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1. INTRODUCTION

The development of optimal control theory is great theoretical and practical interest (see, for example, [1]).
Various aspects of this theory [2–6], including the computation of optimal control with interval con�
straints [7–11], have been considered by researchers in our country and abroad. Below, a method based
on transforming a quasi�optimal control [12, 13] is proposed for computing a time�optimal control with
interval constraints imposed on the components of the control vector. The quasi�optimal control repre�
sents an alternating sequence of control functions with different polarity whose values are proportional to
the initial conditions and the switching times are close to those of the time�optimal control. The quasi�
optimal control has a number of important properties. For example, it is easy to implement and is capable
of driving a system to the origin from any initial state belonging to the controllability domain. The com�
plexity of implementing the quasi�optimal control increases only slightly as the order of the controlled
system and the number of control parameters grow. The control is formed in real time for high�order sys�
tems, which makes it possible to control fast�acting objects and rapidly proceeding processes.

2. FORMULATION OF THE PROBLEM

Let a controlled system be governed by the linear differential equation

(2.1)

where x is the n�dimensional state vector; A(t) and B(t) are continuous n × n and n × m matrices, respec�
tively; and u is an m�dimensional control vector whose components are piecewise continuous functions
satisfying the interval constraints

(2.2)

It is assumed that system (2.1) is completely controllable, i.e.,

(2.3)

and can be driven to the origin from a bounded domain D of initial conditions; V is the controllability
domain, Φ(tk, t0) is the fundamental solution matrix of the homogeneous differential equation, and
* denotes the transpose.
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Problem. Find an admissible control u0(t) that satisfies interval constraints (2.2) and drives system (2.1)
from the initial state x(t0) = x0 to the origin x(tk) = 0 over the minimum time T = tk – t0.

3. NUMERICAL METHOD FOR SOLVING THE PROBLEM

3.1. Formation of Quasi�Time�Optimal Control

Consider variable constraints depending on the initial conditions. Assume that the components of the
control vector satisfy the constraint

(3.1)

where Nij are weighting coefficients. Let the initial point x(t0) = x0 be on the ith axis of the state space, i.e.,
the vector of initial conditions x(i)(t0) contains only one nonzero component xi(t0) for some fixed i. Con�
sider the formation of a control from the initial condition for the ith state coordinate. For the considered
initial condition, constraint (3.1) becomes

(3.2)

Consider the linear time�optimal control problem. To find the minimum time T (i) =  – t0 required

for driving system (2.1) from the initial state x(i)(t0) = (0, …, 0, xi(t0), 0, …, 0) to the zero terminal state

x( ) = 0, we use the maximum principle [1]. The Pontryagin function is written as H(x(t), ψ(t), u(t)) =

ψ*A(t)x + ψ*B(t)u, where ψ* is the transposed solution vector of the adjoint system  = –A*(t)ψ,
ψ(t0) = ψ0. The Pontryagin function is maximal if the components of the control vector under con�
straint (3.2) satisfy the relation

(3.3)

Let xi(t0) = (t0) > 0. Then (3.3) can be written as

(3.4)

where ψ(i)(t) is the solution of the adjoint system corresponding to the positive value xi(t0). If xi(t0) =

– (t0) < 0, then

(3.5)

where (t) is the solution of the adjoint system corresponding to the symmetric point [– (t0)]. Since

the manifolds of switching times of the optimal control are symmetric about the origin, we have (t) =
–ψ(i)(t). Now (3.5) is written as

(3.6)

Combining (3.6) and (3.4) for an arbitrary value xi(t0), we obtain

(3.7)

The solution of differential equation (2.1) at the terminal time t =  is given by

(3.8)

Let Γ(i)(t, t0) denote the ith column vector of the fundamental solution matrix Φ(t, t0). Then the first term
on the right�hand side of Eq. (3.8) can be written as

