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In some real�world problems, the task is to construct an approximation to a function from its values at
grid nodes and/or the values of its integrals over grid intervals. Polynomial integrodifferential splines were
proposed in [1, 2] for solving such problems.

In this paper, we assume that the values of derivatives of a function at grid nodes and the values of its
integrals over grid intervals are known. Under these assumptions, the original function is approximated by
discontinuous polynomial and trigonometric splines, which are then used to construct a continuously dif�
ferentiable approximation to the original function.

Nonpolynomial integrodifferential splines were addressed in [3].
Following the definitions given in [2], spline fragments defined on a grid interval are referred to as links.

1. Let us construct discontinuous approximations. Consider a function U ∈ C3[a, b]. On the interval
[a, b], we introduce a nonuniform grid of distinct nodes arranged in increasing order with the variable step
hk = xk + 1 – xk:

Assume that the values of the derivative U'(xk) at the nodes xk of Ω are given and the values of the inte�

grals  (k = 0, 1, …, n – 1) are known. The task is to construct a function , x ∈ [a, b), com�

posed of links of the form

(1)

that satisfies the differential and integral compatibility conditions

and to estimate the approximation error.

Basis functions ωk, 1(x), ωk + 1, 1(x), , x ∈ [xk, xk + 1), are found using the following conditions:

Case 1. U(x) –  = 0 if U(x) = 1, x, x2.

Ω : a x0 x1 … xk xk 1+ … xn< < < < < < b.= =

U t( ) td
xk

xk 1+

∫ Ũ x( )

Ũk x( ) U ' xk( )ωk 1, x( ) U ' xk 1+( )ωk 1+ 1, x( ) U t( ) td

xk

xk 1+

∫⎝ ⎠
⎜ ⎟
⎛ ⎞

ωk
1〈 〉 x( ), x xk xk 1+ ),,[∈+ +=

Ũk' xk( ) U ' xk( ), Ũk' xk 1+( ) U ' xk 1+( ), Ũk t( ) td

xk

xk 1+

∫ U x( ) x, kd

xk

xk 1+

∫ 0 1 … n 1,–, , ,= = = =

ωk
1〈 〉 x( )

Ũk x( )
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Case 2. U(x) –  = 0 if U(x) = 1, sin(x), cos(x).

Let us write the system of equations for Case 2. On the interval [xk, xk + 1) the basis splines , j = k,

k + 1, , are found from the approximation relations

(2)

In Case 1, solving the system of equations and making the substitution x = xk + thk, t ∈ [0, 1), x ∈
[xk, xk + 1), after some simple algebra, we obtain the basis functions

(3)

 (4)

while, in the trigonometric case, we derive the relations

, (5)

(6)

Note that, in the case of splines (5) and (6), the step size hk must be chosen so that 0 < hk < π.

Performing similar calculations on the neighboring interval [xk – 1, xk) and combining the results yields
the following formulas for the basis splines. On a uniform grid of nodes with h = hk, we have the polyno�
mial and trigonometric “original” splines

and

respectively (the term “original spline” was introduced in [4]), ωk, 1(x) = , and  =

.

Ũk x( )

ω̃j x( )

ω̃k
1〈 〉 x( )

hkω̃k
1〈 〉 x( ) 1,=

xk( )ω̃k 1, x( ) xk 1+( )ω̃k 1+ 1, x( ) sin t( ) td

xk

xk 1+

∫⎝ ⎠
⎜ ⎟
⎛ ⎞

ω̃k
1〈 〉 x( )+cos+cos sin x( ),=

xk( )ω̃k 1, x( ) xk 1+( )ω̃k 1+ 1, x( ) cos t( ) td

xk

xk 1+

∫⎝ ⎠
⎜ ⎟
⎛ ⎞

ω̃k
1〈 〉 x( )+sin–sin cos x( ).=–

ωk 1, xk thk+( )
hk

2
���� t2 2t– 2

3
��+⎝ ⎠

⎛ ⎞ , ωk 1+ 1, xk thk+( )–
hk

2
���� t2 1

3
��–⎝ ⎠

⎛ ⎞ ,= =

ωk
1〈 〉 xk thk+( ) 1

hk

����,=

ω̃k 1, xk thk+( ) 1
Δ
��� hk( )sin hk hk thk–( )cos–( ), Δ hk hk( )sin–= =

ω̃k 1+ 1, xk thk+( ) 1
Δ
��� – hk( )sin hk thk( )cos+( ), ω̃k

1〈 〉 xk thk+( ) 1
hk

����.= =

ω1 t( )

