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Abstract—In this paper, we study an effective quintic polynomial spline method for numerical solu-
tion, and first order to fifth order numerical derivatives of the analytic solution at the knots for a class
of sixth order two-point boundary value problems. Our new method is based on a quintic spline inter-
polation problem. It is easy to implement and is able to provide sixth order accurate numerical results
at the knots. Numerical tests show that our method is very practical and effective.

DOI: 10.1134/S0965542515050115

Keywords: sixth order two-point boundary value problem, quintic spline, numerical solution, numer-
ical derivative.

1. INTRODUCTION
The following sixth order two-point boundary value problem

YO = fix,y(x), x < [a,b],
y(a) = ap, y'(a) = ay, yP(a) = a,, (1.1)
y(b) = by, ¥"(b) = by, Y (b) = by,

often arises in many fields in engineering and astrophysics, such as hydromagnetics, hydrodynamics, stel-
lar convection dynamics, and so on, see [1—5]. The conditions for the existence and uniqueness of solu-
tions of such problems have been discussed in [6].

Generally, it is difficult to obtain the analytic solution of (1.1) for arbitrary f(x, y(x)). Hence, numerical
methods are desired. Currently, there have been some numerical methods for (1.1). For example, the
modified decomposition method [7], the homotopy perturbation method [8], the variational iteration
method [9], the spline methods [10—13] and the fourth order finite difference method [14] have been pre-
sented by some scholars respectively. However, the error orders of some of these methods are not higher.
Moreover, there are few available effective numerical methods for derivatives approximation for (1.1).
Actually, except [14], the other methods do not provide the numerical approximation to the derivatives
for (1.1). [14] is able to provide fourth order accurate numerical approximation to y(x), y"(x) and y*(x)
at the knots for (1.1). But, [14] does not give the numerical approximation to y'(x), y®(x) and y®(x).

In order to increase the error orders of the existing methods and also to provide more accurate numer-
ical derivatives of (1.1), we develop a new effective quintic spline method for (1.1) in this paper. The
method is based on a quintic spline interpolation problem and is easy to implement. It can provide sixth
order accurate numerical approximation to y(x), y'(x), y"(x), y®(x), y®(x) and y(x) at the knots
for (1.1). Moreover, using the obtained numerical data and differentiating y©(x) = f(x,y(x)), we also can
get sixth order accurate numerical approximation to the other high order derivatives of y(x).

The remainder of this paper is organized as follows. In Section 2, we give some preliminaries for a quin-
tic spline interpolation problem; in Section 3, we study the new effective method; in Section 4, we test our
method with three numerical examples, numerical tests show that the method is very effective in obtaining
numerical solution and numerical derivatives for (1.1); finally, we conclude this paper in Section 5.

! The article is published in the original.
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Table 1. The values of B (x), i=—2, —1, ...,n+2;k=0, 1,2, 3, 4, at the knots

X
Bi(x) i3 Xi-2 Xi—1 Xi Xit+1 X2 X4 3 else
1 26 66 26 1
B9 0 120 120 120 120 120 0 0
- I 10 10 I
B 0 241 24h 0 24h 24h 0 0
" 1 2 6 2 1
Bi(x) 0 6/12 6/12 _6/’12 6h2 6/’12 0 0
3000 0 1 _2 0 2 L 0 0
o 2’ 2h° s 20
%) 1 _4 6 _4 1
B; () 0 0 x x x X 0 0

2. QUINTIC SPLINE INTERPOLATION
For an interval I = [a, b], divide it into n subintervals ;= [x;, x;, ;],i=0, 1, ..., n — 1, by the equidistant

knotsx;=a +ih,i=0,1, ..., n, where h = b-a . The quintic spline space is defined as follows
n

Sy(I) = {s(x) e C'(D)|s(x),, € Ps,i=0,1,...,n-1},

where s(x)‘ I denotes the restriction of s(x) over /;, and Ps denotes the set of univariate quintic polynomi-
als. S5(/) is a linear space and its dimension is # + 5.

Extend I = [a, b] to 1= [a — 5h, b + 5h] with the equidistant knots x; =a + ih, i= -5, —4, ..., n + 5.