(3.9)
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The solution of the adjoint system can be expressed in terms of the fundamental solution matrix of the

direct system and the initial condition as ψ(i)(t) = [Φ–1(t, t0)]*ψ(i)(t0), i = . Substituting (3.9), (3.7),

and the terminal condition x( ) = 0 into (3.8), we obtain an equation that relates the switching times of

control (3.7), the driving time T(i) =  – t0, and the initial value xi(t0) to the parameters of the controlled

system. We obtain a system of n linear equations with n unknowns, which are the initial conditions (t0),
ξ = 1, n:

Since xi(t0) ≠ 0 ∀i = , we obtain the basic equation relating the switching times of the control

(3.10)

to the parameters of the controlled system

(3.11)

Solving system (3.11), we find the initial conditions (t0), ξ = , for the adjoint system. They deter�

mine all the switching times of control (3.7), which are specified by the switching function [Bj(t)]*ψ(i)(t).
It follows directly from (3.11) that the switching times of control (3.10) are independent of the values xi(t0)

∀i = .

In the case of constant matrices A and B, from (3.11), we derive the following basic equation, which
relates the switching times of control (3.7) to the matrices A and B and the coefficient Nij:

(3.12)

It follows directly from (3.12) that the switching times are independent of the initial time t0 or the initial

condition xi(t0) (∀i = ) and are constants. Thus, we have proved the following result.

Theorem 1. The switching times of control (3.7) generated from the initial condition for the ith state coor�

dinate are independent of xi(t0) ∀i = . In the case of constant matrices A and B, the switching times are

independent of the initial time t0 or the initial condition xi(t0) (∀i = ) and are constants.

Denote the points where the boundary of the reachable set DT over the time T = tk – t0 intersects the

axes of the state space by ±(xi(t0))max, i = . The weighting coefficients Nij are determined by the con�

dition Nij|xi(t0)|max = Mj, i = , j = . As a result, the driving time T(i) is equal to T; i.e., T(i) = T and

 = tk.

Each of the components of control (3.7) constrained by (3.2) represents an alternating sequence of
pulses of different polarity whose values are directly proportional to the initial condition xi(t0), while the
switching times are equal to those of the time�optimal control for the maximum deviation |xi(t0)|max. Thus,
the quasi�optimal control coincides with the optimal one under maximally admissible “axial” initial con�
ditions and preserves these switching times and the driving time. Moreover, for each component, the

quasi�optimal control does not exceed the maximally admissible value Mj, j = , and is proportional to
the initial condition. Control (3.7) drives system (2.1) from any initial point lying on the ith state axis to
the origin over the fixed time T = tk – t0. Since the switching function sgn[Bj]*ψ(i)(t) = ±1 specifies the
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switching times, the quasi�optimal control can be written in the simple form (t)kv = ±Nijxi(t0), j = ,

i = .

In the general case, when the vector of initial conditions x(t0) contains all (or some of) the nonzero
components, the control vector components are formed by summing the components generated from
each state coordinate

(3.13)

Since the superposition principle holds for linear systems, control (3.13) drives system (2.1) from any ini�
tial state x(t0) to the origin x(tk) = 0 over the fixed time T = tk – t0.

Suppose that the switching times remain independent of the initial conditions xi(t0), i = , but
another method is used to generate a quasi�optimal control under which the complexity of computing the
optimal control is substantially reduced. Such a quasi�optimal control is reasonable to use as a good initial
approximation in the iterative procedure for finding a time�optimal control; as a result, convergence is
improved and the number of iterations is reduced (see [14, 15]).

The interval [t0, tk] is divided by arbitrarily switchings points  (j = , p = ). For the uni�

formity of the notation, we set  = t0 and  = tk. The switching times of the quasi�optimal control are

set identical for all state coordinates. Then the weighting coefficients Nij take different values  on each
pth interval where the control components have a definite sign; here rj is the number of such intervals for
the jth component.

