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Abstract—A numerical algorithm for computing the runup of a solitary tsunami wave in the case of
complex shoreline topography is proposed. The algorithm involves the construction of coordinate
mappings that transform a uniform rectangular grid over a reference computational domain into a grid
over a physical domain with mesh refinement near the shoreline. The application of such coordinate
mappings makes it possible to substantially reduce the number of grid points and save computation
time. The mathematical model is based on the shallow water equations, and the problem is solved
using the large particle method. An actual example is used to illustrate the computation of a curvilinear
grid and the inundation area configuration.
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1. INTRODUCTION

The Japanese term “tsunami” means a large wave coming onshore. Such waves can be caused by
underwater earthquakes, underwater volcano eruptions, or underwater landslides. Natural hazards of this
type frequently lead to great damage and casualties. In the development of tools for predicting the conse-
quences of such phenomena, a key role is played by the numerical simulation of tsunami generation, prop-
agation, and runup. Below, this problem is addressed within the framework of the shallow water model,
which adequately describes processes of this type. The main goal of the simulation is to determine the area
of inundation caused by a solitary tsunami wave. Problems of this class are concerned with free-surface
wave hydrodynamics, for which fairly efficient numerical methods have been developed. Primarily, these
are finite-difference methods, including those based on fractional step techniques; finite element methods
[1, 2]; nonconservative methods of characteristics [3]; and finite-volume methods [4, 5]. However, in the
case of complex irregular bed topographies typical of actual coastal regions, most of these approaches
become ineffective and special numerical algorithms are required like those proposed in [4] for the case of
a lacking dry bed. Recently, much attention has been given to the design of meshless methods similar to
smoothed particle hydrodynamics (SPH) [6], which is a further development of the particle-in-cell (PIC)
method. In contrast to the PIC method, there is no Euler stage in SPH. As a result, the method becomes
more robust and can be applied to flow computation in complex-shaped domains. On the other hand,
complicated smoothing procedures are required for describing the interaction between particles; as a
result, the method fails to be fully conservative. In [7] an original approach combining a finite-difference
method and SPH was proposed for solving the shallow water equations in reservoirs with complex irregu-
lar bottom topography. In this paper, the runup of a tsunami wave is modeled using the well-known large
particle method [8]. As in SPH, it makes use of particles in the form of elementary water columns, which
are referred to hereafter as large particles. The large particle method is a development of Harlow’s PIC
method. It is widely used to solve evolutionary systems of differential equations associated with continuum
flows and is based on the splitting of the original system of equations into physical processes. The solution
process consists of two stages, Euler and Lagrangian. The Euler stage involves the evolution of flow vari-
ables concerning a cell as a whole, while the fluid is assumed to be instantly frozen. At the Lagrangian
stage, the mass and momentum fluxes through the cell boundaries are determined assuming that they are
caused only by the normal velocity to the boundary. This substantially simplifies the procedure for taking
into account the interaction between particles, simultaneously ensuring sufficiently accurate runup (run-
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down) simulation and rigorously satisfied conservation laws. Note that the number of particles required
for producing SPH solutions in two-dimensional problems with the necessary accuracy is approximately
100000 (see [9]), which is comparable to the number of grid nodes in the large particle method, while the
software implementation of the latter is much simpler and the operations required for computing the
motion of a single large particle are roughly two orders of magnitude fewer than in SPH. Moreover, the
difference scheme based on the given method is well balanced and ensures that the hydrostatic equilibrium
condition holds in still water.

The effectiveness and efficiency of numerical simulation also depend considerably on the introduction
of new coordinate transformations for the generation of numerical grids adaptable to fast variations in
physical characteristics (the velocity of the medium), as well as to the bottom topography and the shore-
line. The adaptation technique (mesh refinement in the required zones) makes it possible to considerably
reduce the number of grid cells, while ensuring acceptable numerical accuracy. The construction of a
coordinate transformation or a numerical grid must be automated to ensure operational predictions of
possible effects of tsunami waves on the coastal zone. In this paper, the tsunami runup problem is solved
by applying a modern technique for constructing coordinate transformations and numerical grids based
on the solution of inverted Beltrami and diffusion equations (see [10]).

2. NUMERICAL METHOD

The shallow water equations are used to compute the runup of a solitary wave in the case of complex
shoreline topography. In a Cartesian coordinate system with the z = 0 plane coinciding with the unper-
turbed water surface, the system of equations describing the motion of such a wave with allowance for
depth-averaged friction is written as

OH , 0Hu , OHv
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where H(x, y, t) and h(x, y) are the water depth and the bottom profile, respectively, measured from the
water surface; u(x, y, f) and v(x, y, r) are the Cartesian coordinates of the velocity vector u(x, y, 1); Cy is
the friction coefficient; and g is the acceleration due to gravity. The coefficient Cy is given by the well-
known formula

= g’:/3 |“|

where n is an empirical coefficient (Chézy coeﬁiment). System (1) was solved in the rectangle D{0 < x< L,
0 < y < L} with the bottom profile specified by bathymetry data. On the upper and lower boundaries, we
used nonreflecting boundary conditions in the wave region, while, in the land region, all liquid parameters
in (1) were set to zero. On the right boundary, we specified a time-varying function H(L,, y, f) taken from
an analysis of an ocean wave approaching the coast.