By the results in [ 15—17], we give the explicit representations of the typical quintic B-spline Bi(x), i = —2,
—1, ..., n+ 2, as follows

(e—x,+3h)", if x e [x_5x, ],
(x—x;+3h) —6(x—x,+2h), if x € [x,_ 2% 1],

(x—x;+3h)" —6(x—x,+2h) + 15(x —x,+ h)’, if x € [x,_,, %],

Bi(x) = 1204 (—x+x,~+3h)5—6(—x+x,-+2h)5+ 15(—x+x,~+h)5, if xe[x;,x.,1]

(=X +X,+30)° —6(=x+x,+2h), if x € [X,, s Xs15],

(=x+x;+3h), if x € [X;, X, 3],

0, else.

They are the basis splines of S5(/). See Table 1 for the values of ng) x),i=-2,—1,....n+2;k=0,1,
2, 3, 4, at the knots.

2
Given a sufficiently smooth function y(x), there exists a unique quintic spline s(x) = z" * c;Bi(x) €
i=-2

S5(1) satisfying the following interpolation conditions
S(xi) = y(xi)s l = 07 17"':”7 (21)
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AN EFFECTIVE METHOD FOR NUMERICAL SOLUTION 813

$'(a) = y"(a) + 7'y (@), 2.2)
s"(b) = y"(b) + 7%011‘5‘“(1)), (2.3)
@ _ @y 126 BTN
sV(@) = y@) - ShY @) + 55y a), (2.4)
sY(b) = y(‘”(b)— “’>(b)+ n'yP(b). (2.5)

In the following, we derive the interpolation errors at the knots. Forj =0, 1, ..., n, let y; = s(x)) = y(x)),
=5(x), M;=5"(x), T, = s(x)) and F; = s*)(x;) for short. Since s(x) = Zn+2 ¢;B;(x;), by Table 1, we
i=-2

have
n+2
y; = s(x) = Z ¢;B(x)) = 120( Ly +26¢,_ +66¢;+26¢;, +¢; ),
i=-2
n+2
= ZciB;(xj) = m( ¢;_,—10¢;_; +10¢;,  +¢;,5),
i=2
n+?2
M = s"(x) = Bl(x) = - 2¢,  —6c+2
= s"(x) = zci i (x) = 6_}12(ij2+ Co1=6¢+2¢,,1+¢4,),
i=-2
n+2

1
Tj = 3(3)(39‘) = Z CIB§3)(Xj) = _3(_ij2+20171 _20j+1 +Cj+2)a
Pt 2h
n+2 1
4 4
F, = s )(xj) = Z ciB,(» )(xj) = l?(cj_z—4cj_1 + 6cj—4cj+1 +Ciya)
i=-2

By comparing the linear combination of ¢;, i = —2, —1, ..., n + 2, we have
h
g(mj_z‘l' 26mj_1 + 66mj+ 26mj+] +mj+2) = —yj_z— IOj—l + loyj+] +yj+2’

2

h
Ea(Mjfz +26M; | +66M;+26M;,  + M, )) =y, ,+2y, 1 —6y;+2y; 1+,

E
6—0(7}-2"' 26T, +66T;+26T,, \+T;.5) = Y2+ 2y, 1 =2V, 1+ Vjsos

nt
120

Let Ey(x) = y(x + h) be the shift operator, Dy(x) = y'(x) be the differential operator, and Iy(x) = y(x)
be the identity operator. These operators are very useful in numerical analysis, see [18—20]. For a positive
integer m, we have

E"y(x) = y(x+mh), E"y(x) = y(x—mh), D"y(x) = y¥"(x), I"y(x) = y(x).
Moreover, we have

——(F,_y+20F,_ +66F,+26F, . +F, ;) = y_,—4y,_,+6y,— 4y, | + ;..

(n)
Ey(x) = y(x+h) = z’” o) - {z(’m) }y(x) = ¢"y(x),

n=0
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which implies that E = €"?. Similarly, we have
E—l — e—hD, Em — eth and E—m — e—th.
By using these operators and expanding them in powers of 4D, we obtain

m=3( L 10E + 06+ )yi=3( —e"—10e"" 4 106" + "
LRy 26E " + 66T+ 26E+ EY e 4267 + 661+ 26" + &

24(hD) +6(hD") + - (hD) + 2 (hD) + ...
s 10 120 , ] (

M 1201+ 30(hD) + %(hD)4 + i(th . h

1 7 . 6
hD + M(hD) + ...)yj = y'(x;)) +O(h").