h
2
�� t2 2t– 2

3
��+⎝ ⎠

⎛ ⎞ , t 0 1 ),,[∈–

1
2
��ht2 1

3
��h th, t 1 0 ),,–[∈+ +
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⎪
⎪
⎨
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⎛ ⎞
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It is easy to see that the polynomial and trigonometric basis functions are discontinuous, although their
first derivatives are continuous. The trigonometric and polynomial basis splines are related by the formula

(t) = ω1(t) + O(h3).

Figure 1 presents the graphs of ω1(t) and (t) for h = 1. It is well known that, on a uniform grid of
nodes constructed on the interval [–1, 1], a sequence of interpolating polynomials of increasing degrees
does not converge to the Runge function, but convergence occurs in the case of spline approximation on
refined grids (see [5, 7]). The Runge function 1/(1 + 25x2) and its approximation by polynomial integrod�
ifferential splines on the interval [–1, 1) for n = 10 and n = 50 are plotted in Figs. 2a and 3a, respectively.
The respective approximation errors are shown in Figs. 2b and 3b.

Let
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Fig. 1. Plots of the (a) polynomial ω1(t) and (b) trigonometric (t) splines.ω̃1
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Fig. 2. (a) Runge function and its approximation by polynomial splines with n = 10 and (b) the approximation error.
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Fig. 3. (a) Runge function and its approximation by polynomial splines with n = 50 and (b) the approximation error.
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The following is easy to prove.

Theorem 1. Let U ∈ C3[xk, xk + 1]. For x ∈ [xk, xk + 1), consider the expressions

where , , and  are discontinuous trigonometric or polynomial basis splines. Then the
approximation error satisfies the estimate

where LU has the following the form:
(i) LU = U ''' in the case of polynomial basis splines;
(ii) LU = U ''' + U ' in the case of trigonometric basis splines.
Proof. The functions U(x) and U '(xk + 1) are represented as Taylor series expansions about the point

x = xk. Since |ωk, 1(x)| ≤ hk/3 and |ωk + 1, 1(x)| ≤ hk/3, in the polynomial case, we have K ≤ 3/8.

In the trigonometric case, the error is found by applying the method proposed in [3]. For x ∈ [xk, xk + 1)
the function U(x) is represented as

where ci (i = 1, 2, 3) are arbitrary constants.

Taking into account approximation relations (2) and the inequality sin(h) < h for 0 < h < π/2, in the
trigonometric case, we obtain K ≤ 1/3.

Tables 1 and 2 give the actual and theoretical error estimates for the function U(x), x ∈ [–1, 1), approx�

imated by the polynomial and trigonometric splines with n = 10 and n = 100, respectively. Here,  =

 and  = , where  and  are the approximations

obtained with the help of polynomial and trigonometric splines, respectively, with Digits = 15 in Maple,
while Rp and Rt are the theoretical errors in the case of polynomial and trigonometric spline approximation.

Ũk x( ) U ' xk( )ω̂k 1, x( ) U ' xk 1+( )ω̂k 1+ 1, x( ) U t( ) td

xk

xk 1+

∫⎝ ⎠
⎜ ⎟
⎛ ⎞

ω̂k
1〈 〉 x( ),+ +=

ω̂k 1, x( ) ω̂k 1+ 1, x( ) ω̂k
1〈 〉 x( )

Ũk x( ) U x( )– xk xk 1+ ),[ hk
3K LU C xk xk 1+ ),[

, K 0,>≤

U x( ) 2 U ' t( ) U ''' t( )+( )sin
2x t–

2
�������� td

xk

x

∫ c1 c2 x( ) c3 x( ),cos+sin+ +=

R̃
p

Ũ
p

x( ) U x( )–
1 1 ),–[

sup R̃
t

Ũ
t

x( ) U x( )–
1 1 ),–[

sup Ũ
p

x( ) Ũ
t

x( )

