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1. INTRODUCTION

It is well known that the Google Search engine was created as a student research project at Stanford
University (see [1]). In 1996, they worked over the BackRub search engine, which was used to create the
new Google Search engine in 1998 (see [2, 3]). A certain method for ranking web pages was proposed
in [1]. This method, as well as the rather large class of ranking problems arising, for example, in the com�
putation of citation indices of researchers or journals [4] is reduced (see [5]) to finding the left eigenvector

(normalized to unity:  = 1) corresponding to the eigenvalue 1 of some stochastic (in rows) matrix

P =  : pT = pTP.

Remark 1. The consensus�finding problem is reduced (for example, in the DeGroot model) to finding
such a vector, which is sometimes called the Perron–Frobenius vector. A more detailed exposition of this
subject and consensus models overall can be found in [6].

Remark 2. The solution of pT = pTP always exists by the Brouwer fixed�point theorem (the continuous
(bounded) operator P maps a convex compact set (simplex) to itself) and is unique in the class of proba�
bility distributions if and only if there is a single class of interdependent (essential) states in the possible
presence of nonessential states [7]. In other words, if the matrix P is associated with a directed graph such
that the vertices i and j are joined by an edge if and only if pij > 0, then any vertex in this graph is of one of
the following two types: nonessential (if, starting from this vertex and moving along edges according to
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where Sn(1) is a unit simplex in �n and I is the identity matrix. The arising problem is solved by apply�
ing a slightly modified Grigoriadis–Khachiyan algorithm (1995). This technique, like the Nazin–
Polyak method (2009), is a randomized version of Nemirovski’s mirror descent method. The differ�
ence is that randomization in the Grigoriadis–Khachiyan algorithm is used when the gradient is pro�
jected onto the simplex rather than when the stochastic gradient is computed. For sparse matrices P,
the method proposed yields noticeably better results.
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their orientations, we can always arrive at a vertex from which there is no path back) and essential (if, start�
ing from any such vertex, we can reach any other essential vertex, including returning to the original ver�
tex).

This method can be substantiated following [5]. Let G = 〈V, E〉 be a directed graph representing the
Internet (vertices are web pages, edges are links, and the notation (i, j) ∈ E means that, on the ith page,
there is a link to the jth page), and let N be the number of Internet users (which does not vary with time).
Let ni(t) be the number of visitors to web page i at the time t. Over one time cycle, each visitor to this web
page goes independently (using the link) to the web page j with probability pij. The stochastic matrix P is
assumed to be indecomposable and aperiodic (see [7]). Below, we present a result from [5] (which is sub�
stantiated in Section 4) that offers another interpretation of the vector p (PageRank), according to which
web pages are ranked:

where pT = pTP (the solution is unique in the class of probability distributions since the matrix is indecom�
posable).

In some cases, it is assumed that

where δ ∈ (0, 1], I = diag{1, …, 1} is the identity matrix, and

This specific property of P will be used in Section 4. Note also that I is frequently replaced by a stochastic
matrix with identical elements, namely, by a teleportation matrix (see [2]). This immediately yields the
lower bound δ on the spectral gap of P.

Let us briefly describe the structure of this paper. Section 2 gives an overview of most popular numerical
methods for finding the PageRank vector. The novelty is that the overview is made simultaneously with
discussing two new methods for finding the PageRank vector: one based on the Markov chain Monte
Carlo (MCMC) algorithm and the other based on the Grigoriadis–Khachiyan algorithm. In Section 3,
which is also an overview, we briefly describe the basic MCMC�related results necessary in what follows.
There are no new results in this section. Nevertheless, the literature review presented can be of interest. In
Section 4, the MCMC method is used to find the PageRank vector. New results are convergence rate esti�
mates for the method and estimates for the total number of arithmetic operations. It should be emphasized
that, in contrast to the general case, the efficiency of MCMC is analyzed for a special class of problems.
As a result, we obtain substantially better estimates than those expected in the general case. Another nov�
elty of the method consists in the organization of random walks. Note that we propose a well parallelizable
version of the MCMC method. The MCMC method described in Section 4 performs well if the spectral
gap of P is large enough. A new method for finding the PageRank vector without imposing any constraints
on the spectral gap is proposed in Section 5. According to this method, finding a ranking vector is reduced
to finding a Nash equilibrium in an antagonistic matrix game. The equilibrium is found by applying the
Grigoriadis–Khachiyan algorithm, which takes into account the sparsity of P and is well parallelizable.

