
1

(hy—hy) (6A—hy +hy) (<24 + hy — y)

Cs = (724,(hy = ) (F + by = hy)’

+ 12B(F+h,—h,)’(h, + 3hthy — by — 3h,h,(44 + h,))),

1
(hy=hy) (64— hy + b)) (=24 + by = hy)

—12B(F+ hy = hy) (hy + hy) (hyhy(hy = hy) + (B = 4hyhy + h3))),

1 1
C, =
! 2(h, = hy) (64— hy+ hy) (=24 + h, — h,)

+ 24ABh hy(F+ h, —h,)’(h1 = 3h,hy + h3)),

Cy = (—124,(hy = hy)*(F+ hy = hy)*(hy + hy)

(12h,hy(h, = hy)(F + hy — hy)’(6A,h, — 6A,h, + Bh,hy)

dP _ 12(1-n)(F+h ~hy) +We(—72(1—n)B(F+h1—h2)2(h1+h2)
dx  (hy—hy) (64 —h, + hy) (hy—hy) (64 —hy +h,)

(44)
144n(F+ h, — hy)*(h, + hy) J
(h,=hy) (6A—h, + h,)(=6A + h, — h,)
The non-dimensional pressure rise over one wavelength AP is defined as
1
AP = [P, (45)
dx

0
where dP/dx is defined in Eq. (44).

4. RESULTS AND DISCUSSION

In this section the graphical results are displayed to see the effects of various physical parameters on the
pressure rise, pressure gradient, velocity profile and streamlines. The expression for the pressure rise over
one wave length is calculated numerically using Mathematics software. Figures 1 to 6 are plotted for pres-
sure rise against the volume flow rate Q. It is observed that the relation between the pressure rise and the
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_8 1 1 1
0 0.5

Fig. 2. Variation of AP with Q for different values of n.
The other parameters are a = 0.6, b = 0.5, d = 0.9,
o =mn/6, We=0.06,  =0.02.

_10 1 1 1
0 0.5

Fig. 4. Variation of AP with Q for different values of f3.
The other parameters are a = 0.7, b=0.5,d=1, ¢ =
/6, n=0.06, We =0.04.
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-8 ] 1 1
0 0.5

Fig. 3. Variation of AP with Q for different values of d.
The other parameters are a = 0.5, b = 0.5, We =0.04,
¢ =m/6,n=0.06,3=0.02.

-10 1 1 I
0 0.5 1.0

Fig. 5. Variation of AP with Q for different values of .
The other parameters are a = 0.5, We =0.04, d=0.9,
o =m/6,n=0.04,3=0.02.

volume flow rate is inversely proportional to each other. In Fig. 1 it is observed that in the pumping region
(AP > 0) the pressure rise increases with the increase in Weissenberg number We. It is also observed from
Figs. 2 and 3, that the pressure rise decreases with the increase of power law index n and the width of the
channel d in the pumping (AP > 0) and free pumping (AP = 0) region while in the copumping (AP < 0)
region the pressure rise increases with the increase in # and d. It is also depicted from Figs. 4 to 6 that in
the pumping (AP > 0) and free pumping (AP = 0) region the pressure rise increases with the increase in
the slip parameter [3, and the amplitudes of the wave a and b, while the behavior is opposite in the copump-
ing (AP < 0) region. The pressure gradient for different values of 3, #» and a are prepared in Figs. 7 to 9.
It is observed that the magnitude of pressure gradient increases with the increase in f and decreases with
the increase in # (see Figs. 7 and 8). However, with the increase in a the magnitude of pressure gradient
decreases in the region x € [0, 0.2] and [0.8, 1], where as in the region x € [0.2, 0.8] it is increases. The
velocity profiles for the different values of Weissenberg number We, volume flow rate Q, and slip
parameter [3 are shown in Figs. 10 to 12. It is observed from Fig. 10 that the magnitude value of the velocity
field increases with the increase in Weissenberg number We. From Fig. 11 it is shown that the magnitude
value of the velocity field decreases with the increase in the volume flow rate Q. It is depicted from Fig. 12
that due to the slip parameter 3 the velocity near the channel walls is not the same but it is sliding and also
the velocity increases with the increase in 3.
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0 0.5

Fig. 6. Variation of AP with Q for different values of a.
The other parameters are We = 0.04, b =0.5,d =1,
¢ =m/6,n=0.06, 3 =0.02.
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-1.4
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_18 1 1 1 1
0 0.2

1.0
x

Fig. 8. Variation of dP/dx with x for different values of n.
The other parameters are a = 0.5, 6 =0.5,d =2, ¢ =
/8, 0 =2, We=0.04, p =0.04.
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Fig. 10. Velocity profile for different values of We. The
other parametersare a = 0.7, b=1.2,d =2, ¢ = /2,
0=1,n=0.3,p3=0.06.
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dP/dx
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—0.6F
0.8
-1.0

-1.2
-1.4
-1.6
-1.8

0 0.2

Fig. 7. Variation of d P/dx with x for different values of 3.
The other parameters are a = 0.5, 6 =0.5,d =2, ¢ =
/8, 0=2,n=0.04, We=0.04.

dP/dx
-0.4 T T T T

—0.6 =
-0.8
-1.0
-1.2

-1.4

-1.6

-1.8 1 L 1 I
0

Fig. 9. Variation of dP/dx with x for different values of a.
The other parameters are We =0.04,b=0.5,d=2, ¢ =
n/8,0=2,n=0.06, 3 =0.04.