Table 1

№ U(x) Rp Rt

1 sin(3x)cos(5x) 0.52 × 10–1 0.95 × 10–1 0.52 × 10–1 0.83 × 10–1

2 0.11 × 10–1 0.21 × 10–1 0.12 × 10–1 0.20 × 10–1

3 cos(2x) 0.26 × 10–2 0.30 × 10–2 0.19 × 10–2 0.20 × 10–2

4 1/(1 + 25cos(x)) 0.34 × 10–3 0.64 × 10–3 0.36 × 10–3 0.61 × 10–3

5 0.11 × 10–2 0.18 × 10–2 0.98 × 10–3 0.15 × 10–2

6 1/(1 + 25x2) 0.45 × 10–3 0.22 0.49 × 10–3 0.20

7 sin(x) 0.21 × 10–3 0.38 × 10–3 0.15 × 10–13 0

8 x2 0.20 × 10–14 0 0.61 × 10–3 0.67 × 10–3

9 0.10 × 10–3 0.19 × 10–3 0.8 × 10–14 0

10 sin(x) + cos(x) 0.47 × 10–3 0.53 × 10–3 0.49 × 10–13 0

11 sin(x/2) + cos(x/2) 0.10 × 10–3 0.19 × 10–3 0.8 × 10–14 0

R̃
p

R̃
t

x( )tan

5x( )cos
1 25 x( )cos+( )

������������������������������

x/2( )tan

1 x/2( )tan
2

+
���������������������������
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The results in the tables suggest that the theoretical and actual error estimates are in agreement and, in
some cases, the trigonometric splines are preferable to the polynomial ones.

2. Consider the construction of a continuously differentiable polynomial and trigonometric function ,
x ∈ [a, b), for hk = h. Let Ck be real numbers.

Assume that the values of U ' are known at the points x0 and xn. Let F 〈k〉 = .

2.1. Consider expressions with polynomial basis functions:

We have (xk) = (xk).

We find coefficients Ck such that

In the case of polynomial basis functions, this yields the system of equations

(7)

where

Since the matrix of the system of equations is diagonally dominant, the system has a unique solution,
which can be found, for example, by applying the tridiagonal matrix algorithm (see [8]).

Next, an approximation is constructed using the formulas

We introduce a function  alternatively defined as  = , x ∈ [xk, xk + 1), k = 0, 1, …, n – 1.

By construction,  is a continuously differentiable piecewise polynomial function on [a, b).

2.2. In the case of trigonometric basis functions, the system of equations becomes

(8)

Ũ
˜

x( )

U t( ) td
xk

xk 1+

∫

Ũ
˜

k x( ) Ckωk 1, x( ) Ck 1+ ωk 1+ 1, x( ) F k〈 〉ωk
1〈 〉

, x xk xk 1+ ),,[∈+ +=

Ũ
˜

k 1– x( ) Ck 1– ωk 1– 1, x( ) Ckωk 1, x( ) F k 1–〈 〉ωk 1–
1〈 〉

, x xk 1– xk ).,[∈+ +=

Ũ
˜

k 1–' Ũ
˜

k'

Ũ
˜

k 1– xk–( ) Ũ
˜

k xk+( ), k 1 2 … n 1.–, , ,= =

h
6
��Ck 1–

2h
3

�����Ck– h
6
��Ck 1+–– fk, k 1 … n 1,–, ,= =

C0 U ' x0( ), Cn U ' xn( ),= =

fk F k 1–〈 〉 F k〈 〉–( )/h, k 2 …n 2,–,= =

f1 F 0〈 〉 F 1〈 〉–( )/h hU' x0( )/6+ ,=

fn 1– F n 2–〈 〉 F n 1–〈 〉–( )/h hU ' xn( )/6+ .=

Ũ
˜

k x( ) Ckωk 1, x( ) Ck 1+ ωk 1+ 1, x( ) F k〈 〉ωk
1〈 〉

, x xk xk 1+ ), k,[∈+ + 0 1 … n 1.–, , ,= =

Ũ
˜

x( ) Ũ
˜

x( ) Ũ
˜

k x( )