2. OVERVIEW AND DISCUSSION OF PREVIOUSLY KNOWN AND NEW METHODS 
FOR NUMERICALLY FINDING THE PAGERANK VECTOR

Various methods for numerically finding the PageRank vector p were proposed in [8–15].
Remark 3. Strictly speaking, other problems were solved in [11, 12], but the algorithms proposed are

easy to extend to the problem of finding the PageRank vector: this is straightforward in the case of [11],
but, in the case of [12], a somewhat more accurate convergence analysis yields the correction factor ln(σ–1),
which appears because the expectation is eliminated from the cost (objective) functional.

Below is a list of complexity bounds for the algorithms from [8–15] and for the algorithms proposed in
this paper. By complexity, we mean the number of arithmetic operations (multiplications of two numbers)
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that are required to produce a solution with probability no smaller than 1 – σ that is accurate up to ε in
terms of the objective functional.

Let us explain the notation used.

The G�condition means that there is a web page (for example, one corresponding to the Google Search
itself) that can be reached from any another web page with probability no smaller than α > cn–1. Without
loss of generality, we assume that the vertex corresponding to this web page has an index of 1 (see the
MCMC algorithm).

The S�condition means that every web page has at most s � n links to other pages, i.e., the matrix P has
the sparsity property. If every web page has at most s � n outgoing and incoming links, then we talk about

the �condition.

Remark 4. In some cases (for example, for the method from [14]), the S�condition can be relaxed to
“go out on average.”

The SG�condition means that the spectral gap α of the matrix P satisfies the condition α � n⎯2, where
α is the distance between the maximum eigenvalue in absolute value (Perron–Frobenius number) in the
matrix P (equal to 1) and the absolute value of the next (in magnitude) eigenvalue. If the G�condition is
satisfied, then the SG�condition holds with α no smaller than in the G�condition (see [2, 15]).

Note that the table slightly coarsens the results of the quoted works, specifically, of [9, 10]. This was
done for illustrative purposes. Note also that the complexity bounds for the algorithms from [9, 10] are
strongly overstated. In practice, these algorithms perform noticeably better. The algorithm from [8], on
the contrary, performs not very quickly because of the large constant in O(⋅). A somewhat similar situation
occurs with the algorithms from [11, 12]. They are not so fast as would be expected. This is also associated
with the fact that the possibility of working with randomness in huge dimensions is rather poorly imple�
mented in standard packages (we used MatLab). The algorithms from [13, 14] and MCMC work exactly
as indicated in the bounds. The algorithm from [15] performs noticeably better that the complexity bound
presented (here, we do not mean the constant in O(⋅)). Nevertheless, the conditions under which this algo�
rithm is competitive are rather restrictive and, even under these conditions, the method is generally out�
performed by that from [13]. A practical analysis of all algorithms presented in the table (and some others)
has shown that the methods from [12, 14] are efficient when there is no guarantee that the spectral gap is

S

Table

Method Condition Complexity Objective (min)

Nazin, Polyak [8] No

Nesterov [9, 10]

Juditsky, Lan, Nemirovski,
Shapiro [11] No

Grigoriadis, Khachiyan [12]

Nesterov, Nemirovski [13] G, S

Polyak, Tremba [14] S

Spielman [15] G, S

MCMC SG
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not small. If the latter condition can be ensured, then the MCMC method performs quite well, provided
that the randomization module is tailor�made rather than based on standard methods for discrete random
number generation.

It should be noted that different algorithms have different goals. In this context, it is useful to mention
the “typical” relations (see [16])

 

for vectors with identical (in order) components. In our case, they are not typical (the components
decrease according to the power law [17]), so it can be expected that the bounds presented involve a

dependence weaker than , i.e., in the transition from one norm to the other, the factor  is replaced
by something closer to O(1). However, this observation has not been rigorously proved.

According to the classification in [18, Chapter 6], the methods from [8, 9, 10] are variational, i.e., the
system pT = pTP in these methods is reduced to convex optimization problems, which are solved by apply�
ing various gradient descent algorithms (randomized mirror descent, the Polyak–Shor method, random�
ized componentwise descent).

The methods from [11, 12] are variational, but with a game aspect (an optimization problem is under�
stood as finding a saddle point, i.e., a Nash equilibrium in a matrix game). Indeed, the problem under
consideration can be rewritten (with the help of Perron–Frobenius theory [19]) as the problem

where

 

Note that 0 ≤ f(p) ≤ ||Ap ||∞, p ∈ Sn(1), and f(p) = 0 for the PageRank vector (and only for it). In fact, this
objective functional f(p) turns out to be very close to ||PTp – p||∞. Both game methods are underlain by
randomized versions of mirror descent as applied to finding an equilibrium in matrix games.