Similarly, we get

h2

J

20 E*+2E'—6I+2E+FE . 1
= (2 s Jn=ycw+—w%Wm+mML
E“+26E +66I+26E+E 720

T

J

60( —E’+2E'-2E+E 1
=7(2 = . Jn=ow——wWWw+wa
W E“+26F +66[+26F+FE 240

F

J

120( E’—4FE ' +6I-4E+ E’ ) @ 1,2 (6 1 4 (s 6
= — Y=y (x)—-=hy (x)+—hy (x)+0(h).
B NE2+26E " + 661+ 26E+ EY T 7240 ’

Furthermore, we can use F},j =0, 1, ..., n, to construct numerical formulae for y(x)) and y©(x),j = 1,
2,...,n— 1, as follows

F' 1_F~71 1

60(—E> +4E°—SE ' +SE—4E + E 1
:_( =y +

L2y D) - L ity ) + 00,
BN E 426E " +661+26E+ E Y ) gy )+ O

Fo-2F+F_,
2h

1
= h—ﬁ(cj_3—6cj_2+ 15¢; 1 =20¢;+15¢;, | —6¢;, 2+ ¢, 3)

_ @(53_ 6E+15E ' =201+ 15E-6E° + E

3
A ; 1 : )y,- = y(x) +0(h").
h E"+26F +66[+26E+FE

Inaword, forj=0,1, ..., n, we have

1

120(Cj_2 +26¢; | +66c;+26¢;,+¢;,»). (2.6)

y(xj) =

1

s G- 106+ 106, +¢) + o(h°%, (2.7)

y'(x) =

. 1 1
y'(x;) = 6_}12(%2 420, —6C,+ 261, +Crya) — 77)h“y“’(xj) +0(h%), (2.8)

3) 1 1,4 6
yox) = 5‘;3(_6}'72"'20]71_201“ +Cj+2)+§z6h Y (x)+0(h"), (2.9)

Lpty® )+ 0, (2.10)

240

1 1
y(4)(xj) = }‘1‘4(6’172 =4 +6¢—4c, 1 +0L,) -1-5112y(6)(x/-) -
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AN EFFECTIVE METHOD FOR NUMERICAL SOLUTION 815
andforj=1,2,...,n— 1, we have

1 1 1
y(S)(x_/) = ;.}15(_01*3 +4¢; =501+ 5¢, 1 —4¢, 0+ ¢ 3) - Ehzym(xj) + ﬁah4y(9)(xj) + 0(h6)a (2.11)

¥ = hi6(cj3 —6¢;,_,+ 15¢,_ 1 —20¢;+ 15¢;, | —6¢;, 5+ ¢, 3) + O(h°). (2.12)
These equations will be used in approximating the analytic solution and its derivatives of (1.1) at the knots.

3. NUMERICAL METHOD
Let s(x) = ijl ¢;B;(x) be the quintic spline solution of (1.1). Discretize (1.1) at the inner knots, we
get
YO0 = foxny(x)), i=1,2,..,n-1.
By (2.6) and (2.12), we have

—6¢; 5+ 15¢; 1 —20c¢;+ 15¢;,,—6¢;,r+C; .5 :/(x» ¢;_,+26¢;_ | +66¢c;+26c;,+c;,
K i 120

Obviously, the truncated error of (3.1) is O(h°). (3.1) is equivalent to

2). 3.D

C;_,+26c;,_ | +66¢c;+26¢c;,  +c;,
120

We still need six equations, which can be obtained from the boundary conditions. By y(a) = a, and
y(b) = b, from (2.6), we have

¢, ,+26c, ,+66¢c,+26c,,,+c,., = 120b,. 3.4
By 1"'(a) = ay, y"(b) = b, and y©(a) = f(a, ag), yO(b) = f(b, by), from (2.2), (2.3) and (2.8), we have

s—6c,_,+15¢,_,—20c;+ 15¢;, | —6¢; ,+¢C;, 3 = h(’/(xi, 2). (3.2)

c,+2c —6cy+2c,+¢c, = 6a2h + i%(—)y(6)(a) 3.5)