Ũ
˜

AkCk 1– BkCk AkCk 1++ + fk, k 1 … n 1,–, ,= =

Table 2

№ U(x) Rp Rt

1 sin(3x)cos(5x) 0.84 × 10–4 0.95 × 10–4 0.82 × 10–4 0.83 × 10–4

2 0.18 × 10–4 0.21 × 10–4 0.188 × 10–4 0.200 × 10–4

3 cos(2x) 0.27 × 10–5 0.30 × 10–5 0.199994 × 10–5 0.2000000 × 10–5

4 1/(1 + 25cos(x)) 0.54 × 10–6 0.64 × 10–6 0.57 × 10–6 0.61 × 10–6

5 0.16 × 10–5 0.18 × 10–5 0.14 × 10–5 0.15 × 10–5

6 1/(1 + 25x2) 0.68 × 10–6 0.22 × 10–3 0.72 × 10–6 0.20 × 10–3

R̃
p

R̃
t

x( )tan

5x( )cos
1 25 x( )cos+( )

������������������������������
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where

Note that

Example 1. Suppose that a uniform grid of nodes with n = 10 has been constructed on [–1, 1]. We want
to approximate the Runge function. Solving the system of equations for Ck yields an approximation to this
function:

where , ωk, 1(x), and ωk + 1, 1(x) are polynomial basis functions.

Figures 4 and 5 show the Runge function U(x) = 1/(1 + 25x2), its continuously differentiable polyno�

mial approximation , and the error  – U(x) for n = 10 and 50, respectively (the computations
with polynomial splines were performed in Maple with Digits = 10).

Bk 2 h( )sin h h( )cos+–
h h( )sin

�������������������������������������, Ak
h( )sin h–

h h( )sin
��������������������,= =

fk F k 1–〈 〉 F k〈 〉–( )/h, k 2 … n 2,–, ,= =

f1
F 0〈 〉 F 1〈 〉–

h
�������������������� U ' x0( ) h( )sin h–

h h( )sin
��������������������,–=

fn 1–
F n 2–〈 〉 F n 1–〈 〉–

h
����������������������������� U ' xn( ) h( )sin h–

h h( )sin
�������������������� .–=

Bk
2h
3

����� O h3( ), Ak+– h
6
�� O h3( ).+–= =

Ũ
˜

k x( ) Ckωk 1, x( ) Ck 1+ ωk 1+ 1, x( ) F k〈 〉ωk
1〈 〉

, x xk xk 1+ ), k,[∈+ + 0 1 … n 1,–, , ,= =

ωk
1〈 〉

Ũ
˜

x( ) Ũ
˜

x( )
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Fig. 4. (a) Runge function and its continuously differentiable polynomial approximation with n = 10 and (b) the approx�
imation error on [–1, 1).
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Fig. 5. (a) Runge function and its continuously differentiable polynomial approximation with n = 50 and (b) the approx�
imation error on [–1, 1).
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In the case of trigonometric basis splines, after computing Ck, a continuously differentiable spline was
constructed using the formulas

where , , and  are trigonometric basis splines (the computations were performed
in Maple with Digits = 20).

Figures 6 and 7 present the approximations to the Runge function by continuously differentiable trig�
onometric splines and the approximation error for n = 10 and n = 50, respectively.

3. Let us estimate the errors of the continuously differentiable polynomial splines. Let M denote the
(n – 1) × (n – 1) matrix of system (7), and let Δn – 1 = det(M).

System (7) is brought to the form

(9)

where

After changing to the unknowns Si = Ci – U'(xi), system (9) is written as

(10)

Ũ
˜

k x( ) Ckω̃k 1, x( ) Ck 1+ ω̃k 1+ 1, x( ) F k〈 〉 ω̃k
1〈 〉 x( ), x xk xk 1+ ), k,[∈+ + 0 1 … n 1,–, , ,= =

ω̃k 1, x( ) ω̃k 1+ 1, x( ) ω̃k
1〈 〉 x( )

Ck 1– 4Ck Ck 1++ + f̃ k, k 1 … n 1,–, ,= =

C0 U ' x0( ), Cn U ' xn( ), f̃ k 6 F k〈 〉 F k 1–〈 〉–( )/h2
, k 2 … n 2,–, ,= = = =

f̃ 1 6 F 1〈 〉 F 0〈 〉–( )/h2 U ' x0'( )–= , f̃ n 1– 6 F n 1–〈 〉 F n 2–〈 〉–( )/h2 U ' xn( ).–=