For switching times identical for all state coordinates, the quasi�optimal control is generated according
to the algorithm

(3.14)

In the general case, when the vector of initial conditions x(t0) contains all (or some of) the nonzero com�
ponents, the control components are formed by summing components (3.14) generated from the initial
values of each state coordinate

(3.15)

Since the superposition principle holds for linear systems, total control (3.15) drives system (2.1) from any

initial state x(t0) to the origin x(tk) = 0 over the fixed time T = tk – t0. Define  = sgn[Bj(t)]*ψ(i)(t).
For the quasi�optimal control (3.15), we obtain the simple expression

(3.16)

Control (3.16) is a sequence of pulses of different polarity generated from the initial values of each state

coordinate. The values of the pulses are proportional to the initial conditions taken with some weight ,

which is different on each definite�sign interval. The weighting coefficients  (i = , j = , p = )
are related to the parameters of system (2.1) by the following equation (similar to (3.11)):

(3.17)
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Since Γ(tk, t0) = Φ(tk, t0)Ii, where Ii is the ith column vector of the identity matrix, and the fundamental
matrix Φ(tk, t0) is nonsingular, system (3.17) can be represented as

(3.18)

Assume that we have determined all the switching times  (j = , p = ), which are as many

as  – m ≥ n. The number of parameters  in (3.18) can be larger than the number of equations.

Therefore, for the ith state coordinate on n control definite�sign intervals, the coefficients , j = ,

p = , where  = n, are regarded as unknowns, while, on the other intervals, we set  = ,

p = . The change in the sign of the coefficients is explained by the change in the sign of the optimal
control on each interval. As a result, we obtain n systems, each consisting of n linear algebraic equations

with n unknowns , p = ,  = n:

(3.19)

Figure 1 shows the qualitative pattern of quasi�optimal control formation for a third�order system with

two control parameters u1 and u2. Each component (t), j = , is formed by summing three compo�

nents (t), i = . The value  = (  + ), j = , is the mean value.

The quasi�optimal control (3.16) has a number of important properties. First, it drives the system from
any initial state x(t0) = x0 to the origin x(tk) = 0 over the given fixed time T = tk – t0. Second, it follows

directly from (3.19) that the weighting coefficients  are independent of the initial conditions; conse�
quently, they can be found preliminarily, i.e., prior to the control process. This substantially simplifies the
implementation of quasi�optimal control (3.16), which is formed nearly instantaneously (several dozens
of multiplication and addition operations). Third, the quasi�optimal control is kind of a piecewise con�
stant approximation to the desired optimal control and contains information on its structure. It is this
property that underlies the determination of the optimal control.

In the general case, the quasi�optimal and optimal controls have different switching times and, hence,

different control amplitudes: the optimal control functions ± , j = , are all equal (in absolute
value), while the quasi�optimal control functions are different on each definite�sign interval. The method
for computing the time�optimal control is based on gradually smoothing the quasi�optimal control values

so that they become equal to the corresponding limiting optimal�control functions ± , j = . As the
control function values vary, the switching times also vary with the help of the adjoint system and the
sequence of quasi�optimal controls tends to the optimal control.

Summarizing, specifying arbitrary switching times, we solve the systems of linear algebraic equations (3.19)

to find the weighting coefficients . Quasi�optimal controls are obtained using formula (3.16).

3.2. Approximation of the Quasi�Optimal Control to the Time�Optimal Control

The approximation is based on a special choice of switching times. For this purpose, in each octant of

the state space [sgn(±x1); sgn(±x2); …; sgn(±xn)], we find a maximally remote boundary point (T), i.e.,
the point on the boundary of the reachable set with a maximal normalized distance:
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As a result, for a system of order n in each octant α out of 2n octants of the state space, we have (n + 1)

boundary points: n points on the state axes and one maximally remote point (T). Then we make n com�
binations of n boundary points on the state axes taken (n – 1) at a time. Each combination is supplemented

with the boundary point (T). As a result, we obtain n different combinations, each consisting of
n boundary points. Drawing a hyperplane through each combination of n points, we obtain a collection of

n hyperplanes. Each hyperplane passes through (T) and (n – 1) different boundary points on the state
axes and is described by an equation of the form

(3.20)

where k is the combination index and α is the octant index. The numerical values of n coefficients , i =

, for each k ∈ [1, n] are found as follows. The coordinates of each boundary point with a given hyper�
plane passing through it are substituted into Eq. (3.20). There are n such boundary points in each combi�
nation. As a result, we obtain a system of n linear inhomogeneous algebraic equations with n unknown
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coefficients , i = . Since the boundary points on the axes have all zero values, except for one, each
of n coefficients is found directly from one of n equations. Thus, the computation of the coefficients is sub�
stantially simplified by choosing boundary points on the state axes.

