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1. INTRODUCTION

In this paper, we study the multiplicative complexity of Boolean functions. The multiplicative com�
plexity of a Boolean function f is the smallest number of &�gates (binary multiplications) in circuits in the
basis {x & y, x ⊕ y, 1} such that each such circuit computes the function f. The multiplicative complexity
of a function f is denoted by μ( f).

The multiplicative complexity of Boolean functions in the worst case was considered in [1, 2]. In [1],

it was obtained that μ(n) = (1 + o(1)) ⋅ 2n/2 for μ(n) = , where the index f runs over all functions

of n variables. The multiplicative complexity of explicitly defined Boolean functions is studied [2–7].
In [2], an important class of symmetric functions was considered, and it was proved that the multiplicative

complexity of each symmetric function of n variables is no more than n + O( ). In [3], it was proved that
μ( f) ≥ n – 1 holds for each function of the degree n, for example, for x1 … xn. This is the best lower bound
of the multiplicative complexity which is proved for explicitly defined functions of n variables. In [3], it
was also shown that the multiplicative complexity of each multi�affine Boolean function of n variables is
no more than (n – 1). In [3, 4], quadratic functions were studied. It was shown that the multiplicative
complexity of each quadratic function of n variables is no more than ⎣n/2⎦, where ⎣a⎦ is the greatest inte�
ger which is not more than a. Moreover, all quadratic functions f of n variables with μ( f) = ⎣n/2⎦ were
described. The multiplicative complexity of the threshold function of n variables with the thresholf of 2
was obtained in [5]. In [6, 7], the multiplicative complexity of some other functions was obtained.

In [8], a relation between the multiplicative complexity and the other circuit complexity of functions
was studied. It was shown how to obtain a lower bound for the circuit complexity of a function in the basis
of all functions of two variables, if the multiplicative complexity of this function is known. By some func�
tions for which multiplicative complexity is no less than (n – 1), a (7/3)n lower bound of the circuit com�
plexity was obtained for the same functions. In [9], a relation between the multiplicative complexity and
the additive complexity of functions was shown.

In this paper, we consider functions which are represented in the form x1x2 … xn ⊕ q(x1, …, xn), where
q(x1, …, xn) is a quadratic function. We study the multiplicative complexity of such functions. There exist
quadratic functions of n variables whose multiplicative complexity is equal to ⎣n/2⎦. We examine how the
multiplicative complexity is changed if we add the term x1 … ⋅ xn to such functions. We prove that the mul�
tiplicative complexity of each obtaining function of n variables becomes equal to (n – 1). Then we consider
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functions which are represented as a sum modulo 2 of two multi�affine functions. We prove that the mul�
tiplicative complexity of functions of the form x1 … xn ⊕ r(x1, …, xn), where r(x1, …, xn) is a multi�affine
function, is, in some cases, equal to (n – 1). To obtain our bounds of the multiplicative complexity, we
apply similar approaches.

The paper is organized as follows. In Section 2, we introduce basic definitions and notation. In Section 3,
we consider some properties of quadratic functions and prove bounds of the multiplicative complexity for
some functions. In Section 4, we consider multi�affine functions and their properties and prove bounds of
the multiplicative complexity for some sums modulo 2 of two multi�affine functions.

2. BASIC DEFINITIONS AND NOTATION

Boolean functions and their polynomial representations. Let B = {0, 1}. If α = (a1, …, an) ∈ B n and β =
(b1, …, bn) ∈ B n then we say that α ≤ β iff a1 ≤ b1, …, an ≤ bn (n ≥ 1). The weight |α| of n�tuple α = (a1, …, an) ∈

B n is  (this sum is on integer numbers). If α = (a1, …, an) ∈ B n then the monomial mα = 

corresponds to the tuple α. We assume that m(0, …, 0) = 1.

A Boolean function f of n variables is a mapping f : B n  B, n = 0, 1, … . Each Boolean function
f(x1, …, xn) can be represented by an expression in the form

where cf(α) = f(β) ∈ B are coefficients, α ∈ B n, and ⊕ denotes addition modulo 2 (EXOR sum). This

representation of Boolean functions is called Zhegalkin polynomial. It’s known, that each Boolean func�
tion can uniquely be represented by a Zhegalkin polynomial. The degree deg( f) of a Boolean function

f(x1, …, xn) is .