y
TS n
1.0 < 1
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Fig. 11. Velocity profile for different values of Q. The
other parametersare a = 0.7, b=1.2,d=2, ¢ = /2,
We =0.06,n=0.4, 3 =0.06.
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1.5
1.0
0.5

-0.5F
-1.0r
-1.5r
-2.0

2 = | | |
-1.0 —08 -0.6 -04 -02 0 u

Fig. 12. Velocity profile for different values of B. The other parametersarea=0.7,b=1.2,d=2,¢=n/2,0=2,n=0.04,
We = 0.06.

| | | |
-0.2 0.1 0 0.1 02 03 ’ -0.2 0.1 0 0.1 02 03

1.5
1.0
0.5
0
-0.5
-1.0
-1.5
-2.0

| |
-0.2 -0.1 0 0.1 02 03

Fig. 13. Stream lines for different values of We. (a) for We = 0 (b) f e = 0.05 and (c) for We = 0.07. The other
parameters are $ = 0.01,0=1.5,a=0.5,n=0.04,d=0.9,b=1.0,B =

The trapping phenomena for the different values of Weissenberg number We, power law index », slip
parameter 3 and volume flow rate Q are shown in Figs. 13 to 16. It is seen from Fig. 13 and 14 that the size
of the trapping bolus increases with the increase of the Weissenberg number We and power law index # in
the upper half of the channel, while in the lower half the size of the bolus decreases. From Fig. 15 it is
observed that with the increase of slip parameter ft the size of the trapping bolus increases in lower and
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(b)
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1.0
0.5
0
-0.5
-1.0
-1.5
-2.0

| |
-0.2 -0.1 0

1
02 03

Fig. 14. Stream lines for different values of n. (a) for n = 0.01, (b) for » = 0.09 and (c) for n = 0.3. The other parameters

are 0 =0.01,0=1.5,a=0.5, We=0.06,d=0.9, b= 1.0, 3 = 0.06.

upper halves of the channel. It is also observed from Fig. 16 that with the increase in Q, the size of the
trapped bolus decreases in the upper half of the channel, while in the lower half the behavior is quite oppo-
site, here size of the trapping bolus increases.

Table 1 and 2 shows the comparsion of the present work with Nadem and Akram [22].

Table 1. Comparsion of the velocity profile for fixedQ=1,a=1,b=12,d=2,¢=7n/2,x=1,n=0.4, We =0.06

y u(x, y) for present work when 3 = 0.06 u(x, y) for Nadeem et al. [22] when b = 0.0
=2 —1 —1
—-1.6 —0.748365 —0.734475
—1.2 —0.527891 —0.525883
—0.8 —0.368432 —0.375135
—0.4 —0.270793 —0.28295
0 —0.235779 —0.250049
0.4 —0.264193 —0.277152
0.8 —0.356841 —0.364978
1.2 —0.514528 —0.514248
1.6 —0.738057 —0.725682
2 —1 —1

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  VWol. 55  No. 11

2015



1910 AKRAM, NADEEM

-0.5
-1.0

-1.5
-2.0

1 | | |
-0.2 -0.1 0 0.1 02 03

Fig. 15. Stream lines for different values of . (a) for § = 0.02, (b) for § = 0.04 and (c) for B = 0.06. The other parameters
are ) =0.01,0=1.5,a=0.5, We=10.09,d=0.09, b= 1.0, n = 0.04.

4.1. Concluding Remarks

In this paper we have investigated the slip effects on the peristaltic flow of tangent hyperbolic fluid in
an asymmetric channel. The governing two dimensional equations have been modeled and then simplified
under the long wave length and low Reynolds number approximation. The simplified equations are solved
analytically using the regular perturbation method. The results are discussed through graphs. We conclude
the following remarks:

Table 2. Comparsion of the variation of AP for fixeda =0.7, 56=0.5,d=1, ¢ = /6, n = 0.06, We = 0.04

y AP for present work when 3 = 0.04 AP for Nadeem et al. [22] when B = 0.0
0 5.26525 3.97069
0.2 4.0836 3.05179
0.4 2.90196 2.13289
0.6 1.72031 2.13289
0.8 0.538667 0.295092
1.0 —0.42978 —0.623808
1.2 —1.82462 —1.54271
1.4 —3.00627 —2.46161
1.6 —4.18791 —2.46161
1.8 —5.36956 —4.29941
2.0 —6.5512 —5.21831
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Fig. 16. Stream lines for different values of Q. (a) for Q = 1.4, (b) for Q = 1.5 and (c) for Q = 1.6. The other parameters
are $ =0.01,3=0.04,a=0.5, We=10.06,d=0.9,b=1.0,n=0.02.

1. It is observed that in the peristaltic pumping region (AP > 0) the pressure rise increases with an
increase in We, 3, a and b.

2. It is also observed that the pressure rise decreases with the increase of power law index » and width
of the channel d in the pumping (AP > 0) and free pumping (AP = 0) regions, while in the copumping
(AP < 0) region the pressure rise increases with an increase in » and d.

3. The pressure gradient increases with an increase in both § and a, while it decreases with an increase
in n.

4. It is observed that the velocity field increases with an increase in Weissenberg number We and
decreases with an increase in the volume flow rate Q.

5. It is also observed that due to slip parameter [ the velocity near the channel walls is not same. More-
over the velocity increases with an increase in f3.

6. The size of the trapping bolus increases in the upper half of the channel and decreases in the lower
half of the channel with an increase of We and n, while the behavior is opposite in the case when the vol-
ume flow rate Q increases.

7. With an increase of the slip parameter 3 the size of the trapping bolus increases.
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