Importantly, to determine whether the initial condition x(t0) = x0 belongs to the reachable set, it is nec�
essary and sufficient to verify the membership conditions only in the octant containing this initial condi�
tion, i.e., in the octant [sgnx1(t0); sgnx2(t0); …; sgnxn(t0)]. If the initial condition is in the octant α of the
state space, then the initial condition x(t0) = x0 belongs to the reachable set over the time T if all n inequal�
ities

(3.21)

are satisfied.

3.3. Division of the Domain of Initial Conditions into Reachable Sets

Let us divide the entire bounded set of initial conditions x0 ∈ D into q reachable sets over different times Ts,

s = , where Ts – 1 < Ts. Each reachable subset over the time Ts is approximated by a collection of hyper�
planes. Each hyperplane is described in the octant α of the state space by one of the following equations
with fixed k and s:

Figure 2 shows how the domain of initial conditions is divided into reachable sets over different times.
The subset Ys is determined as follows. We find the minimum value s at which inequality (3.21) holds

for each k =  and, for (s – 1), there exists at least one k ∈ [1, n] for which (3.21) does not hold:

(3.22)
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If, for an arbitrary s, the relations

hold for each k = , then s has to be decreased. If there is at least one k ∈ [1, n] such that

then s has to be increased. The choice of s is completed when conditions (3.22) are satisfied.

It was proved in [14] that, as a supporting hyperplane, we have to use one for which the normalized dis�

tance dk =  – 1, k = , from the initial condition x(t0) = x0 to the supporting hyperplane Γr,

r ∈ [1, n], of the reachable set over the time Ts – 1 is nonnegative (d ≥ 0) and maximal: dr = .

3.4. Choice of Switching Times and Quasi�Optimal Control Time

Assume that the initial condition x(t0) = x0 of system (2.1) is on the boundary of the reachable set over
the time T. Through the point x(t0) = x0, we draw a supporting hyperplane Γ1 of the reachable set. The
normal vector to the hyperplane at the point x(t0) = x0 directed inward into the reachable set is the vector ψ(t0)
(see [1]). It should be emphasized that, since the Pontryagin function is homogeneous with respect to the
adjoint system, only the direction of the vector ψ(t0) is important for the time�optimal control problem,
while its magnitude is of no matter. Since the reachable set is approximated by hyperplanes, the normal
vector to the corresponding supporting hyperplane is the vector ψ(t0). The components of the unit normal
vector (t0) are determined in terms of direction cosines. However, the time�optimal control is critical
(sensitive) to the direction of (t0). Therefore, to improve the accuracy of the initial approximation, it is
reasonable to compute approximate switching times and then to use them to find (t0). For the given ini�
tial condition x(t0) = x0, we compute a supporting hyperplane. It passes through n boundary points, of
which (n – 1) are on the state axes and one is maximally remote. For each boundary point, we know an
optimal control; i.e., all the switching times are known. The averaged pth switching time of the jth optimal
control component for any initial condition belonging to the supporting hyperplane (Γ1) in the octant α
is computed as

(3.23)

Here, ( (Ts – 1)) is the pth switching time of the jth optimal control component for the ξth boundary

point belonging to the supporting hyperplane and lying on a state axis, while ( (Ts – 1) is the pth switching

time of the jth optimal control component for the maximally remote boundary point belonging to the
same supporting hyperplane in the same octant α. The averaged pth switching time for initial conditions
belonging to a “parallel” hyperplane Γ2 is computed as

(3.24)