¢, »+2¢, |—6c,+2¢,. +¢C,., = 6bh° +120 O b). (3.6)

By differentiating y©(x) = f(x, y(x)), we get
YO x) = £ y(x)) + £ (x5, p(0))y' (%), (3.7)
YV ) = £105 () + 25, ()Y (%) + 3%, () (' (x))]
+£06, y ()" (%) 1= Gx, y(x), y' (), " (%)),
Y (x) = G (3, y(x), ' (%), ¥ (%)) + Gy(x, p(x), ¥ (x), 3" ()" (x) + G5 (x, y(x), ' (%), "' (x))y" (x)

+Gy(x, y(x), y'(x), ¥ ()" (x) := H(x, p(x), y'(x), y"(x), y™ (x)).
Using y(a) = a,, yD(b) = by, y©(a) = f(a, ay), y©(b) =f(b by), from (2.4), (2.5) and (2.10), we have

(3.8)

3.9)

—dc_ +6c,—de ¢, = a4h4— ‘6)( )+ (8)(a) (3.10)
n4—4a4+6@—4gﬂ+cﬂzzbm4 <“w> “km (3.11)

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  VWl. 55 No.5 2015
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where

V(@) = 6(a,a, <

¥V (6) = (b, by, =2

are obtained from (3.8).
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—10c_, + 10¢, + ¢,

24h

10¢,_,+ 10c,,,+¢

aaz)a

24h

n+2
s b2)7

Take (3.3), (3.5), (3.10), (3.2), and (3.11), (3.6), (3.4) together, we obtain a nonlinear system com-

posed of n + 5 nonlinear equations with ¢;, i = -2, —1,

., n + 2, asunknowns. Let

T
C = [C—Qa C 1 "'7cn+2] }

h (6) A n®
F = | 120a,, 6a,h” + = - — +
1200y, 6,0 + Loy (a), ah’ = Ty (a) + 5
o, bt (6)(b)+ (8)(b) 6b>+ 1
12’ 120
where q),:/(x,, Cioa+ 266, +66¢; +26¢,,, + c"”) i=1,2,..,n—1,and
120
12666 26 1
12-6 2 1
1-4 6 —4 1

1-615-2015 -6 1

1 -6 15-2015-61

1 -4 6 41
1 2 621
1 26 66 26 1

(n+5)x(n+5)

Then, the nonlinear system can be written in matrix notations as

AC=F.

If (1.1) is a linear boundary value problem as

YOx) = p(x)y(x) +q(x),

x € [a, b],

y(a) = ay, y'(a) = ay, y(a) = a,,
y(b) = by, ¥"(b) = by, ¥(b) = by,

then (3.2) becomes

5—6¢;_,+ 15¢;_,—20¢; + 15¢;,

—p(x)h

(3.8) becomes

Y(x) = p"p(x) + 2p'(x)y' (x) + p(X)y" (x) + ¢"(x),

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS

6C;_o+26¢;_

,+66¢c;+26C,, | +c¢iyn

_6Ci+2+ci+3

120

—y (a) h D, ...

¥ (b), 1205 J

= q(x)h".

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)
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AN EFFECTIVE METHOD FOR NUMERICAL SOLUTION 817

hence, (3.10) becomes

1 L}
—4c  +6cy—4dc;+cy— 50 % 24h7p (a)(—c_,—10c_; + 10c, + ¢,)
| | (3.17)
= agh’ = Sy @K' + b (0" (@)ag + p(a)a; +47(a)),
(3.11) becomes
2= 4e, 60,40, + Cpry = = W (B) (=, 5 106, + 106, +¢,.5)
120 x 24
(3.18)
= bih' = Sy O + S (B ()b + p(B)b +0 (1)),
Take (3.3), (3.5), (3.17), (3.15), and (3.18), (3.6), (3.4) together, we get a linear system as follows
55 75)
A——h°PB|C = , 3.19
( 120 0 (3.19)

where A is given in (3.12), and

P = diag(0,0, 2.p'(a), p(x1), - (3, ). 22p'(5),0,0),

0
-1-10 010 1 O
0 1 266626 1 0
0 126 66 26 10
0 -1-10 0 101
0

(n+5)x(n+5)

0 = [120%, 6a,h” + }; y(a), a,h’ ——y “(a)h® + 2Th (p"(a)a, + p(a)a, + ¢"(a)), q(x)h",
T
aCx, A bl = Ly ) + 5 h@(mm+mmm+qw»6bh+@ @w)n%@.