System (1) was solved numerically by applying the large particle method [8] on an adaptive grid. The
classical PIC method could not be used because the solution it produces has a statistical nature. Such a
solution does not satisfy the hydrostatic equilibrium condition in still water and the resulting wave propa-
gation is considerably distorted. The large particle method is free of this shortcoming and makes it possible
to obtain a balanced difference scheme. The implementation of this method faces a difficulty associated
with choosing a numerical grid. Our experience has shown that uniform rectangular grids might be used,
but very fine grids are required in the entire domain to achieve acceptable accuracy and, hence, the num-
ber of grid nodes is large. Due to the constraint imposed on the time step in explicit difference schemes,
this leads to considerable amounts of CPU time. Since the inundation area is of greatest interest in such
problems, the number of grid nodes can be reduced using mesh refinement only near the shoreline. For
example, block rectangular grids can be constructed. However, since the shoreline (which is a moving line
separating the water and the land) is highly curved, the blocks have a complex irregular structure with
unmatched grids on their boundaries. For this reason, we use adaptive curvilinear grids constructed by
applying a time-dependent coordinate transformation

&(,8),yt,8): B> > D, &=(.&) )
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Fig. 1. Computed curvilinear grid with mesh refinement near the wave edge (left panel) and a fragment of the grid (right
panel).

of the unit square computational domain == {0 &1, Ef <1} to the physical solution domain D{0 < x< L,

0 <y< L}. Under this transformation, the nodes of a uniform rectangular grid in =% are mapped to nodes
of a nonuniform grid in D. The coordinate transformation (2) is defined so that the cells of the resulting
curvilinear grid in the physical domain are fine only near the shoreline. Since the shoreline is strongly
curved (because the water coming onshore flows into troughs and rounds various elevations, which are
present due to the complex land topography), the generation of a grid that is consistent with the shoreline
and but is not distorted too much is a complicated problem. A certain tradeoff making it possible to con-
struct a moving grid is that the shoreline is approximated by a sufficiently smooth curve tracing the evolu-
tion of the actual shoreline “on average.” Below, we use the algorithm from [10] that generates a bound-
ary-inconsistent grid whose cell edges may intersect the shoreline. Figure 1 shows an example of such an
adaptive grid intended for the numerical solution of problem (1); the grid is finer near the shoreline. Ini-
tially, this curvilinear grid was constructed using the initial shoreline, whose position was determined by
the still water condition. As a wave approached the shore, the shoreline position varied; accordingly, a new
curve approximating the new shoreline on average was constructed at every time step and the grid was
updated. In the case of a fixed grid, there was no updating, i.e., a grid was constructed only once.

With the use of coordinate transformation (2), the runup problem can be solved numerically on a uni-

form grid in =’. For this purpose, Egs. (1) are rewritten in curvilinear coordinates 7, £!, and &2 in conser-
vative form with the help of a tensor identity relating the divergence of a vector in Cartesian coordinates 7,
x', ..., X" to that in curvilinear coordinates ¢, ', ..., &
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In the variables 7, £!, and &2, system (1) is written with the help of this tensor identity in the following con-
servative form:
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The components x(7, §) and y(¢, §) of coordinate transformation (2), as the water flow parameters in
system (3), are found at nodes of a uniform rectangular grid in the reference domain =’. No reinterpola-
tion of these parameters in the physical domain D is required.

The large particle method as applied to the solution of Egs. (3) was implemented in two stages. At the
first (Euler) stage, all convective terms were dropped from system (3), which was written as
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At the second (Lagrangian) stage, we solved the advection equations
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Equations (4) and (5) were solved by applying a first-order accurate explicit difference scheme. It was

constructed on a rectangular staggered grid in 52, whose structure is given in Fig. 2. The grid functions H;;

and #;; (circles) were determined at grid nodes. The velocity components u and v are denoted by squares
and triangles, respectively.
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Computations have shown that the numerical solution found on this grid does not exhibit spurious
oscillations on the irregular bottom topography, which took place in the case of nonstaggered nodes. The
difference scheme at the first stage was written as

JH,; = (JH)],,
ﬁm/z,j = {uin+1/2,j —Ar-g[[(H - h);lﬂ,j —(H - h)?,j]/Ail : (yin+1/2,j+1/2 - yin+l/2,j—1/2)/A§2
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At the second stage, advection equations (5) were solved using the upwind difference scheme
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The expressions for computing (JHu)ffl'/l ;and (JH V)fj-l+1 ,, Were written in a similar manner. To ensure
that the hydrostatic equilibrium conditions in still water were satisfied at a difference level, the value of the
Jacobian J in system (5) at a new time level was determined from the differential identity

iui{ﬁ_XQ+@@}+i{[_@&+8_xg}EO
or 08 || oroE, arog,|l o8, || oroE, ot dE,

by applying a difference scheme similar to that described above.

In the case of a moving grid, the shoreline was again approximated by a sufficiently smooth curve as
described above, the grid was updated, and its new coordinates were used to compute the node velocities
Ox/0t and 0y/0t.