The methods from [8, 11, 12] can be parallelized on ~log2(1/σ) processors. Specifically, ~log2(1/σ)
independent trajectories are computed in parallel by any of these methods. Using tight bounds for the
number of iterations that guarantee prescribed accuracy and confidence level, which is set equal to 1/2 in
this parallel scheme, the computation of the trajectories is terminated after executing the required number
of iterations and a smallness criterion for the objective functional is checked. With probability 1 – σ, at
least one of the trajectories yields a solution with the prescribed accuracy. Unfortunately, the verification
of the smallness criterion for the objective functional involves the multiplication P Tp, which can be more
expensive than finding a candidate solution. Accordingly, such parallelization is not always reasonable.
Moreover, the verification of the smallness criterion requires that the number of iterations guaranteeing
the prescribed accuracy and confidence level be accurately estimated (see, e.g., the estimate on the num�
ber of iterations in the theorem in Section 5). Note that the method from [12] without allowance for spar�
sity can be parallelized on n/lnn processors (see [12]).

The other methods in the table can be interpreted as versions of the stationary iteration method from
[18, 20]. The following question arises: why not try to solve the system pT = pTP with a well�known
method, for example, from [18]? For example, we could use (see [21]) pT = pT(0)P ∞, where P ∞ is the out�
put of the next iterative process, which requires a finite number of iterations:

 

The iteration terminates as soon as tr(P(m)(I – P)) = 0, where tr(B) is the trace of the matrix B, i.e., the
sum of its diagonal elements. Moreover, P ∞ = P(m).

Let us try to answer this question. First, many iterative methods require that the matrix P be symmetric
and positive definite, which is generally not the case. However, even if all the required conditions hold and
the matrix is additionally sparse, the convergence is the same as in [13] but the constant α is replaced by
a certain analogue (from the SG�condition), which is generally much more difficult to estimate. Thus,
instead of presenting a number of classical iterative methods with their estimates, we give only those of
them (their applicability conditions are well interpreted) that are the best adapted to the (rather narrow)
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class of problems under study. The method from [21, 22] cannot be used, because n � 104 (i.e., n3 � 1012

is the number of arithmetic operations that can be executed on a personal computer over one hour).

In connection with the stationary iteration mention, we note that the methods described lead to the
accumulation of roundoff errors (finite length of the mantissa) when ||P|| > 1 (see, e.g., [18, Chapter 6,
Section 4; 20, Chapter 5, Section 1]). (Moreover, the spectrum of the matrix may lie in the unit disk and,
theoretically (without roundoff errors), the stationary iteration must converge exponentially). However,

in the case under consideration, in the natural norm subordinated to , ||P|| = 1, and no such problems
arise.

Importantly, in some cases considered in the table, the goal is to obtain a probability distribution vector p
that provides a small residual in terms of the function. However, if ||PTp – p || is small, this does not mean
that ||p – p*|| is small as well.

Remark 5. Recall that the vector p* is the solution of the equation PTp = p. This solution is assumed to
be unique in the class of probability distributions.

On the contrary, it is quite natural to expect that ||p – p*|| is α–1 times as large (see [18, 23]). Although
this is an upper estimate, it seems that, with a high probability (if the starting point is chosen equiproba�
bly), this estimate turns into a nearly exact relation (see [23, 24]). Thus, ensuring that ||PTp – p || is small
does not mean that we completely found the PageRank vector. This circumstance and also the fact that
the solution is sought on a strongly constrained set (unit simplex) and we make additional simplifying
assumptions explain in part why the complexity of the algorithms described is so low. For example, if
||p – p*||∞ ≤ ε for ε � n–1 and the true distribution of p* is close to a uniform one, it is not clear what the
algorithm produces with accuracy ε in terms of the function and how this can be used to rank web pages.
Fortunately, situations when the true distribution of p* is close to a uniform one are not typical in practice
(see [26]), especially if the G�condition (SG�condition) holds. As a rule, we select components of p* that
are sufficiently large. Since the problem is stated as one of ranking web pages, in fact, we need to recon�
struct the first few (in magnitude) components of p*. In other words, there is no need to precisely recover
small components of p* if we know that they are sufficiently small and there are a sufficient number large

components. We can say that the vector produced by the algorithm [15] has at most 3ε–1 nonzero compo�
nents. These circumstances explain why a vector p providing the estimate ||PTp – p||∞ ≤ ε in one of the

“poorest” norms  can be useful when ε � n–1.