After solving the nonlinear system (3.13) or the linear system (3.19), we obtain ¢, (i=—-2,—1, ..., n + 2), and
s(x) = Zn v ¢;B;(x) is the approximation solution. By the quintic spline interpolation theory, we know
i=-2

s®(x) can approximate y®(x) over [a, b] with Q(h° ~*) error, where k = 0, 1, ..., 4. To get better approxi-
mation at the knots, especially, we can use (2.6), (2.7), (2.8), (2.9), (2.10) and (2.11) to get the sixth order
accurate numerical approximation to y(x), y'(x), y"(x), y3(x), y®(x) and y®(x) at the knots for (1.1)
respectively, where y©(x;), y7(x)), y®(x;) and y (x;) are computed by (2.12), (3.7), (3.8) and (3.9) respec-
tively. We give the following computational procedure.

Step 1. Solve (3.13) or (3.19) by using “fsolve” command of Matlab (refer to http://www.math-
works.com/help/optim/ug/fsolve.html; or enter “help fsolve” in the command window to find the
description and usage).

¢; ,+26¢c; | +66c,+26c;, +c
120

j+

Step 2. By (2.6), use y; =

2 approximate ¥(x).
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—¢;_,—10¢;_+10¢;, | +¢;
24h

Step 3. By (2.7), use m; = *2 to approximate Y (x).

Step 4. By (2.8) and (2.12), use
—¢; 3+ 126¢; ,+225¢; | —700c;+225¢;,  + 126¢;,,—¢; ;3

i - 2
720h

to approximate y"(x;).
Step 5. By (2.9) and (3.7), use

- 1 l 1 1
T, = 2_;13(_9._2 +2¢_ =26, +Cu) + 2TOh“(f1 (X3, ) + /(X y,)m,)

to approximate y(x;).
Step 6. By (2.10), (2.12) and (3.8), use

7o ¢;_3+6¢;, ,—33¢; | +52¢,—33¢;, +6¢,, )+, 5
=

1 ,4 ~
— —h'G(x, y, m, M;
12h4 240 (xj yj mj J)

to approximate y™(x;).
Step 7. By (2.11), (3.7) and (3.9), use
—¢;_3+4¢;_,—5¢; 1 +5¢,,1—4¢ 1+
20

1,2, 0 . 1 ,4 ~ =
- Eh (/i (xp yj) +f2(xp yj)mj) + 770}1 H(xja Vi, M)y M;, Tj)

W, =

to approximate y©(x;).
Step 8. If X € [a, b] is not a knot and y®(x), k = 0, 1, ..., 4, is needed, we can use s¥(x) =

2
Zn * c,-BEk)()'c) to approximate y®(x).
j=-2

4. NUMERICAL TESTS

In this section, we examine our method by Matlab with three same numerical examples that have been
studied by other authors for the sake of comparison. For every example, we first give the maximum abso-
lute errors E(n, u), 0 =0, 1, ..., 5, at the knots of our method for different steps, where

E(n,()): max |y(xj)_yj|a E(l’l,l): max |y'(xj)_m/‘|’

1<j<n-1 I<j<n-1

E(n,2)= max |y"(x)-M|, E(n3)= max |[y*(x)-T),
1<j<n-1 1<j<n-1
E(n,4) = Y (x)-F|, En5)= Y x) - w)
(n,4) max |y (x;)— Fj, (n,5) max |y (X)) (E
1<j<n-1 1<j<n-1
For the sake of integrity, we also give the global maximum absolute errors £, p =0, 1, ..., 4, over [a, D]

of our method for different steps, where

n+2

Y- Y B x)

i=-2

E, = max [y (x)-s"(x)| = max

n
asx<b a<x<b

Example 4.1. Consider the following linear six order boundary value problem
y(é)(x) = —y(x) + 12xcosx + 30sinx, x e [0, 1],
»(0) =0, y"(0) =0, »'0) =0,
y(1) = 0, y"(1) = 2sinl+4cosl, y*(1) = —12sin1-8cosl,