Circuits and multiplicative complexity. A circuit in the basis {x & y, x ⊕ y, 1} is a directed acyclic graph
with nodes whose in�degree is 0 or 2. Nodes with the zero in�degree are marked by a variable from the set
{x1, …, xn} or by the constant 1. Such nodes are called inputs. Nodes whose in�degree is 2 are marked by &
or by (⊕). Such nodes are called gates. For each node v of a circuit there is a Boolean function such that
this function is computed in this node. If v is an input with a variable xi (or with the constant 1) then the Bool�
ean function xi (the constant 1) is computed in v. If edges from a node v1 and from a node v2 enter a node
v, and Boolean functions f1 and f2 are computed in the nodes v1 and v2 respectively, and the node v has
the mark & (⊕) then f1 & f2 (f1 ⊕ f2) is computed in the node v. A circuit C computes a Boolean function f,
if there exists a node in C in which f is computed.

The multiplicative complexity of a Boolean function f is the smallest number of &�gates in circuits in the
basis {x & y, x ⊕ y, 1} such that each such circuit computes the Boolean function f(x1, …, xn). The multi�
plicative complexity of a Boolean function f is denoted by μ(f).

3. THE MULTIPLICATIVE COMPLEXITY OF SOME BOOLEAN FUNCTIONS

A Boolean function f is called quadratic, if deg( f) = 2. In [4], it is proved that μ( f) ≤ ⎣n/2⎦ for an arbi�
trary quadratic function of n variables, and quadratic functions f of n variables for which μ( f) = ⎣n/2⎦ holds
are described. In this paper, we need the structure of some circuits for quadratic functions. Therefore, in
this section, we formulate some results (Lemma 3.1) from [4]. Notice that we formulate this results in the
form that is convenient for our purposes.

A Boolean function f is called affine, if deg( f) < 1. Denote by An the set of all affine functions of the
variables x1, …, xn. An affine Boolean function f is called linear, if cf(0, …, 0) = 0. Denote by Ln the set of
all linear functions of the variables x1, …, xn. Linear (affine) functions of n variables g1, …, gm are called
linearly independent, if

ai
i 1=

n

∑ xi
ai 1=∏
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where c1, …, cm ∈ B, implies c1 = … = cm = 0. Otherwise, the linear (affine) functions g1, …, gm are called
linearly dependent. It’s known that the set Ln is a linear space of dimension n.

An expression in the form

,

where g1, …, gl, h1, …, hl ∈ Ln, and h ∈ An, is called a quadratic pseudopolynomial expression (for short, a
QPP expression) of length l. It’s easy to see, that each quadratic function is represented by a QPP expres�
sion, e.g., by its Zhegalkin polynomial. The length l2( f) of a quadratic function f in the class of QPPs is the
minimal length among all QPP expressions that represent f. It’s clear that l2( f) ≤ n(n – 1)/2 for an arbitrary
quadratic function f of n variables. But a more stronger fact holds, namely l2( f) ≤ ⎣n/2⎦ for an arbitrary
quadratic function f of n variables [4].

If P is a QPP expression such that P represents a function f, and the length of P is equal to l2( f), then
we say that P is a minimal QPP expression for f.

Lemma 3.1 ([4, 3]). Let P be a minimal QPP expression for a quadratic Boolean function f(x1, …, xn), and

P has the form t ⊕  ⋅ hi, where g1, …, gl, h1, …, hl ∈ Ln, t ∈ An. Then the linear functions g1, …, gl,

h1, …, hl are linearly independent.

Now we prove that the multiplicative complexity of an arbitrary function f(x1, …, xn) that is represented
in the form х1 … xn ⊕ q(x1, …, xn), where q is a quadratic function, is equal to (n – 1).

Theorem 3.2. If n ≥ 3, and f(x1, …, xn) is a Boolean function that is represented in the form x1 … xn ⊕
q(x1, …, xn), where q is a quadratic Boolean function, then μ( f) = n – 1.

Proof. 1. Upper bound. Represent a quadratic function q(x1, …, xn) by its minimal QPP expression P.