S0 0,=

Si 1– 4Si Si 1++ + Qi,=

Qi 6 F i〈 〉 F i 1–〈 〉–( )/h2 U ' xi 1–( ) 4U ' xi( ) U ' xi 1+( )– , i–– 1 … n 1,–, ,= =

Sn 0.=
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Fig. 6. (a) Continuously differentiable approximation of the Runge function by trigonometric splines with n = 10 and
(b) the approximation error.
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Fig. 7. (a) Continuously differentiable approximation of the Runge function by trigonometric splines with n = 50 and
(b) the approximation error.
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Lemma 1. The coefficients Ci determined by (9) satisfy the relation |Ci – U '(xi)| ≤ q, where q =
Kh2  with K > 0.

Proof. As is well known (see [5]),

Representing U(t), U '(xi – 1), and U '(xi + 1) in expression (10) for Qi as Taylor series expansions about the
point xi and combining like terms, we obtain

where ς, ζ ∈ [xi, xi + 1], τ, ξ ∈ [xi – 1, xi].

From this, |Qi| ≤ Kh2 , where K = . Set q = . Thus, the lemma is proved for K ≤ .

Let 

 = , and  be the number of combinations of n elements taken k at a time.

For convenience, we introduce m = n – 1.

The determinant  of the system of equations is easy to calculate.

Lemma 2. The following assertions hold:

1. Δm = 4m – 4m – 2 + 4m – 4 + … .

2. cond( ) ≤ 3.

Proof. 1. Decomposing  in terms of the elements of the first row yields the relation 

Next, the required relation is derived in a similar manner to solving Problem 221 in [6].

2. By applying Gershgorin’s theorem, it is easy to see that cond( ) ≤ 3.

Theorem 2. Let U ∈ C3[a, b] and  be a continuously differentiable approximation constructed with the
help of polynomial basis splines. Then

(11)

where K0 ≤ 15/8.

Proof. We have

In view of Theorem 1 and Lemma 1,

which yields inequality (11) with K0 ≤ 15/8.

U ''' x0 xn,[ ]

Si Qk
k

max .≤

Qi
6h2

4!
������ U ''' ζ( ) U ''' ξ( )–( ) h2

2
����U ''' τ( )– h2

2
����U ''' ς( ),–=

U ''' xi 1– xi 1+,[ ]
3
2
�� Qi

i
max 3

2
��

M̃

4 1 0 … 0 0

1 4 1 … 0 0

0 1 4 … 0 0

… … … … … …
0 0 0 0 1 4⎝ ⎠

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

,=

Δ̃n 1– det M̃( ) Cn
k

Δ̃n 1–

Cm 1–
1 Cm 2–

2

M̃

Δ̃m

Δ̃m 4Δ̃m 1– Δ̃m 2– .–=

M̃

Ũ
˜

Ũ
˜

U– a b ),[ K0h3 U ''' a b ),[ ,≤

Ũ
˜

k x( ) U x( )– Ckωk 1, x( ) Ck 1+ ωk 1+ 1, x( ) F k〈 〉ωk
1〈 〉 x( ) U x( )– , x xk xk 1+ ).,[∈+ +=

Ũ
˜

x( ) U x( )– Uk' ωk 1, x( ) Uk 1+' ωk 1+ 1, x( ) F k〈 〉ωk
1〈 〉 x( ) U x( )–+ +≤

+ Ck Uk'–( )ωk 1, x( ) Ck 1+ Uk 1+'–( )ωk 1+ 1, x( )+ 3/8 3/2+( )h3 U '''
xk 1– kk 1+,[ ]

max , x xk xk 1+ ),,[∈≤
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4. Let us estimate the errors for continuously differentiable trigonometric splines. System (8) is
reduced to the form

(12)

where

Note that  = 4 + O(h2) and, for 0 < h ≤ 1, we have

(13)

while  = 1 + O(h2) and, for 0 < h ≤ 1,

(14)

We have  – 2|Ak| ≥ 2 + 0.46h2 for 0 < h ≤ 1.

The following result is easy to prove by analogy with Theorem 2.
Lemma 3. For Ck satisfying system (12), it is true that

(15)

where  = Kh2  with K > 0.