3. MARKOV CHAIN MONTE CARLO METHOD

The idea of solving linear equations with the help of MCMC is as old as the usual Monte Carlo method
from [25]. However, we consider not a general linear equation but rather an equation with a stochastic
matrix P that is populated in a special way. Due to these circumstances, a random walk on the graph cor�
responding to P can be organized more efficiently.

Before describing the algorithm, we present some auxiliary facts.

Knuth–Yao Algorithm (see [25, 27])

The task is, by tossing a symmetric coin, to generate the distribution of a given discrete random variable
taking a finite number of values. Suppose that we need to generate the distribution of a random variable
taking three values, 1, 2, and 3, with equal probabilities 1/3. This can be done as follows. The coin is tossed
twice: if the outcome is 00, we set its value to 1; if the outcome is 01, we set 2; and, if the outcome is 11,
we set 3. If the outcome is 10, then the coin is again tossed twice and the argument is repeated. It can be
shown that this scheme can be generalized so that the distribution of a discrete random variable taking n
different values with generally different probabilities can be generated on average with the help of at most
log2(n – 1) + 2 tosses of a symmetric coin. If these probabilities are identical, then the procedure for “pre�
paring” such a generation algorithm also has logarithmic complexity in n.

l1
n

l∞
n
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MCMC Algorithm (see [7, 28–36])

To construct a homogeneous discrete Markov process with a finite number of states with a prescribed
invariant (stationary) measure π, the transition probabilities are sought in the form

where  is a preliminary matrix, which is hereafter assumed to be symmetric. It is easy to see that the
matrix pij has an invariant (stationary) measure π:

To find bij, it is sufficient to find a function F: �+  [0, 1] such that

and to set

Perhaps, the best known example of such a function is (z) = min{z, 1}, i.e., the Metropolis–Hastings

algorithm [7]. Note that, for any such function F(z), we have F(z) ≤ (z). Another example is the function

F(z) = z/(1 + z). Note also that  is usually chosen equal to  = 1/Mi, where Mi is the number of “neigh�
boring” states for i, or

At long times t, by the ergodic theorem, the probability distribution is close to the stationary one π.
Indeed, under the conditions described above, we have the detailed balance condition (Markov chains sat�
isfying this condition are sometimes called reversible):

which implies the invariance of π, i.e.,

The basic application of this fact consists in the observation that, in many cases, the time required for
reaching a stationary measure in a Markov process (i.e., mixing time [37]) is surprisingly short.

Remark 6. Moreover, the problem of finding a symmetric random walk (of uniform invariant measure
because of the symmetry) on a graph of given structure that has the “least” mixing time (in other words,
the largest spectral gap) is reduced to a semidefinite programming problem, which is known to be solvable
in polynomial time (in the number of vertices of this graph) [38].

Note that, according to the Knuth–Yao algorithm, one time step of a random walk on the graph cor�
responding to the considered Markov chain can also be quickly performed. Thus, an efficient method for
generating the distribution of a discrete random variable with probability distribution π can frequently be
obtained in time polynomial in the logarithm of the number of components in the vector π.

To estimate mixing time, we need to estimate the spectral gap of the stochastic transition probability
matrix specifying the Markov dynamics under study, i.e., we have to estimate the distance from the max�
imum eigenvalue of this matrix equal to 1 (Perron–Frobenius theorem) to the next in value modulus. It is
this number that determines the common ratio of the geometric progression majorizing the studied
sequence of norms of differences of distances (in variation) between the distribution at a given time and
the stationary (final) distribution. Numerous methods are available for spectral gap estimation. Examples
(see [29–36]) are the Poincaré inequality (canonical way), Cheeger’s isoperimetric inequality (conduc�
tivity), the coupling technique [39] (which yields simple, but, as a rule, rather rough estimates), Matron
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coupling [40], and the coarse Ricci curvature and concentration�of�measure theorems (of Milman and
Gromov [36, 41]). Examples of MCMC applications (see [7]) include shuffling n cards by partitioning
them into two roughly equal portions and mixing them (mixing time ~log2n); Hit and Run (mixing time ~n3);
the Ising model: n spins on an interval, a stationary distribution, i.e., the Gibbs distribution, Glauber

dynamics (mixing time ~ , 0 < T � 1); the problem for finding the shortest Hamiltonian path; sim�
ulated annealing for combinatorial optimization problems; and MCMC for enumerative combinatorics
problems.