By a parallel hyperplane, we mean one passing through (n – 1) boundary points lying on the same state
axes as those for the supporting hyperplane. The point x(t0) = x0 and the origin are on the same side of the
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parallel hyperplane Γ2 and on different sides of the supporting hyperplane Γ1. The normalized distance
from the point x(t0) = x0 to Γ1 is given by

The normalized distance from the point x(t0) = x0 to Γ2 is given by

The point x(t0) = x0 lies between Γ2 and Γ1, which are separated by the distance ΔT = Ts – Ts – 1. The time
required for driving system (2.1) from the given initial state x(t0) = x0 to the origin is proportional to the
distance and is approximately given by

(3.25)

Similarly, the switching times of the quasi�optimal control are approximately calculated as

(3.26)

Substituting these switching times into (3.19), we compute the weighting coefficients , which are used
to form the quasi�optimal control (3.16). As a result, the proximity of the quasi�optimal control to the
time�optimal one is estimated as

It should be emphasized that d1 and d2 are calculated by verifying simple relations simultaneously with
determining Ys. Thus, the determination of switching times and the quasi�optimal control time does not
require complicated computations.

3.5. Computation of Normalized Initial Condition of the Adjoint System

For linear system (2.1), in the case of control components satisfying the severe constraints |uj| ≤ ,

j = , the time�optimal control is given by the expression

The switching times  (j = , p = ) of the optimal control components and their number rj on the

interval [t0, tk] are uniquely determined by the switching functions [Bj(t)]*ψ(t), j = , if we know the

solution ψ(t); i.e., the initial conditions ψi(t0), i = , of the adjoint system are known. At the switching
times, the switching function is equal to zero; i.e.,

Define (t0) = ψ(t0)/ψβ(t0), where β ∈ [1, n]. Here, ψβ(t0) is a nonzero initial value of the β�coordinate
at the time t0. Moreover, β is any value from the set [1, n] for which ψβ(t0) ≠ 0. As a result, we obtain the
system

(3.27)

which relates the switching times  (j = , p = ) to the initial condition (t0) of the normalized
adjoint system.
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Next, (n – 1) approximate switching times , i =  calculated by formula (3.23) are substi�
tuted into (3.27) to obtain a system of (n – 1) linear inhomogeneous algebraic equations with (n – 1)
unknowns, which are the components of the normalized initial condition (t0) of the adjoint system (tak�
ing into account that (t0) = 1).

Importantly, this method for normalizing the initial condition vector of the adjoint system eliminates
a fundamental difficulty arising in the approximation of the reachable set by hyperplanes, namely, the task
of constructing a supporting hyperplane through remote boundary points on different state axes for which
the optimal control is opposite in sign. In the method proposed, two symmetric normalized switching
functions satisfying two different symmetric sequences of control signs can be drawn through the same
(n – 1) switching times. Figure 3 shows two symmetric normalized switching functions that pass through
the switching times ν1 and ν2 and satisfy different (symmetric) sequences of optimal�control signs on the
interval t ∈ [t0, tk].

Corresponding to the given initial condition x(t0) = x0, the sequence of signs of the desired optimal
control is specified with the help of the quasi�optimal control. In view of the simplicity of implementing
the quasi�optimal control (3.16), the signs of the components of the desired optimal control correspond�

ing to the given initial condition x(t0) = x0 can be determined if, instead of the arbitrary values of  and
T = tk – t0, we use their approximate values given by formulas (3.25) and (3.26).

According to the method proposed for finding the optimal control, the quasi�optimal controls are

smoothed to become equal to the limiting values ± , j = , which are used to form the time�optimal
control for linear system (2.1). The smoothing of the control functions leads to changes in the switching
times of the quasi�optimal control, which tend to the switching times of the optimal control.

