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INTRODUCTION

Recent advances in electron back scattering diffraction (EBSD) [1–4] have opened up new opportu�
nities in the study of material structure and texture. Together with determining grain sizes, EBSD has pro�
vided a simple and quick tool for receiving information on the texture and character of grain boundaries
in material structures. It is these structure characteristics that determine, in many respects, the physical
and mechanical properties and mechanisms of texture formation (plastic deformations, phase transitions,
recrystallization, etc.) [5–8].

The goal of EBSD analysis is also to study the spatial orientation distribution. Due to the large number
of orientations in the material under study, the orientation distribution function (ODF) can be calculated
without measuring polar figures (PFs) by X�ray or other methods [9]. PFs can also be calculated directly
from orientations. ODFs are used to examine the physical (thermal, elastic, plastic, etc.) properties of
materials.

The accuracy of ODF recovery from a set of individual orientations depending on the sample size and
smoothing parameters were studied in [10–15].

Before conducting EBSD measurements, an experimenter has to prepare a specimen and specify a
measurement step and a disorientation angle in order to distinguish grains with different orientations. The
problem of choosing measurement parameters remains insufficiently investigated, while these parameters
have a large effect on measurement results. In a number of works (see [2, 10, 16–18]), it was indicated than
an unsuitable choice of measurement parameters leads to incorrect results. For example,

an insufficient number of orientation measurements results in low accuracy of computed PFs (see [10]);

disorientation angle measurements may lead to inconsistent average grain size values (see [16]);

a small step of measurements leads to a considerable increase in time required for conducting an exper�
iment (see [17, 18]).

We can say that the development of experimental technology outruns the mathematical apparatus of
processing electron microscopy data. In [19] the formation of material structure and texture was investi�
gated using real�time electron microscopy methods. Accordingly, it is of interest to study this issue with
the help of the mathematical simulation of an experiment.
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Below, we develop a two�dimensional mathematical model of a specimen and a subsequent EBSD
experiment. The specimen represents a set of grains, each having its own size, orientation, and disorien�
tation angles with neighboring grains. Orientations are simulated by applying a special Monte Carlo
method [20, 21]. The grain size distribution is assumed to be given. Specimen measurements are modeled
for various experiment parameters. The experimental results are used to compare specimen texture char�
acteristics and measurements: the grain size distribution, average grain size, variance; the disorientation
angle distribution, average disorientation angle, variance; and ODF estimates in three�dimensional form
in a one�parameter representation. The coincidence of all these distributions is tested by applying a chi�
square homogeneity test [22].

1. PRELIMINARIES

In this study, the rotation of a grain is described by the Euler angles g = {ϕ, θ, ψ}, where –π ≤ ϕ, ψ ≤ π
and 0 ≤ θ ≤ π, and by corresponding rotation matrix from the group SO(3) (see [9]).

Inverse rotation can be written as g = {π – ψ, θ, π – ϕ}. In what follows, by the orientation of a grain,
we mean the corresponding element g ∈ SO(3).

A polycrystalline specimen consisting of grains with various sizes and orientations is treated as a statis�
tical object. For its mathematical description, we use the following characteristics:

(i) the grain size distribution density (GSDD);
(ii) the disorientation angle distribution density (DADD) between neighboring grains;
(iii) the orientation distribution function (ODF).
In the commercial software [23], the plane cross sections of grains are approximated by circles whose

diameters are written as grain sizes (Fig. 1).
The disorientation angles gi and gi + 1 (i = 1, …, N – 1) between two neighboring grains are calculated

using the formula (see [9])

(1.1)

The DADD is the distribution density of the angles ωi, i = 1, …, N – 1.
In the general case, the ODF is a function on SO(3) that can be expanded in the series (see [12–15])

(1.2)

where (g) are the generalized spherical functions of the first order.
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Fig. 1. Example of the approximation of grain cross sections by ellipses.
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If the texture is described by a central normal distribution (CND), the expansion coefficients  can
be represented as

(1.3)

where ε is a parameter characterizing the sharpness of the texture.
In view of (1.2) and (1.3), the CND can be written analytically as

(1.4)

In [20, 21] a special Monte Carlo method was developed that calculates CND (1.4) as a set of individual
orientations on SO(3). This method was used in [9, 12–15] to model EBSD measurements and smooth
out ODFs.