Let the QPP expression P be in the form t ⊕ , where gi, hi ∈ Ln, i = 1, …, l, t ∈ An. By Lemma 3.1,
the linear functions g1,…, gl, h1, …, hl are linearly independent. We obtain that 2l ≤ n, because the dimen�
sion of the linear space Ln is n. Add linear functions g2l + 1, …, gn ∈ Ln to the linear functions g1, …, gl,
h1, …, hl such that the linear functions g1, …, gl, h1, …, hl, g2l + 1, …, gn are linearly independent. We can
always do it, because the dimension of the linear space Ln is n.

Consider the product

This product represents a certain Boolean function. Denote this function by f1(x1, …, xn). Prove that

the function f1(x1, …, xn) is equal to  for some a1,…, an ∈ B. For this, we write the system

of linear equations

(1)

t ⊕gi hi⋅⊕
l

i = 1

gi
i 1=

l

∏

⊕i 1=

l
gihi

gihi

i 1=

l
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⎜ ⎟
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gi

j 2 l 1+=

n
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⎜ ⎟
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n

∏

g1 x1 … xn, ,( ) 1,=

…,

gl x1 … xn, ,( ) 1,=

h1 x1 … xn, ,( ) 1,=

…,

hl x1 … xn, ,( ) 1,=

g2l 1+ x1 … xn, ,( ) 1,=

…,

gn x1 … xn, ,( ) 1.=
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Notice, that if x1 = c1, …, xn = cn is a solution of the system (1), then the function f1(x1, …, xn) is equal
to 1 on the tuple (c1, …, cn) ∈ B n. And if the function f1(x1, …, xn) is equal to 1 on the tuple (d1, …, dn) ∈ B n,
then x1 = d1, …, xn = dn is a solution of the system (1).

The linear functions g1, …, gn, h1, …, hl, g2l + 1, …, gn are linearly independent, therefore, by results of
linear algebra, the system (1) has a unique solution x1 = b1, …, xn = bn, where b1, …, bn ∈ B. The Boolean

function  is equal to 1 on the single tuple (b1, …, bn) ∈ B n. Therefore, the expressions

and

represent the same function f1(x1, …, xn).

Denote bi ⊕ 1 by ai, i = 1, …, n. It’s easy to see, that f1(x1 ⊕ a1, …, xn ⊕ an) = x1 … xn. Denote gi(x1 ⊕ a1,

…, xn ⊕ an) by (x1, …, xn), i = 1, …, l, 2l + 1, …, n. Denote hi(x1 ⊕ a1, …, xn ⊕ an) by (x1, …, xn), i = 1, …, l.
Then

Therefore, we can construct a circuit that computes the product x1 … xn by the following way (see Fig. 1).

The block B& computes the conjunction of its (n – 1) inputs by (n – 1 – l) &�gates. Therefore, this
circuit C has (n – 1) &�gates.

Notice, that gi(x1, …., xn)hi(x1, …, xn) = (x1, …, xn) (x1, …, xn) ⊕ (x1, …, xn) for some , …,  ∈ An.
Therefore,

where (x1, …, xn) =  ∈ An.

Hence, we can construct a circuit that computes f by the following way (see Fig. 2).

The block C is in Fig. 1. This block has (n – 1) &�gates. To compute the affine function  we don’t need

&�gates. The block B⊕ computes a sum modulo 2 of functions , …, , x1 … xn that have been already
computed at the block C. The block B⊕ has no &�gates. Thus, the circuit Cf computes the function f, and this
circuit has (n – 1) &�gates.

We obtain that μ( f) ≤ n – 1.

2. Lower bound. It’s known [3] that μ( f) ≥ deg( f) – 1. Therefore, μ( f) ≥ n – 1.

Hence, by the upper bound and the lower bound, we obtain that μ( f) = n – 1.

xi bi 1⊕ ⊕( )
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n
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ĝi ĥi
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Fig. 1.
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Corollary 3.2.1. If n ≥ 3, f(x1, …, xn) is a Boolean function such that for some g1, …, gn ∈ An the Boolean
function f(g1(x1, …, xn), …, gn(x1, …, xn)) has the form x1 … xn ⊕ q(x1, …, xn), where q is a quadratic func�
tion, then μ( f) = n – 1.

4. THE MULTIPLICATIVE COMPLEXITY OF SUMS 
OF MULTI�AFFINE BOOLEAN FUNCTIONS

A Boolean function f is called multi�affine, if f is represented in the form , where h1, …, hm are

affine functions. Multi�affine functions are considered in [10] in connection with satisfiability problems.
In [3] it was proved that μ( f) = def( f) – 1 for each multi�affine function f. We formulate some results
from [3] (Lemma 4.1) that we need here.