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  VWl. 55 No.5 2015



AN EFFECTIVE METHOD FOR NUMERICAL SOLUTION 819
Table 2. Our maximum absolute errors at the knots of Example 4.1
. I Bmo) Een, 1) En, ) E(n, 3) En, 4) E(n, 5)
4 2.717e—7 2.865e—6 2.943e—7 1.067e—5 3.367e—7 4.436e—6
8 4.285e¢—9 4.413e—8 4.559¢—9 1.704e—7 5.293e—9 6.973e—8
16 6.945¢e—11 6.927¢e—10 5.495e—11 2.731e—9 1.030e—10 1.715e—9

Table 3. The maximum absolute errors at the knots in [12—14] of Example 4.1

E
" E(n, 0) ([12]) E(n, 0) ([13]) E(n, 0) ([14]) E(n, 2) ([14]) E(n, 4) ([14])
4 - - 1.121e—6 1.102e—5 1.036e—4
8 8.151e—5 1.652e—8 6.855¢—8 6.745e—7 6.493e—6
16 2.105e—5 2.497e—10 4.262e—9 4.194e—8 4.117e—7
Table 4. Our maximum absolute errors at the knots of Example 4.2
" £ E(n, 0) E(n, 1) E(n, 2) E(n, 3) E(n, 4) E(n, 5)
1.222¢—7 1.488e—6 6.868¢—8 2.849¢—6 1.105e—7 8.840e—7
8 1.914e—9 2.347¢—8 1.085e—9 5.006e—8 1.702e—9 1.418e—8
16 2.933e—11 3.661e—10 1.553e—11 8.099e—10 3.382¢—10 2.498¢—9

where the analytic solution is y(x) = (x> — 1)sinx, see Table 2 for our maximum absolute errors at the knots.
Example 4.2. Consider the following linear six order boundary value problem

y(x) = p(x)-6e", xe[0,1],
»(0) =1, y"(0) = -1, y*(0) = -3,
y(1) =0, y'(1) = -2¢, y¥(1) = —4e,

where the analytic solution is y(x) = (1 — x)e*, see Table 4 for our maximum absolute errors at the knots.
Example 4.3. Consider the following nonlinear six order boundary value problem
YO = eV, xel0,1],
" 4
y(0) =1, y'(0) =1, y90) =1,
" 4
y(h) =e, y(1)=e Y1) =e,
where the analytic solution is y(x) = €*, see Table 6 for our maximum absolute errors at the knots.

The results in Table 2, Table 4 and Table 6 are consistent with our expectation. It is easy to find that
E(n, W), n=0,1, ..., 5, decreases about by 1/64 when the original interval is refined by 1/2 step by step,
without considering the round off errors. It indicates that the numerical results are of sixth order accurate.

Example 4.1 was also studied in [12—14], see Table 3 for the respective maximum absolute errors at the
knots. Obviously, our results are better than that of Table 3. Furthermore, we remark that our new method
has lower computational complexity. In fact, the method in [12] was based on sextic spline, the method in
[13] was based on septic non-polynomial spline. They are higher degree spline based methods, hence, they
have higher computational complexity. At the same time, the method in [14] requires solving a system with

3n equations and 3z unknowns, while our method only requires solving a system with # + 5 equations and
n + 5 unknowns.

Example 4.2 was also studied in [11] by septic spline method, see Table 5 for the maximum absolute
errors at the knots. The numerical results in Table 5 are only of second order accurate, which are lower
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Table 5. The maximum absolute errors at the knots in [11] of Example 4.2