Remark 7. Perhaps, the contrast is most pronounced in the example of card shuffling. For a deck of
52 cards, the state space of a Markov chain has cardinality 52! (adding the life times in nanoseconds of all
people who ever lived on Earth yields a number less than 52! by many orders of magnitude). At the same
time, shuffling in which the card from the top of the deck is placed at random inside the deck according
to a certain random walk, with very good accuracy, reaches a uniform measure corresponding to an inter�
mixed deck after 200–300 steps. In the case of shuffling by partitioning into portions, the same can be
achieved even more quickly after 8–10 steps (see [44]).

Let us illustrate what was said above by two examples (which were used, for example, to obtain the mix�
ing time bounds in [42]), which will be useful in what follows.

Example 1 (Cheeger’s approach [30, 33, 35]). Recalling that π(⋅) is an invariant measure and P =

 is the Markov�chain transition probability matrix, let

(Cheeger constant),

(mixing time).

Then

where P t(i, j) is the conditional probability that, starting from the state i, the Markov process reaches the
j after t steps. Note that a reasonable assumption is that the components of the PageRank vector π ranked
in increasing order decrease according to the power law (see [26]). Therefore, 

 = O(lnn).

Example 2 (coarse Ricci curvature [36]). The Monge–Kantorovich distance between two (discrete)
probability distributions μ and ν is defined as

where each pair of vertices is assigned a nonnegative number d(i, j) (with distance (metric) properties).
We say that κ is a coarse Ricci curvature if

Suppose that there is such κ > 0. Then
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where xt is a random vector with all zero components, except for the only one corresponding to the vertex
at which the Markov stochastic process was at the step t. Assuming that

Var � (Bias),

we have

(this result is not contained in explicit form in [36], but it can be derived using some ideas of [40]).

The result

is the ergodic theorem for Markov processes (a rather delicate convergence rate estimate was given above).
This result is quite expected (see [14]) and corresponds to classical ergodic theorems for dynamical sys�
tems (Birkhoff–Khinchin, von Neumann). However, in contrast to dynamical systems, the convergence
rate can be estimated in this case.

Note that the approach described in Example 2 is related to a result stating that positive linear operators
(in the space of all possible rays centered at the origin in the nonnegative orthant) are contractions in the
Birkhoff metric (see [43]); specifically, these operators can be defined by a stochastic matrix P such that
some of its powers has all elements positive (this is equivalent to the Markov chain being indecomposable
and nonperiodic (see [44])). Incidentally, relying on this understanding of the ergodic theorem for Markov
chains, we can interpret it as a contraction mapping theorem, which is somewhat unusual in the context
of comparing this theorem to ergodic theorems for dynamical systems.

4. MCMC ALGORITHM

Now we can describe the required version of the MCMC algorithm.

Step 1. Initialization: X = 0, vertex = 1, t = 0.

Step 2. Iteration counter: t := t + 1.

Step 3. Modification of X: if t ≥ , then Xk := Xk + 1, where k is the index of the current vertex.

Step 4. Modification of a vertex: “pass” at random from the current vertex to a “neighboring” one
according to the matrix P.

Step 5. Termination: if t < Tε, σ, α, n, then go to Step 2, otherwise, go to Step 6.

Step 6. Output: p = X/(Tε, σ, α, n – ).

The most expensive step among the first five is Step 4, but even in the worst case (when the number of
edges leaving the current vertex is on the order of n) this step requires O(lnn) operations (see, e.g., the
Knuth–Yao algorithm). (Note that other methods can also be used. Moreover, the complexity O(lnn) can
be understood not in the average case, but as usual (see [25]). The Knuth–Yao algorithm is mentioned
only as an illustrative example.) Examples 1 and 2 (with the spectral gap α substituted for its bounds, which
can be done in this context for reversible Markov chains (see [40]) but requires imposing certain condi�
tions in the general case) imply that, for
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after

iterations, with probability no smaller than 1 – σ, the MCMC algorithm produces an ε�optimal (in terms
of the function) solution of the original problem. Overall, the MCMC algorithm requires

elementary arithmetic operations (of multiplication of two floating�point numbers); here, the term O(n)
“reflects” the cost of Step 6.