3.6. Iterative Method for Computing the Optimal Control with Interval Constraints

The deviation of the quasi�optimal control from the corresponding limiting value Sj(p) =

sgn[Bj(t)]*ψ(t), t ∈ [ , ] in optimal control with severe constraints on the jth component in the
pth interval is given by

Consider only the ρth part of this deviation. The deviation , 0 < ρ ≤ 1, generates the following devi�
ations of the state coordinates at the terminal time t = tk:

(3.28)
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Variations in the switching times on  and in the terminal time on Δtk for a piecewise constant control

u(t) whose components are switched at the times  and take the values uj(t) = , t ∈ [ , ], give
rise to the following deviations of the state coordinates at the terminal time t = tk:

If  and  are small (which can be achieved by choosing a suitable parameter ρ), we can write the
approximate relation

(3.29)

The deviation (tk) caused by variations in the control functions has to be balanced by the deviation
(tk) caused by variations in the switching times and the terminal time:

(tk) + (tk) = 0. (3.30)

Substituting (3.28) and (3.29) into (3.30) yields a system of n linear algebraic equations

(3.31)

To find an optimal (rather than merely admissible) control, the adjoint system is used to determine the
number and locations of switching times. For this purpose, we need to find the relation between the devi�

ations  and (t0). According to [16], this relation is given

More compactly, this expression is written as

(3.32)

Substituting (3.32) into (3.31) gives a system of n linear algebraic equations with n unknowns, which are
(n – 1) deviations (t0) and the deviation Δtk:

(3.33)

Solving system (3.33), we find (t0) and Δtk, i.e., the refined values of the switching times, terminal

time, and the normalized initial condition of the adjoint system for the next iteration (s + 1):  =

 + ;  =  + ; and (t0) = (t0) + (t0). The computations terminate if interval

constraints (2.2) on the control components are satisfied, i.e.,  ≤ | | ≤ , i = , j = .

The convergence of this computational process is proved in the Appendix.
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3.7. Nonuniqueness of Optimal Control

Assume that  =  = . Then interval constraints (2.2) degenerate into “severe” constraints

|uj| = , j = . In this case, the time�optimal control of system (2.1) is given by (t) =

sgn[Bj(t)]*ψ(t), j = ; i.e., the control functions take the limiting values ± , j = , and the
switching times are determined with the help of the adjoint system ψ(t) by means of the switching func�

tions [Bj(t)]*ψ(t), j = . The switching times of the quasi�optimal control are also determined by the
switching functions, and the control functions at the end of the iterative process tend to the limiting values

± , j = . For a linear system, a time�optimal control exists if x(t0) ∈ V, i.e., the initial condition
belongs to the controllability domain. This condition holds (see (2.1)).

For linear nonstationary systems, an optimal control is unique if (i) the origin of the control domain is
its interior point and (ii) the control is “regular,” i.e., a linear combination of rows of the matrix Φ(tk, t)B(t) is
nontrivial at all points of the time interval t ∈ [t0, tk], except for a finite set of points.

For the considered constraints on the components of control vector (2.2), the origin of the control
domain is its interior point; i.e., condition (i) holds.

Regularity condition (ii) for linear stationary systems can be replaced by the general position condition
(see [1]). In the case of rectangular box constraints on the components of control vector (2.2), as consid�
ered in this paper, the general position condition is adequate for componentwise complete controllability;
i.e., the complete controllability condition (2.3) must be satisfied for each component of the control vector:

(3.34)

Thus, the general position condition is more restrictive than the complete controllability condition (2.3). For a
scalar control, the general position condition coincides with the complete controllability condition.
Therefore, for a scalar control, since the time�optimal control for linear stationary systems is unique, the

quasi�optimal control with limiting control function values ± , j = , that drives the system to the
origin is found with the help of the adjoint system, satisfies the Pontryagin maximum principle (which is
a necessary optimality condition), and is a time�optimal control. For a vector control, the optimal control
can be nonunique, since only the complete controllability condition (2.3) is assumed to hold in this work.
In this case, the sequence of quasi�optimal controls converges to one of the optimal controls.

If  ≠ , j = , then any quasi�optimal control satisfying interval constraints (2.2) is an optimal
control.