The kernel ODF estimator has the form

(1.5)

where Ci > 0 (i = 1, …, N) are weights determined by the grain sizes and gi(t) (i = 1, 2, 3) are smoothing
kernels (see [9]).

2. CARRYING OUT A MODEL EXPERIMENT

2.1. Modeling of a Specimen

A specimen is a set of grains

(2.1)

where xi is the size of the ith grain, which is equal to the diameter of a circle whose area is equal to that of
the grain’s cross section; gi = (ϕi, θi, ψi) is the orientation of the ith grain corresponding to the Euler angles
–π ≤ ϕi, ψi < π and 0 ≤ θi ≤ π; ωi = (gi, gi + 1) is the disorientation angle between neighboring grains; and
N is the number of grains in the specimen.

Following the Neumann method [24], grain sizes are chosen as random variables distributed satisfying
a gamma distribution of the form (see [10])

(2.2)

with expectation a/b and variance a/b2.
A set of grain orientations with a distribution function in the form of CND with a given parameter ε > 0 is

generated by the special Monte Carlo method with the number of convolutions equal to n = 6.
The specimen modeling results are presented in the following form:
(i) the distribution histogram over the grain sizes xi, i = 1, …, N;

(ii) ODF estimator (1.5), where

(iii) the DADD histogram over the disorientation angles ωi, i = 1, …, N – 1.
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It is well known that a histogram is an unbiased and consistent estimator of the distribution density as
N  ∞, hN  0 (the size of a column where the density is considered a constant), and NhN  ∞ (see [25]).

A specimen with boundaries is a set of grains (2.1) separated by boundaries, which are variables uni�
formly distributed in [0, 2γ/10), where γ > 0 is such that the area of the boundaries is 10% of the grains’
area. The area of a domain with measurement boundaries usually amounts to 10 to 50% (see [17, 18]).

2.2. Modeling of Specimen Measurements

The following measurement parameters are specified:
h is the scanning step, and ω0 is a threshold disorientation angle for determining two different neigh�

boring grains gi and gi + 1 from the disorientation angle (1.1) between them.

Measurements are made at the points Δk = kh, k = 1, 2, …, N1. A measurement at the point Δ1 = h is
made using the orientation of the grain that contains the point Δ1 (the resulting orientation is denoted
by ); for the point Δ2 = 2h, the next orientation  is determined, etc. In the case of a specimen with
boundaries, if the point hits the boundary, it is assigned an orientation corresponding to the Euler angles
equal to the arithmetic mean of the angles of two nearest determined orientations.

The resulting orientations are used to calculate the disorientation angles  = ( , ), k = 1, …,

N1 – 1, with the help of formula (2.3). If  ≤ ω0, then the kth and (k + 1)th steps belong to a single grain;
i.e., the distance ((k – 1)h, (k + 1)h) lies inside a single grain. If n measurements are inside the jth grain,
then the grain size is set equal to  = nh and the Euler angles are calculated as the arithmetic mean of the
corresponding n measurements:

If  > ω0, then a new grain begins at the point (k + 1)h.

As a result of the measurements, we obtain a set of grains

(2.3)

The experimental results are processed by constructing a histogram of the grain sizes , i = 1, 2, …, ,

computing an ODF estimator similar to (1.5), and constructing a histogram of DADD , i = 1, 2, …,  – 1.

3. PROCESSING OF EXPERIMENTAL RESULTS

Assuming that ODF (1.5), DADD, and GSDD of the specimen are known, the numerical results pro�
duced in the modeling experiment can be compared with specimen data.