A method for efficient parallelization of this algorithm is easy to propose. Specifically, instead of a sin�
gle trajectory, we use

independent random�walk trajectories that start at vertices chosen randomly and independently. Each of

the trajectories is monitored over the time . Taking the average (see below) over all these trajecto�
ries yields an answer (with possibility of organizing parallel computations), but the number of operations
somewhat increases: instead of the multiplier ln(n/σ), we have ln(n/ε)ln(σ–1), which is not bad.

Remark 8. In practice, this circumstance can be partially compensated as follows. For example, a single
trajectory is issued first. At random times, the randomly walking particle produces descendants, which also
walk randomly starting at their “birthplace” and are also prone to spontaneous divisions. An important
issue is to choose a suitable division (multiplication) rate.

Indeed, we obtain a set of Nε, σ independent identically distributed random vectors , k = 1, …, Nε, σ,

where all components of  are zero, except for one equal to 1. This component corresponds to the

state at which the kth trajectory is at the step . The vectors are identically distributed; moreover

(recall that p* = π is an invariant measure). Applying a Hoeffding�type inequality in the Hilbert space 
(see [48]) to

(this method was proposed together with Klochkov [45]), we obtain

where
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Next, we choose Nε, σ such that

For this purpose, it is sufficient that

where

Note that, up to a multiplicative constant, this bound cannot be improved, which follows from the Che�
byshev inequality

for

Remark 9. When the components of the ranked vector π decrease exponentially, the estimates obtained
below in the 2�norm can be replaced by similar estimates (with different constants and an additional log�
arithmic penalty) in the 1�norm. This can be understood taking into account that, in fact, we have the
problem of reconstructing the parameters of a multinomial distribution. More precisely, we discusses the
influence exerted by the dimension of the parameter space on the convergence rate estimates in the Fisher
theorem on the maximum likelihood method in the nonasymptotic case [46] (sample means are the esti�
mates produced by this method). In this example, the multinomial distribution leads (in this place, unfor�
tunately, we have to use the Stirling formula, i.e., impose some asymptotic conditions) to the Kullback–
Leibler divergence between the sample mean and true distributions in the exponent [47]. In turn, this
divergence is estimated, according to Pinsker’s inequality, by the 1�norm squared [48].

A slightly surprising result is that the total complexity depends weakly on the size of the matrix P, espe�
cially, if we take into account that no assumptions were made about the sparsity of P. The catch is that, in
fact, unless random walks are considered on special graphs (for example, on expanders [49]), the condi�
tion that α is uniformly in n separated from zero is unnatural. For example, the (apparently sharp) esti�
mate α ~ n–1 was given in [42] for the class of frequently encountered Markov processes arising in the
description of various macroscopic systems “living” in the mean field approximation (their dynamics
involve equal rights of interacting agents—the Guldberg–Waage law of mass action). It can also be noted
that the gain in the complexity bound depending on n is due to the rather poor dependence on ε. Gener�
ally, a complexity dependence on ε better than ε–2 cannot be expected in randomized algorithms
(see [50]), so randomization makes sense, as a rule, only for ε � n–1. This becomes especially clear if we
compare the obtained complexity bound with that of, say, the algorithm from [13]. In other words, it is
reasonable to use MCMC when ε � n–1.

The basic shortcoming of the MCMC method is that the exact values of Tε, σ, α and  are unknown
even if α is given. Moreover, the efficiency of the algorithm is directly related to the bound for α, which is
generally a priori not known. Nevertheless, α can be estimated in Cn arithmetic operations (unfortunately,
with a rather large constant C), for example, with the help of the δ2�process for practical estimation of the

spectral gap (see, e.g., [18]). Another method for estimating α and  can be found in [51]. The prob�

lem of determining Tε, σ, α is solved by monitoring the difference ||pt + τ – pt||2. To find , the algorithm

can first be run with  = 0 and the output can then be corrected by setting, say,  = Tε, σ, α/5.

Note also that, initially, the matrix P must be properly stored in computer memory. If this matrix is
treated in the usual manner, then the random choice of a neighboring vertex at every step in the MCMC
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algorithm takes time on the order of n rather than lnn, as would be desired. To avoid this, prior to running
the algorithm, the graph has to be represented as a list of links. It will borrow time (storage) of exponent
of vertices, but to make it is necessary only once.