Proof. Passing to the unknown  = Ci – U '(xi) in (12) gives

(16)

Applying the relation

(17)

where x ∈ [xk, xk + 1] and c1,c2, and c3 are arbitrary constants, we obtain

(18)

(19)

(20)

ÃkCk 1– B̃kCk ÃkCk 1++ + f̃ k, k 1 … n 1,–, ,= =

B̃k 12 h( ) h h( )cos–sin

h2 h( )sin
����������������������������������, Ãk 6 h( )sin h+–

h2 h( )sin
�����������������������,= =

f̃ k 6 F k 1–〈 〉 F k〈 〉–( )/h2
, k 2 … n 2,–, ,= =

f̃ 1 6F 0〈 〉 F 1〈 〉–

h2
�������������������� 6U ' x0( ) h( )sin h–

h2 h( )sin
��������������������,–=

f̃ n 1– 6F n 2–〈 〉 F n 1–〈 〉–

h2
����������������������������� 6U ' xn( ) h( )sin h–

h2 h( )sin
�������������������� .–=

B̃k

B̃k 4.3,≤

Ãk

Ãk 1.15.≤

B̃k

Ck U ' xk( )– q̃,≤

q̃ U ' U '''+ x0 xn,[ ]

S̃i

S̃0 0,=

ÃiS̃i 1– B̃iS̃i ÃiS̃i 1++ + Q̃i,=

Qi 6 F i〈 〉 F i 1–〈 〉–( )/h2 ÃiU ' xi 1–( ) B̃iU ' xi( ) ÃiU ' xi 1+( )– , i–– 1 … n 1,–, ,= =

S̃n 0.=

U x( ) 1
2
�� U ' t( ) U ''' t( )+( ) x t–

2
��������sin⎝ ⎠

⎛ ⎞
2

td

xk

x

∫ c1 c2 x( ) c3 x( ),cos+sin+ +=

U ' xk 1–( ) 1
4
�� U ' t( ) U ''' t( )+( ) xk 1– t–( )sin td

xk

xk 1–

∫ c2 xk 1–( ) c3 xk 1–( )sin ,–cos+=

U ' xk 1+( ) 1
4
�� U ' t( ) U ''' t( )+( ) xk 1+ t–( )sin td

xk

xk 1+

∫ c2 xk 1+( ) c3 xk 1+( )sin ,–cos+=

U ' xk( ) 0.=
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Applying the mean�value theorem and using approximating relations (2) and formulas (17)–(20), for 
(see (16)) we have

Setting  =  yields inequality (15) with K ≤ 0.75. The lemma is proved.

Theorem 3. Let U ∈ C3[a, b] and  be a continuously differentiable approximation constructed with the
help of trigonometric splines. Then, for h ≤ 1,

(21)

where K0 ≤ 1.1.

Proof. Applying Theorem 1 and Lemma 3, by analogy with Theorem 2, we obtain (21) with a constant
K0 ≤ 1.1.

5. For the function U(x), x ∈ [–1, 1), Tables 3 and 4 present the quantities

and for n = 10, n = 100,

Q̃i

Q̃i 0.75 U ' U '''– h2
.

x0 xn,[ ]

max≤

q̃ maxi Q̃i

Ũ
˜

Ũ
˜

U– a b ),[ K0h3 U ''' U '+ a b,[ ],≤

U x( ) Ũ
˜ p

x( )–
1 1 ),–[

sup U x( ) Ũ
˜ t

x( )– ,
1 1 ),–[

sup

Table 3

№ U(x) Rp Rt

1 sin(3x)cos(5x) 0.25 × 10–1 0.25 × 10–1 0.47 0.27

2 0.75 × 10–2 0.74 × 10–2 0.11 0.66 × 10–1

3 cos(2x) 0.15 × 10–2 0.10 × 10–2 0.15 × 10–1 0.66 × 10–2

4 1/(1 + 25cos(x)) 0.23 × 10–3 0.23 × 10–3 0.32 × 10–2 0.20 × 10–2

5 0.74 × 10–3 0.69 × 10–3 0.90 × 10–2 0.49 × 10–2

6 1/(1 + 25x2) 0.10 0.10 1.09 0.64

7 sin(x) 0.11 × 10–3 0.22 × 10–18 0.19 × 10–2 0

8 x2 0.20 × 10–19 0.37 × 10–3 0 0.22 × 10–2

9 0.11 × 10–3 0.17 × 10–18 0.94 × 10–3 0

U U
p–

[–1, 1)
sup

�
U U

t–
[–1, 1)
sup

�

x( )tan

5x( )cos
1 25 x( )cos+( )