We calculate estimators of GSDD and DADD, namely, the expectations Мξ, Mω and the variances
Dξ, Dω for the specimen and measurements:
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The hypothesis that the actual and observed GSDD and DADD coincide is checked using a chi�square
homogeneity test. For this purpose, we use the statistic (see [22])

where r is the number of cells in the partition, mj and  are the numbers of grains within the jth cell in
the specimen and measurements, respectively. In each case, the range of grain sizes was partitioned so that
the frequencies of grains hitting an individual cell for the specimen and measurements were as close as
possible.

The chi�square homogeneity test was also used to check the coincidence of the one�parameter ODF
representations for the specimen and measurements, which are given by the formula (see [9])

(2.4)

where q(t) is a Gaussian smoothing kernel.
For ODF measurements, the orientations and grain sizes that were obtained as a result of experiment

are used in formula (2.4).

4. NUMERICAL RESULTS

4.1. Results for Specimens without Boundaries

Following the scheme described in Subsection 2.1, we modeled two specimens with the following
gamma distribution parameters:

(1) а = 2 and b = 1; then Мξ = a/b = 2 is the average grain size in a specimen and Dξ = a/b2 = 2;
(2) а = 8 and b = 2; then Мξ = a/b = 4 is the average grain size in a specimen and Dξ = a/b2 = 2.
A chi�square test was used to check whether the gamma distribution coincides with the distribution of

the resulting specimen grain sizes. The coincidence hypothesis was accepted at 95% confidence level. The
value of the statistic was found to be 3 × 10–5 with 50 degrees of freedom.

The number N of grains in a specimen was set equal to 1000. The grain orientations in a specimen were
modeled by the special Monte Carlo method for CND on SO(3) with texture sharpness ε = 1/8 and with
the number of convolutions equal to n = 6 (see [9]).

Next, the experiment model proposed in Subsection 2.2 was used. The following measurement param�
eters were chosen for a given specimen:

(a) h = 0.5 μm, 1.0 μm, 2.0 μm for specimen (1), h = 2.2 μm, 3.0 μm, 4.0 μm for specimen (2);
(b) ω0 = 5°, 10°, and 20°.
The scanning steps for the specimens were chosen so that the number of grains in with sizes smaller

than the step one specimen was approximately equal to that in the other.
Since the specimens were measured entirely, the number of measured grains in each specimen was 1000.
Below, the results and recommendations concerning the choice of EBSD measurement parameters are

given in the form of propositions.
Proposition 1. If the scanning step is equal to h, then the fraction δless_h of grains whose sizes are less than

h has to be taken into account.
If the scanning step h = 0.5, 1.0, or 2.0 μm is chosen for specimen (1), then, taking into account only

the average grain size in the specimen, we would have to choose h = 4.0, 2.0, or 1.0 μm, respectively, for
specimen (2). However, for specimen (2), results similar to those for specimen (1) at h = 0.5 μm or even
somewhat better are obtained even with the scanning step h = 2.2 μm. Note that h = 0.5 μm for specimen (1)
and h = 2.2 μm for specimen (2) correspond to the same fraction of grains with sizes smaller than the scan�
ning step (see Table A.3 in the Appendix). It is also worth noting that, choosing h = 2.2 μm rather than
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h = 1.0 μm, the experimenter can obtain a larger statistical sample over the same time. It was shown in
[11, 12] that the sample size plays an important role in ODF recovery from a set of individual orientations.

Proposition 2. The average disorientation angle and the DADD variance are strongly affected by the
threshold disorientation angle and are weakly affected by the scanning step (<0.5°).

Figure 2 shows the results obtained for specimen (1). The results for specimen (2) are nearly similar.

Proposition 3. According to the chi�square homogeneity test, the hypothesis on the coincidence of the
GSDD, DADD, and ODF for the specimen and measurements is accepted at 95% confidence level for small
ω0 = 5° and for the steps h = 0.5, 1.0 μm and h = 2.2, 3.0 μm for specimens (1) and (2), respectively.

It should be noted that the hypothesis on the coincidence of DADD for the specimen and measure�
ments is accepted at 95% confidence level only for small ω0 = 5° regardless of the considered steps. This
finding is explained by the fact that both specimens are strongly textured (have a texture of sharpness ε = 1/8)
so, for the grains and DADD to be determined more accurately, we need to choose a smaller threshold
disorientation angle. In the general case, the threshold disorientation angle has to be chosen taking into
account the method of obtaining the specimen under study.