5. GRIGORIADIS–KHACHIYAN ALGORITHM

The problem under consideration is rewritten (with the help of Perron–Frobenius theory [19]) as the
problem of finding a saddle point (equilibrium in an antagonistic matrix game):

(1)

where

Note that f(p) ≥ 0, p ∈ Sn(1), and f(p) = 0 at the PageRank vector (and only at it).
With accuracy ε (in terms of the function) and with probability no smaller than 1 – σ, the equilibrium

can be found using the stochastic mirror descent algorithm from [11] in

operations.
However, the specific features of the problem in the case of a sparse matrix P are not fully taken into

account in these methods. To solve problem (1), we use the method from [12] for finding equilibria in sym�
metric antagonistic matrix games (note that this method is, in fact, a randomized version of the mirror
descent method from [50]). For this purpose, following Dantzig [12], the problem (matrix game) is pre�
liminarily reduced to a symmetric form (this stage is avoided if we use the randomized online mirror
descent method from Theorem 2 in [52]):

where e = (1, …, 1)T and A = ||aik||. Then f(p) ≤ 2ε, where p = p'/(eTp'); moreover, eTp' ≤ 1/2 – ε if Ax ≤ εe.

Step 1. Initialization: X = 0, pT = , t = 0.

Step 2. Iteration counter: t := t + 1.
Step 3. Random number generator: choose k ∈ {1, …, 2n + 1} with probability pk.
Step 4. Modification of X: Xk := Xk + 1.

Step 5. Modification of p: i = 1, …, 2n + 1, pi := pi .

Step 6. Termination: if t < Tε, σ, n, then go to Step 2, otherwise go to Step 7.
Step 7. Output: x = X/t.
Remark 10 (on Step 5). Later, it will be shown that the probability distribution can be specified up to a

normalization factor.
Assuming that P is a sparse matrix with at most s nonzero elements in a column or row (see [9]), we see

that the most expensive steps is the recalculation (regeneration) of the probability distribution (Steps 3
and 5). Using the method of generating a discrete random variable with the help of a balanced binary tree,
we find that a change in the probability weight of a single outcome is, in fact, equivalent to changing the
weights of those tree vertices that lie on the path to the tree leaf to be changed.

Remark 11. Let us describe this procedure more precisely. We are given a balanced binary tree of height
O(log2n) with O(n) vertices and 2n + 1 leaves (to avoid going into technical details, assume that 2n + 1 is
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a power of two; clearly, this is not the case, but we can take, say, the least positive integer m such that 2m >
2n + 1 and consider a tree with 2m leaves). Each vertex of the tree (other than a leaf) has a nonnegative
weight equal to the sum of the weights of its two descendants. The original procedure for preparing the tree
with leaves of identical weights requires O(n) operations, but it has to be run only once. The procedure for
generating a discrete random variable with a distribution corresponding (up to a normalization factor) to
the leaf weights can be implemented using a random walk from the root to one of the leaves. Since the tree
is binary, each vertex has two edges toward vertices with weights a > 0 and b > 0 and the passage of each
vertex in a random walk is performed by tossing a coin (“prepared” so that the probability of passing the
vertex with weight a is a/(a + b)). Clearly, this procedure does not need the additional normalization con�
dition a + b = 1. If the algorithm changes the weight of some leaf in the course of its performance, then
the weights of those and only those vertices that lie on the path from the root to this leaf also have to be
properly changed. This is necessary to preserve the property that each tree vertex (other than a leaf) has a
weight equal to the sum of the weights of its two descendants.

Note that there is no need to renormalize the probability distribution (which would cost O(n)), i.e., to
change the weights of vertices other than those lying on the path to the leaf to be changed. All these tasks
(generation with the help of the tree and the update of the tree) can be done in O(lnn) operations of com�
paring two numbers. In the (“typical”) case when this has to be done ~s times, O(s lnn) operations are
required (and only when k = 2n + 1, we need to perform ~2n operations). Later, it will be shown that, after

iterations, with probability no smaller than 1 – σ, the algorithm produces an ε�optimal (in terms of the
function) solution of the original problem. Overall, the algorithm performs

elementary arithmetic operations (of multiplication of two floating�point numbers). In the case s � n, this
is noticeably better than in all known optimization analogues. The term O(n) “reflects” the cases when
k = 2n + 1 and the cost of final Step 7. Thus, we have the following result, whose proof is given in the
Appendix.