������������������������������

x/2( )tan

1 x/2( )tan
2

+
���������������������������

Table 4

№ U(x) Rp Rt

1 sin(3x)cos(5x) 0.17 × 10–4 0.16 × 10–4 0.47 × 10–3 0.27 × 10–3

2 0.98 × 10–5 0.10 × 10–4 0.11 × 10–3 0.66 × 10–4

3 cos(2x) 0.13 × 10–5 0.98 × 10–6 0.15 × 10–4 0.66 × 10–5

4 1/(1 + 25cos(x)) 0.32 × 10–6 0.31 × 10–6 0.32 × 10–5 0.20 × 10–5

5 0.91 × 10–6 0.31 × 10–6 0.90 × 10–5 0.49 × 10–5

6 1/(1 + 25x2) 0.38 × 10–4 0.38 × 10–4 0.11 × 10–2 0.64 × 10–3

U U
p–

[–1, 1)
sup

�
U U

t–
[–1, 1)
sup

�

x( )tan

5x( )cos
1 25 x( )cos+( )

������������������������������
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where  is the approximation obtained with the help of polynomial splines and  is the approx�
imation obtained with the help of trigonometric splines in Maple with Digits = 20. The last two columns
give the theoretical errors Rp and Rt in the case of polynomial and trigonometric splines, respectively.

Conclusions. For small n, the approximation errors in the case of polynomial and trigonometric splines
can differ. In some cases, the trigonometric splines are superior as applied to the approximation of trigo�
nometric functions. For weakly oscillating functions, the trigonometric splines are not advantageous. For
sufficiently large n, these differences become insignificant. The theoretical error estimates agree with the
actual ones.

6. In [9] an approximating function describing an experimental distribution law was found with the
help of Chebyshev–Hermite polynomials. The stability of the solution to the system of equations was
improved by applying regularization.

Let us solve the same problem with the help of the polynomial splines proposed above. The integrals
F 〈k〉 are approximately evaluated using the trapezoidal rule and the first derivatives are replaced by the val�
ues of the function at grid nodes with an O(h3) error (see [10]).

It was noted in [11] that, in practice, the probability approach as applied to measurement error estima�
tion assumes primarily that an analytical model is known for the error distribution law and that distribu�
tions encountered in metrology are fairly diverse. Additionally, it was noted that, according to a certain
study, nearly half of the distributions were exponential, one�fifth consisted of various bimodal distribu�
tions, and the others were flattened.

Suppose that the bimodal distribution density
f = ( f1 + f2)/2, 

where

 

is approximated by the polynomial splines on the interval [–3, 2]. Figure 8 shows the histogram, the den�

sity, and its approximation constructed in Maple with Digits = 5. Note that |f – | ≤ 0.24 × 10–2 for h = 0.2,

while | f – | ≤ 0.12 × 10–1 for h = 0.4.

Ũ
˜ p

x( ) Ũ
˜ t

x( )

fi
1

2πσi

�������������e
x αi–( )

2– / 2σi
2

( )
, i 1 2, σ1, 0.5, σ2 0.8, α1 0.8, α2– 1,= = = = = =

f̃
˜ p

f̃
˜ p

0.4

0.3

0.2

0.1

−2 −1 1 2 3
x

0.4

0.3

0.2

0.1

−2 −1 1 2 3
x

(a) (b)

Fig. 8. (a) n = 12 and (b) n = 24.

0.8

0.6

0.4

0.2

−2 −1 1 2 x0

0.8

0.6

0.4

0.2

−2 −1 1 2 x0

(a) (b)

Fig. 9. (a) n = 8 and (b) n = 16.
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Let

Figure 9 depicts the histogram, the density f3, and its polynomial approximation on [–2, 2] constructed
in Maple with Digits = 5.

Figure 10 shows the exponential distribution density f4 and its polynomial approximation on [0, 2] con�
structed in Maple with Digits = 5.
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Fig. 10. (a) h = 0.5 and (b) h = 0.25.