The hypothesis on the coincidence of GSDD is rejected when the scanning step id on the order of the
average grain size in the specimen and/or the threshold disorientation angle is equal to 20°. In the other
cases, the hypothesis is accepted at 95% confidence level.

The hypothesis on the coincidence of the one�parameter ODFs is rejected at ω0 = 20° (in this case, the
ODFs oscillate on the “tails” and the maxima increase). In the other cases, it is accepted at 95% confi�
dence level. For three�dimensional ODFs at ω0 = 20° and, in some cases, for ω0 = 10°, the maximum is
observed to increase (Fig. 3a), but the coordinates of the maximum remain nearly unchanged. This behav�
ior of the ODF is similar to that in the presence of dependent orientations [9], which arise at ω0 = 20°
because of merging a large number of grains.

Proposition 4. In the cased of strongly textured specimens, the ODF should be recovered with a small
threshold disorientation angle.

For the specimens under consideration, as such an angle, we can use ω0 = 5°.

Proposition 5. A decrease in the scanning step insignificantly improves the ODF recovered from individual
orientations.

At the same time, the statistical sample is reduced substantially. For more detail on the effect of a sam�
ple on ODFs recovered from individual orientations, see [11, 12].

Some more remarks have to be made about the scanning step. To obtain more accurate shapes and sizes
of grains, the step is usually chosen to be 1/10–1/5 times as large as the average grain size in the specimen
(see [6–8, 11]). This step corresponds to δless_h < 5% (see Table A.3 in the Appendix). However, this step
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Fig. 2. Average disorientation angle as a function of the (a) measurement step and (b) threshold disorientation angle.
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may be unsuitable for ODF recovery. With respect to many parameters, such as GSDD, DADD, anf the
homogeneity test for them and ODF, acceptable results are obtained even with a step corresponding to
δless_h ≈ 25%. In this case, the sample turns out to be several times as large.

4.2. Results for Specimens with Boundaries

As a specimen with boundaries, we examined (1) with boundaries added as described in Subsection 2.1.

The following observations were made by measuring the new specimen, in which the boundaries
amount to about 10% of the total grain size γ = .

In the experiment, we measured part of the specimen with boundaries that was equal to the specimen
without boundaries, so 912 grains were examined.

Proposition 6. As the scanning step decreases, the number of hits on the boundaries increase.

Table A.2 gives the number of found grains.

Here, nbound is the number of hits on the grain boundaries in measurement.
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Fig. 3. Contour lines of ODF cross section for (a) h = 0.5 μm, ω0 = 20° and (b) for specimen (1).
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Proposition 7. When the point hits a grain boundary, the corresponding orientation found as the arithmetic
mean of two neighboring ones can form an individual grain (which is referred to as imaginary).

Thus, such an orientation differs from both neighboring ones by an angle larger than ω0. In Table A.2,
the number of such orientations in each case is indicated in parentheses. As ω0 decreases, they become
more abundant. As the scanning step decreases, the total number of hits on grain boundaries grows and,
as a result, the number of imaginary grains increases as well.

Corollary to Proposition 7. The presence of imaginary grains strongly distorts the results, and the dis�
tortions are larger for smaller values of h and ω0.

This is especially evident in the variance of grain sizes and disorientation angles (Tables A.6 and A.8).
A visual illustration of the degradation in the results can be seen in Fig. 4, which shows the relative error
of the DADD variance for a small angle. It can be seen that, as the step decreases for small ω0, the error
increases sharply for the specimen with boundaries, while, for the specimen without boundaries, it tends
to zero.

Since more grains of small sizes appear, the average grain size is reduced (Table 1). The results closest
to the average grain size in the specimen are shown in bold.