4. SIMULATION AND NUMERICAL RESULTS

Consider the system of linear differential equations

For a41 = –2.9684, a42 = –5.84, a43 = –6.33, and a44 = –3.4, the matrix A of this system has the complex
conjugate eigenvalues λ1, 2 = –0.784 ± j0.986 and λ3, 4 = –0.916 ± j1.016. Let b = 4, M 0 = 5, M 1 = 4.8,

M 2 = 5.2, and Ts + 1 – Ts = 0.5, s = . Let x(t0) = (1, 0.8, –1.2, 2). The initial condition belongs to
the octant [+ + – +] of the state space. Checking conditions (3.22), we conclude that the given initial con�
dition belongs to the reachable set over the time T = 2.5, but does not belong to the reachable set over the
time T = 2. The averaged switching times (3.23) for initial conditions belonging to the supporting hyper�

plane are  = 0.5128,  = 1.2524, and  = 1.8. The averaged switching times (3.24) for ini�

tial conditions belonging to the parallel hyperplane Γ2 are  = 0.645,  = 1.599, and  = 2.2615.
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Formulas (3.25) and (3.26) are used to compute approximate values of the driving time and switching
times for the optimal control driving the system from the initial state x(t0) = (1, 0.8, –1.2, 2) to the origin:

ν1 = 0.621, ν2 = 1.536, ν3 = 2.177, and T = 2.409. Table 1 presents the switching times νi (i = ), the

terminal time tk, and the quasi�optimal controls  (i = ) calculated at every iteration step h on each
definite�sign interval. A single iteration step is sufficient to satisfy the given interval constraint imposed on
the control. The system is driven to the origin with 10–7 accuracy.

Consider another initial condition: x(t0) = (2.5, 3, 4, 7). This point lies in the octant [+ + + +] of the
state space. Checking inequalities (3.22), we find that the initial condition belongs to the reachable set
over the time T = 4, but does not belong to the reachable set over the time T = 3.5. The averaged values of

switching times (3.23) for initial conditions belonging to the supporting hyperplane are  = 1.313925,

 = 2.488759, and  = 3.215372. The averaged values of switching times (3.24) for initial condi�

tions belonging to the parallel hyperplane Γ2 are  = 1.499737,  = 2.897506, and  = 3.679024.
Formulas (3.25) and (3.26) are used to compute approximate values of the driving time and switching
times for the optimal control driving the system from the initial state x(t0) = (2.5, 3, 4, 7) to the zero ter�
minal state: ν1 = 1.4505, ν2 = 2.789, ν3 = 3.556, and T = 3.867. Table 2 presents the switching times νi

(i = ), the terminal time tk, and the quasi�optimal controls  (i = ) calculated at every iteration
step h on each definite�sign interval. A single iteration step is sufficient to satisfy the given interval con�
straint imposed on the control. The system is driven to the origin with 10–7 accuracy.

CONCLUSIONS

The quasi�optimal control found drives a linear system to the origin from any initial state and does not
require complicated computations. As a result, this quasi�optimal control can be directly used to satisfy
interval constraints in the real�time control of fast�acting objects and rapidly proceeding technological
processes. By dividing the domain of initial conditions into reachable sets over different times, the quasi�
optimal control is made much closer to the time�optimal control and can be used as an initial approxima�
tion in the iterative computation of an optimal control. In the case of interval constraints imposed on the
control components, one or several iteration steps are sufficient to compute an optimal control.

APPENDIX

Below, we prove the convergence of the iterative computational process.

Theorem. The sequence of quasi�optimal controls (3.16), i.e., (t) = xi(t0), j = , p =

, t ∈ [ , ], h = 1, 2, 3, …, converges at the iteration step N (where N is not fixed) to the quasi�
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time�optimal control (t) = xi(t0), j = , p = , t ∈ [ , ], that drives system

(2.1) to the origin x(tk) = 0 and satisfies constraints (2.2)  ≤ | | ≤ , j = .