Lemma 4.1 ([3]). If (x1, …, xn) is a multi�affine Boolean function, and f ≠ 0, then f can be represented in

the form , where b1, …, bl ∈ B, g1, …, gl ∈ Ln are linearly independent, and l = deg( f).

We see [3] that the multiplicative complexity of each multi�affine function of n variables is no more
than (n – 1). We consider functions which are represented in the form x1 … xn ⊕ r(x1, …, xn), where
r(x1, …, xn) is a multi�affine function. We prove that the multiplicative complexity of such functions is, in
some cases, equal to (n – 1).

Theorem 4.2. If a Boolean function f(x1, …, xn) is represented in the form x1 … xn ⊕ r(x1, …, xn), where
r(x1, …, xn) is a multi�affine function, r(1, …, 1) = 1, and deg(r) < n, then μ( f) = n – 1.

Proof. 1. Upper bound. By Lemma 4.1, the function r(x1, …, xn) can be represented in the form

, where g1, …, gl ∈ An, g1, …, gl are linearly independent, and l = deg(r). But deg(r) < n, therefore l < n.

Consider the system of linear equations

(2)

Since r(1, …, 1) = 1, we conclude that x1 = 1, …, xn = 1 is a solution of the system (2). Add equations

hi
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∏
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where gl + 1, …, gn ∈ An, to the system (2) such that the system

(3)

has a single solution, and this solution is x1 = 1, …, xn = 1. We always do it, because the function g1, …, gl

are linearly independent, and x1 = 1, …, xn = 1 is a solution of the system (2). Then the expression 

represents the Boolean function x1 ⋅ … ⋅ xn. Therefore,

By this expression, it’s clear how to construct a circuit that computes the function f, and that has (n – 1)
&�gates.

2. Lower bound. Since deg( f) = n, from [3] we obtain that μ( f) ≥ n – 1.
Hence, we obtain that μ( f) = n – 1.
For example, by Theorem 4.2, we can conclude that the multiplicative complexity of the Boolean

function x1 … xn ⊕ (x1 ⊕ x2 ⊕ x3)(x2 ⊕ x3 ⊕ 1) is equal to (n – 1), if n ≥ 4.

Corollary 4.2.1. If a Boolean function f(x1, …, xn) is represented in the form f1(x1, …, xn) ⊕ f2(x1, …, xn),
where the functions f1, f2 are multi�affine, deg( f) = n, and there exists a tuple α ∈ B n such that f1(α) =
f2(α) = 1, then μ( f) = n – 1.

Proof. Assume that α = (a1, …, an) ∈ B n. Without lost of generality, assume that deg( f1) = n, and

deg(f2) < n. By Lemma 4.1 the multi�affine function f1(x1, …, xn) can be represented in the form ,

where g1, …, gl ∈ An, g1, …, gl are linearly independent, and l = deg( f1). But deg( f1) = n, therefore l = n.
Hence, the system of linear equations

has a single solution, and this solution is x1 = a1, …, xn = an. Hence, the function f1(x1, …, xn) has the form

. Denote ai ⊕ 1 by bi, i = 1, …, n.

Consider the Boolean function

The function (x1, …, xn) has the form x1 … xn ⊕ (x1, …, xn), where (x1, …, xn) is a multi�affine, and

deg( ) < n. Moreover,

Apply Theorem 4.2 to the function . We obtain that μ( ) ≤ n – 1.

Since f(x1, …, xn) = (x1 ⊕ b1, …, xn ⊕ bn), we obtain that μ( f) ≤ n – 1.

From [3] μ( f) ≥ n – 1, because deg( f) = n.
Hence, we obtain that μ( f) = n – 1.
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5. CONCLUSIONS

In this paper, we proved that μ(f) = n – 1, if f(x1, …, xn) is represented in the form x1 … xn ⊕ q(x1, …, xn),
where q is a quadratic function, and if f(x1, …, xn) is represented in the form x1 … xn ⊕ r(x1, …, xn), where
r(x1, …, xr) is a multi�affine function for which deg(r) < n, and r(1, …, 1) = 1.
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