It can be seen that they either correspond to the “medium�sized” step h = 1.0 μm (since the imaginary
grains seem to be still rather few for this step size) or to a small�sized step, but for a moderate value of ω0.
In the latter case, the step is small enough for frequent hits on boundaries (hence, many imaginary grains
can appear), but at ω0 = 10° the formation of imaginary grains is less frequent than for a smaller threshold
disorientation angle. It can be assumed that the results of [16] on obtaining the average grain size in a spec�
imen can be explained in a similar manner. For a scanning step that is 1/10–1/5 times as large as the aver�
age grain size in the specimen, the best results were obtained for ω0 = 11°, 12°. Possibly, for the specimen

Table 1

Mx = 2.033

h, µm
ω0

20° 10° 5°

2.0 5.067 3.084 2.728

1.0 4.296 2.496 2.110

0.5 3.893 2.121 1.689
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Fig. 5. The number of found grains vs. the scanning step (a) with and (b) without allowance for imaginary grains.
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examined in [16], these threshold disorientation angles prevented the formation of a large number of
imaginary grains, which would have a large effect on the results.

The deterioration of the results is manifested by the chi�square homogeneity test. For GSDD and
DADD, the test is not satisfied for the smallest of the considered steps. For ODF the values of the statistic
in the test increase by several times, but they satisfy the chi�square homogeneity test at 95% confidence
level in the same cases as for the specimen without boundaries.

Some results with explanations are given in the Appendix. For example, the relative errors of the aver�
age grain sizes in specimens with and without boundaries are compared at identical numbers of grains with
a size less than the step. Additionally, the numbers of grains found for specimens with and without bound�
aries and the number of hits on the boundary in the course of measurements are given.

The following observation has to be noted. Figure 5a shows the total number of found grains as a func�
tion of the scanning step for specimens with and without boundaries, while, in Fig. 5b, the imaginary
grains were eliminated from the total number of found grains for the specimen with boundaries. It can be
seen that, without imaginary grains, the dependence has a similar character.

CONCLUSIONS

A two�dimensional mathematical model of a specimen and an EBSD experiment was developed for
various measurement parameters, such as the scanning step and the threshold disorientation angle. It was
shown that the latter has a large effect on the measurement results. This angle has to be chosen taking into
account the specimen�manufacturing method. For a high percentage of boundaries in a specimen, a too
small scanning step may lead to distortions of the results due to the formation of imaginary grains. To
obtain more accurate results, a scanning step has to be chosen taking into account not only the average
grain size in the specimen, but also use, if possible, some additional information on the grain size variance,
for example, the fraction of grains in a specimen with a size smaller than the step.

It should be noted that EBSD measurements deal only with a thin surface layer of a specimen (see [1, 2]).
The computation of ODF requires that a large number of orientations be processed [10]. For this reason,
a 3D representation of a specimen in terms of two�dimensional map measurements has been used pro�
gressively more frequently at present (see [6, 9]).

APPENDIX

Number Nfound gr of Grains Found in the Experiment

• h is the measurement step, ω0 is the threshold disorientation angle;

• δless h is the fraction of specimen grains smaller than h in size.

The cases analyzed in detail are shown in bold.

Table A.1

δless h, %

Specimen (1) Specimen (2)

h, µm Nfound gr,
ω0 = 5°

Nfound gr,
ω0 = 10°

h, µm Nfound gr,
ω0 = 5°

Nfound gr,
ω0 = 10°

57 2.00 741 682 4.00 840 770

45 1.61 795 731 3.54 883 805

40 1.46 824 752 3.38 905 812

35 1.29 849 777 3.24 917 844

30 1.14 883 808 3.09 929 848

25 1.00 898 823 3.00 935 856

20 0.88 920 842 2.70 961 877

15 0.75 944 865 2.52 967 884

10 0.58 957 873 2.30 975 891

8 0.50 970 890 2.20 978 895
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• nbound is the number of hits on grain boundaries in the measurement.

The number of imaginary grains is given in parentheses.

Relative Error δav.size of the Average Grain Size

• δless h is the fraction of grains in the specimen with sizes smaller than h.

A plus or minus indicates whether or not the chi�square homogeneity test for GSDD holds at 95 con�
fidence level.