Theorem. After

iterations, with probability no smaller than 1 – σ, the Grigoriadis–Khachiyan algorithm produces p such that
0 ≤ f(p) ≤ ε. Overall, the algorithm performs

operations (of multiplication of two double�precision numbers).
It was earlier noted that the ε�dependence of the complexity cannot be improved without substantially

worsening the dependence of the complexity on n. More precisely, for methods involving randomization
with the variance of the stochastic gradient D, the dependence of the number of iterations ~Dε–2ln(σ–1)
is typical and cannot be improved. Nevertheless, if we take the expectation of a strongly convex functional
(which is not the case in this study; on the contrary, we got rid of this situation to make the functional more
informative), then the convergence can be improved up to ~Dε–1ln(ε–1) (see [53, 54]). For example, if we
use the (deterministic) fast gradient method (see [55, 56]), then the ε�dependence of the complexity can
be obtained in the form ε–1, but the number of operations then increases by at least n times. Since the rela�
tion ε � n–1 is quite natural for such problems, the resulting advantage seems doubtful. Note also [12] that,
in the class of deterministic algorithms, the dependence on n cannot be better than ~n2 (when the matrix P is
not sparse).

If the usual mirror descent method (see [57, 58]) is used to find the minimum of a nonsmooth convex

function f(p) + , then, applying the theorem on the subdifferential of the maximum from

[59, 60] and assuming that A is a weakly dense matrix with an average density characteristic (in rows) χ � 1
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(specifically, the number of nonzero elements in the matrix is ≤χn2), we conclude that the total complexity
is on average 

. 

In certain situations (for example, when χ ~ n–1/2), this bound is fairly competitive.

Note that the algorithm described is related to online optimization. Roughly speaking, algorithms of
this type are asymptotically most effective in online learning based on expert experience even in the case
of opposing Nature (see [50, 52–54, 58, 60–63]).

Note also that the Grigoriadis–Khachiyan algorithm is related to the concept of bounded rationality
in the context of discrete choice theory (see [52, 61, 64]).

Let us summarize the results obtained in this section. In fact, the Grigoriadis–Khachiyan algorithm
corresponds to the mirror descent method for finding an equilibrium in a matrix game with a skew�sym�
metric matrix A. For a non�skew�symmetric matrix, see [52].

The difference of the considered mirror descent from that presented, for example, in [11] is that, in our
work (as in [12]), the iterative process for finding the saddle point 〈u, Ax〉 on the product of two unit sim�
plexes performs only with respect to x, while the usual mirror descent method (designed for a non�skew�
symmetric matrix A) performs with respect to u as well. Moreover, it is extremely important how random�
ization is implemented. In this paper, as in [12], randomization is introduced in selecting the component
of the vector x used for componentwise motion. In all the other works, randomization is introduced at the
stage of computing Ax = E[A〈x〉], where x is a discrete random variable with distribution x and A〈x〉 is
the x�column of the matrix A. Both randomization methods require

steps for achieving the accuracy ε (in terms of the function), but sparsity is taken into account noticeably
better in the Grigoriadis–Khachiyan randomization. The cause is simple: at every step, the randomized
mirror descent from [8, 11] requires the update of x by adding a vector with 2n + 1 nonzero components,
irrespective of the sparsity of A. Therefore, no less than 2n + 1 operations per step are required. At the same
time, as was shown above, the number of operations per step in the Grigoriadis–Khachiyan algorithm in
the sparse case is typically O(s lnn), which can be noticeably less than n in the case s � n.

In the future, we intend to examine how to organize the random componentwise gradient descent for
convex optimization in large�scale problems so that sparsity can be taken into account as much as possi�
ble. Now other approaches are popular (see [9, 10]). However, we believe that, in particular situations, the
randomization method described (Grigoriadis–Khachiyan algorithm) will produce better results. Addi�
tionally, we intend to address the robust estimation of the PageRank vector (see [65, 66]) and to develop
some ideas associated with distributed computations of the PageRank vector (see [67]).

APPENDIX

Proof of the theorem. For simplicity, 2n + 1 is replaced by n. Determine r > 0 from the relation σ � n–r. Gen�
erally following [12], we show that, after

iteration steps, the Grigoriadis–Khachiyan algorithm produces x such that, with probability no smaller
than1 – σ,

Ax ≤ εe.

First, following [12, 60, 61], we set
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and

Then, by analogy with [12], we have

and (||aik|| ≤ 1)

However, since

we conclude that

Combining this inequality with

yields

Therefore,

and

Combining this result with the Markov inequality
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we have

Taking the logarithm of both sides of the inequality

which holds with probability no smaller than 1 – σ, we obtain
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This paper is accompanied with a mini�lecture course (with a video) that was delivered by one of the
authors at the Summer School of Modern Mathematics (LShSM�2013) in July, 2013: http://www.math�
net.ru/php/presentation.phtml?option_lang=rus&presentid=7259.
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