. I Bmo) Een, 1) En, ) E(n, 3) En, 4) E(n, 5)
8 1.37e—6 4.67e—6 5.11e-5 2.36e—4 1.30e—3 9.80e—3
16 1.08e—7 3.70e—7 2.46e—6 3.0le-5 4.48¢e—4 2.60e—3
32 2.25e—8 7.79e—8 5.37e—7 9.14e—6 1.16e—4 6.08e—4
64 7.04e—9 2.43e—8 1.69¢—7 2.81e—6 1.74e—4 7.11e-2
Table 6. Our maximum absolute errors at the knots of Example 4.3
" £ E(n, 0) E(n, 1) E(n, 2) E(n, 3) E(n, 4) E(n, 5)
4 1.600e—8 2.048e—7 7.196e—9 3.271e-7 1.181e—8 8.628e—8
8 2.507e—10 3.224e-9 1.135e—10 5.674e—9 1.801e—10 1.364e—9
16 5.844e—11 5.515e—11 2.528e—11 1.462¢—10 5.224e—10 3.210e—9
Table 7. Comparison results of Example 4.3
X
0.1 0.2 0.3 0.4 0.5
Errors
our errors (n = 10) 2.091e—11 3.842¢—11 5.211e—11 6.152e—11 6.618¢—11
errors in [7—9] 1.233e—4 2.354e—4 3.257e—4 3.855¢e—4 4.086e—4
Table 8. Comparison results of Example 4.3
Xi
0.6 0.7 0.8 0.9 1.0
Errors
our errors (n = 10) 6.559¢—11 5.924e—11 4.656e—11 2.702e—11 0
errors in [7—9] 3.919¢—4 3.36le—4 2.459e—4 1.299¢—4 2.000e—9
Table 9. The running time (in seconds)
Example 4.1 42 43
n
4 0.41s 0.41s 0.42s
8 0.41s 0.42s 0.43s
16 0.41s 0.42s 0.50s

than ours. To get a similar error, [11] must use a bigger # (the number of the subintervals). It shows that

the computational cost of [11] is higher than our method.

Example 4.3 was also studied in [7—9] by modified decomposition method, homotopy perturbation
method and variational iteration method, respectively. These methods, which involve many numerical
and symbolic computations, developed a same polynomial of degree 12 over [0, 1] as the approximation

solution. The absolute errors at x; = ﬁ)

,i=1,2,..., 10, are given in Table 7 and Table 8. Our errors, which

are obtained with n = 10, are dramatically better than that of [7—9]. It shows that the efficiency of our

method is higher.

We also point out that the results in Table 2, Table 4 and Table 6 can be obtained instantaneously by
Matlab on a personal computer (1.97 Ghz CPU, 1 G Memory). See Table 9 for the running time.
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Example £ & £ 2 £ £
41(n=4) 7.438e—5 9.658¢—4 1.485¢—4 6.737e—4 1.431e—1
41(n=238) 1.156e—6 2.920e—-5 1.015¢-5 4.333e—5 3.903e¢—2
4.1 (n=16) 1.808e—8 9.125e—7 6.557e—7 2.728e—6 1.007e—2
42(n=4) 2.787e¢—-5 3.185¢e—4 6.610e—5 2.297¢e—4 6.313e—2
42 (n=2_8) 4.386e—7 1.095¢—5 4.779¢—6 1.673e—5 1.833e—2
4.2 (n=16) 6.857¢—9 3.453e—7 3.213e-7 1.126e—6 4.934e—-3
43 (n=4) 4.646e—6 5.309¢—5 1.149¢—5 3.412e-5 1.099¢—2
43 (n=2_8) 7.310e—8 1.825e—6 8.135¢—-7 2.435e—6 3.121e-3
4.3 (n=16) 1.143e—9 5.755¢e—8 5.412e—8 1.623e—7 8.311e—4

Before we end this section, we also give E, for the examples, see Table 10. By the quintic spline inter-
polation theory, we know E, = O(h®— ). Tt is easy to observe that the decrease rates of E,, E,, E,, E; and

E, are about 1 111 and 1/4 respectively, when the original interval is halved step by step. These

64”3216 8
results are also consistent with expectation.
In a word, our quintic spline method is very effective for approximating the solution and the derivatives
of the solution for (1.1). The super numerical products are the sixth order accurate numerical results at
the knots.

5. CONCLUSIONS

In this paper, quintic spline is properly used to develop an effective numerical method for solving sixth
order two-point boundary value problems (1.1). The main advantage of our new method is that it can pro-
vide sixth order accurate numerical results to approximate y*(x), u =0, 1, ..., 5, at the knots. It shows
that quintic spline is very powerful and effective for solving boundary value problems (1.1). Moreover, we
believe quintic spline can also be used to solve some other kinds of differential equations. Some works are
under consideration.
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