Table A.2

δless h, % h, µm

Specimen (1) with boundaries
(912 grains measured)

Specimen (1)
(1000 grains measured)

Nfound gr,
ω0 = 5°

Nfound gr,
ω0 = 10°

nbound
Nfound gr,
ω0 = 5°

Nfound gr,
ω0 = 10°

57 2.00 745 (74) 659 (55) 100 741 682

45 1.61 812 (87) 720 (65) 113 795 731

40 1.46 849 (91) 749 (63) 107 824 752

35 1.29 896 (125) 778 (87) 160 849 777

30 1.14 933 (133) 809 (90) 182 883 808

25 1.00 963 (143) 814 (93) 195 898 823

20 0.88 1011 (184) 862 (134) 225 920 842

15 0.75 1059 (210) 886 (139) 255 944 865

10 0.58 1149 (278) 951 (195) 325 957 873

8 0.50 1203 (330) 958 (219) 383 970 890

Table A.3

δless h, %

Specimen (1) Specimen (2)

h, µm δav.size, %
ω0 = 5°

δav.size, %
ω0 = 10°

h, µm δav.size, %
ω0 = 5°

δav.size, %
ω0 = 10°

57 2.00 35.0 (–) 46.5 (–) 4.00 19.0 (+) 29.8 (–)

45 1.61 25.8 (–) 36.8 (+) 3.54 13.2 (+) 24.2 (–)

40 1.46 21.3 (+) 33.0 (+) 3.38 10.4 (–) 20.7 (–)

35 1.29 17.8 (–) 28.7 (+) 3.24 9.0 (+) 18.5 (–)

30 1.14 13.2 (+) 23.7 (–) 3.09 7.6 (+) 18.0 (–)

25 1.00 11.3 (+) 21.5 (+) 3.00 7.0 (+) 16.8 (+)

20 0.88 8.7 (+) 18.7 (+) 2.70 4.0 (–) 14.0 (+)

15 0.75 6.0 (+) 15.6 (+) 2.52 3.3 (+) 13.0 (–)

10 0.58 4.5 (+) 14.5 (+) 2.30 2.5 (+) 12.2 (+)

8 0.50 3.1 (+) 12.3 (+) 2.20 2.2 (–) 11.7 (+)
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Variance of the Grain Size Distribution

• Dx is the variance of the grain sizes in the specimen.

Variance of the Disorientation Angle Distribution between Grains

• Dω is the variance of disorientation angles in the specimen.

Table A.4

δless h, % h, µm

Specimen (1) with boundaries Specimen (1)

δav.size, %
ω0 = 5°

δav.size, %
ω0 = 10°

δav.size, %
ω0 = 5°

δav.size, %
ω0 = 10°

57 2.00 34.2 (+) 51.7 (–) 35.0 (–) 46.5 (–)

45 1.61 23.0 (+) 38.7 (–) 25.8 (–) 36.8 (+)

40 1.46 17.7 (+) 33.4 (–) 21.3 (+) 33.0 (+)

35 1.29 11.5 (+) 28.4 (–) 17.8 (–) 28.7 (+)

30 1.14 7.1 (+) 23.5 (–) 13.2 (+) 23.7 (–)

25 1.00 3.8 (+) 22.8 (–) 11.3 (+) 21.5 (+)

20 0.88 –1.1 (+) 16.0 (–) 8.7 (+) 18.7 (+)

15 0.75 –5.6 (+) 12.8 (–) 6.0 (+) 15.6 (+)

10 0.58 –13.0 (+) 5.1 (–) 4.5 (+) 14.5 (+)

8 0.50 –17.0 (+) 4.4 (–) 3.1 (+) 12.3 (+)

Table A.5. Specimen (1)

Dx = 1.688

h, µm
ω0

20° 10° 5°

2.0 13.484 2.645 1.551

1.0 10.891 2.561 1.657

0.5 9.315 2.587 1.759

Table A.6. Specimen (1) with boundaries

Dx = 1.688

h, µm
ω0

20° 10° 5°

2.0 20.898 3.985 1.712

1.0 15.895 3.370 1.800

0.5 16.932 3.710 2.035
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