Proof. For the iterative computational process to converge, the deviations at every iteration step must
be small. The smaller the deviations, the more accurate the used approximate relations (3.29) and (3.32),
which tend in the limit to the exact relations. On the pth definite�sign interval, the deviation of the quasi�
optimal control from the optimal one for the jth component is

(A.1)

Consider the ρth part of deviation (A.1):

(A.2)

In this case, in smoothing the control functions, the quasi�optimal control on each definite�sign interval

tends not to the limiting value Sj(p), but rather to some intermediate value
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generating (tk) will be arbitrarily small. Let us prove that the smallness of (t0) and Δtk at every iter�
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The deviation (tk) of the state coordinates are given by

Since the integrand is continuous on each interval [ ,  + ], the mean value theorem implies that

uj
kv N, N̂ij

p N,

i 1=

n

∑ 1 m, 1 rj, νj
p 1– N, νj

p N,

Mj
1 uj

kv N, Mj
2 1 m,

Δuj
p Mj

0Sj p( ) N̂ij
p
xi t0( ), j

i 1=

n

∑– 1 m, , p 1 rj, .= = =

ρ Δuj
p( ) ρ Mj

0Sj p( ) N̂ij
p
xi t0( )

i 1=

n

∑– , 0 ρ 1.≤<=

Mj
0

ûj
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Applying Lagrange’s mean value theorem yields

(A.4)

Define

(A.5)

where  and Δtk are the exact (true) deviations,  and  are the computed deviations, and 

and  are the errors of the computed deviations. The values  and  are determined by solving the
system of linear algebraic equations (3.29), which is exact for the computed values:

(A.6)

Substituting (A.5) into (A.4) and taking into account (A.6), we obtain the equation

(A.7)

where, for notational brevity, we used the notation

The following assertion is important for the proof of the convergence of the computational process: the

errors  and  found at the hth iteration step are the exact (true) deviations at the (h + 1)th iteration
step; i.e.,

(A.8)

Substituting (A.8) into (A.7), we obtain an expression relating the deviations at the hth and (h + 1)th iter�
ations:

(A.9)
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rjΔ t̃ k

j 1=

m

∑+
p 1=

rj 1–

∑
j 1=

m

∑ Δx̃ tk( ).=

Φ tk νj
p,( )Bj νj

p( ) ûj
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Substituting (3.32) into (A.9) yields a system of n equations with n unknowns, which are (n – 1) deviations

(t0) of the initial conditions in the normalized adjoint system and the deviation  of the termi�

nal time t = :

(A.10)

System (A.10) relates the deviations at the hth and (h + 1)th iteration steps. To write it in a unified and
compact form, we introduce the notation Δz = ( (t0), Δtk). Then system (A.10) can be compactly rep�
resented as

(A.11)

where Δzh is an n�dimensional column vector with components (t0) and ,  is a diagonal n × n

matrix with above�indicated diagonal elements, and D( ) is an n × n matrix.

The controls are improved in the course of the computations [17] if the following sufficient condition
is satisfied:

(A.12)

It follows directly from (A.11) that, by virtue of the quadratic dependence, there are values  such that
the sufficient condition for the improvement of the controls in the iterative process is satisfied:

(A.13)

The deviations Δzh formed at every iteration step are chosen at our discretion. Indeed, specifying ρ in
Eq. (3.33), we determine which part of the complete mismatch Δzh at ρ = 1 will be compensated at the
hth iteration step.

If ρ  0, it follows directly from (A.3) that   0. Then balance equation (3.30) implies that

  0; therefore, the generating deviation tends to zero: Δzh  0. Thus, choosing ρh at every iter�

ation step, we choose the value Δzh. As a result, the sequence of quasi�optimal controls tends to the quasi�

optimal control with limiting values uj = ± , j = . At some iteration h = N, where N is not fixed,

with the switching times  and the terminal time  found, the prescribed accuracy of smoothing the
quasi�optimal control values is achieved, i.e., constraints (2.2) are satisfied. The theorem is proved.

Corollary 1. It follows directly from (A.11) that the local convergence rate is quadratic.

Corollary 2. The radius of local convergence is given by Rсonv = .

Corollary 3. Since  = σzh, a sufficient condition adequate for (A.12) under which the computa�
tional process converges is

(A.14)

i.e., the norm of the computational error must be less than the norm of the true (exact) deviation.
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