At all grid nodes, the stability condition for difference scheme (4), (5) was given by

AtSoc-minﬂ Ax , Ay },

Ul +NgH [V +gH

where 0 < o < 1 is an empirical stability margin coefficient. It was found that o < 0.3 ensured a stable solu-
tion in the case of nonstaggered nodes, while o = 0.5 was sufficient on a staggered grid.

The problem was solved using two grids: fixed in the computational domain =%and moving in the phys-
ical domain D; the latter was obtained with the help of the method described in [10, 11]. As a reference
curve, we used an “averaged” shoreline as described above. The positions of points on the actual shoreline
were determined at every time by analyzing whether neighboring nodes belonged to the land or water
areas. The flow parameters on the shoreline were computed using one-sided differences, since all liquid
parameters in the land area were set to zero.

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  VWl. 55 No. 1 2015



114 KOFANOV et al.

3. CONSTRUCTION OF THE COORDINATE TRANSFORMATIONS

To solve the given problem, we constructed a discrete coordinate transformation (2) that was able to
adapt to the time-varying shoreline. A method for constructing such n-dimensional transformations was
described in detail in [10—13]. Below, we briefly describe it in the two-dimensional case. The two-dimen-
sional nonstationary coordinate transformation

x(1,8): 2 = X, x(1,8) = (x'(1,8),x°(x,8)), &=¢8.¢&,

where x! = x and x?> = y, is found at nodes of a reference grid introduced in the computational domain =’
by numerically solving inverted Beltrami or diffusion equations for a monitor metric (see [12]). More spe-
cifically, for the spherical metric tensor of the monitor metric, the inverted diffusion equations have the
form
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Z(x) is a positive monitor function.

The numerical solution of Egs. (6) on a uniform grid in =’ produces a grid with mesh refinement in
zones of D where Z(x) is small and with mesh coarsening in zones where Z(x) is large (see [10, 11, 13]).
Numerical algorithms for adaptive grid generation based on the solution of these equations can be found
in [11, 13]. Inverted diffusion equations were used for adaptive mesh generation in numerical computa-
tions concerning nanotechnology problems [14], heat transfer in two-phase media [11], and singularly
perturbed diffusion problems with boundary and internal layers [13]. In an alternative approach, Egs. (6)
are replaced by an inverted diffusion functional [15, 16] for which they are the Euler—Lagrange equations.
It was numerically shown in [17] that grids constructed by minimizing the diffusion functional are nearly
orthogonal.

To construct coordinate transformations for generating grids with mesh refinement near the shoreline
points x; (i = 1, ..., N) obtained by numerically solving Egs. (3) at the nth time step, the monitor function
Z(x) was specified as

Z(x) = (p(x))* +&, @(x)= ‘min p(x,x,), a<0, 0<e<L ©)

i=l,..., N

With the use of the inundation line found in the computation, a discrete coordinate transformation was
constructed by solving Egs. (6) for monitor function (7) with oo = 1.7 and € = 0.01. Then Egs. (3) were
used to find a new inundation line, etc.

4. SOME NUMERICAL RESULTS

By applying the method described above, the inundation area in the Tohoku region (Japan, tsunami of
the year 2011) was computed on curvilinear moving and fixed grids, as well as on a uniform rectangular
grid in D by solving system (1). The wave height coming to the coast was set equal to 0.6 m. As was noted
above, the task of primary interest in the tsunami runup problem is the determination of the inundation
area, i.e., the limiting shoreline, which separates the water and the land maximally far away from the initial
shoreline in the course of runup. Figure 3 shows the numerical results obtained on fixed and moving cur-
vilinear 300 x 225 grids with in the (&,, &,) plane. (In the former case, we set 0x/0t = 0y/0t = 0 in system (3).)
The numerical results obtained on a uniform rectangular 1500 x 1200 grid in the plane (OX, OY) are
depicted in Fig. 4. It can be seen that the limiting shoreline positions computed on the moving and fixed
grids nearly coincide (the maximum difference in the shoreline positions is within 25 m).

Evidently, the inundation areas found on the curvilinear and rectangular grids differ little. The differ-
ence is caused primarily by the complex structure of the land topography, which was more accurately
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reproduced on the fine rectangular grid. It was found that the basic advantage of a moving grid is that the
corresponding dynamics of the shoreline in the course of runup and rundown is computed much more
accurately than on the fixed grid. However, the former case leads to a substantial increase in CPU time,
because a moving grid has to be updated at every time step. Therefore, when the initial shoreline is not very
jagged, the inundation area can be estimated using a fixed curvilinear grid, which has a rather small num-
ber of nodes, while ensuring acceptable numerical accuracy. Since the CPU time on a fixed curvilinear
grid is roughly 1/40 times as much as that on a fine rectangular grid, curvilinear grids can be used in oper-
ational systems for estimating possible tsunami runup. The accuracy of the numerical solution was esti-
mated by applying the conventional approach, i.e., computations on a sequence of refined meshes. As a
result, the accuracy of the inundation area computed on the curvilinear (300 x 225) grid was estimated as
roughly 5%.
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