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The paper presents an analytical solution for helical vortices with a Gaussian vorticity distribution in the core, 
which is confirmed by experimental and numerical simulations. This result is obtained by extending the Dyson method 
to the Biot–Savart law. Previously, analytical solutions were found and studied only for vortices with constant vorticity 
distribution in the core (a Rankine-type vortex core). One of the important issues raised during the discussion is 
the difference between self-induced movements of helical structures with both types of vortex core. The proposed 
solutions are important for the fundamental understanding and description of the behavior of helical eddy flows in 
various fields of industry and in nature. Examples include tip vortices behind the rotors of wind or hydro turbines, 
tornadoes, or axial vortices in aerodynamic devices such as vortex apparatuses and generators; cyclone separators, 
combustion chambers, etc. 
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Introduction  
The dynamics of helical vortices is of fundamental importance for many energy applica-

tions, since these vortices enhance heat and mass transfer, affect the performance of rotary ma-
chines, and, conversely, their immovable, stationary position provides stable operating modes 
in vortex devices [1]. In recent years, the modeling of helical vortices has received a new impe-
tus due to the study of vortex interactions in the wakes of turbines located one after the other 
in wind farms and hydroelectric power plants [2, 3]. For all these applications, it is necessary 
to correctly predict a helical structure, describe its movement, and correctly model a helical 
vortex. Regular experimental study of the shape and internal structure of a helical vortex was 
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started by Professor Sergey V. Alekseenko and Sergey I. Shtork at the end of the last century. 
They published interesting data in article [4], including a description of the structure in 
the form of a Gaussian shape of the vortex core. 

Earlier works on mathematical modeling of helical vortices considered a special case of 
a vortex core only with a constant vorticity distribution (Rankine type). The author of [5] nu-
merically found a correlation between the velocity field induced by a helical vortex with such 
a finite core, and that induced by an infinitely thin helical vortex line. He combined the solu-
tion for the helical vortex line with the generalized method of approximating the Biot–Savart 
equations given in [6]. An additional correction term using a special W-integral after separat-
ing out singularities in the solution for the line was later recorded and analytically confirmed 
in [7]. The special method of [5] used velocities induced by a helical line at finite distances 
from its axis calculated with infinite series of Kapteyn type [8–10], to compare it with the val-
ue obtained by another method of approximating the helical vortex in contact with a vortex 
ring with a similar Rankine-type vortex core. Further, approach [5] was improved by two ways 
of separating the singularity in the Kapteyn series [7, 11, 12], but only for the case of uniform 
vorticity distribution in the core. However, the basic experiment [1] and a few recent experi-
mental studies [13, 14] and numerical calculations [15, 16] unambiguously predict only 
the Gaussian vorticity distribution in the helix core. Due to the complexity of equations gov-
erning the induced motion of helical vortices, it has not yet been possible to obtain a solution 
describing motion with a Gaussian core. This result can be achieved by generalizing the Dyson 
decomposition for the Biot–Savart law, which induces a velocity field for helical vortices with 
any vorticity distribution in the final core, which is replaced on the helical axis by a sum of 
singularities of different degrees: a monopole, a dipole, etc. An approximation of the induced 
velocity for both helical vortices with Rankine and Gauss vorticity distributions in the final 
core was proposed by the authors of [17, 18] with some restriction on these approximations 
from the monopole and dipole. It should be noted that both solutions in [17, 18] were not used 
to estimate the self-induced motion of a helical vortex, but they will be presented below in this 
article. A significant result was obtained when comparing data calculated using the scheme 
of [5] and a new algorithm based on solutions of [17] for the Rankine core in order to establish 
their correlation, and the next result should be the determination of the self-induced motion 
of a helical vortex with a Gaussian vortex core. 

This article is organized as follows. Sections 1 and 2 recall the approximation for 
Kapteyn series with the addition of some terms and describe the velocity field induced by 
the monopole and dipole helical lines corrected by new terms in both approximations. Section 3 
describes the Dyson method. In sections 4 and 5, the ideal correlation of two solutions for 
a helical vortex with a finite Rankine-type core is discussed, and the self-induction motion for 
a vortex with a Gaussian core is verified by solving the Navier–Stokes equations proposed 
in the study [16]. Section 6 is the Conclusion. 

1. Approximation of Kapteyn series  

The Kapteyn series included in the Kawada–Hardin solution are used as the basis for de-
termining the movement of monopole and dipole helical lines [8–10]. These series can be 
written as [11] 

( ) ( ) ( )
=1

, , = ,JI J M im
m mMH a b m I ma mb χχ

∞
⋅∑, I

m
K e                                 (1) 

where ( )0
mI ma  and ( )0

mK mb  are the modified Bessel functions and their corresponding 
derivatives. In [11], an exact analytical approximation of the Kapteyn series (1), including five 
main terms and a small remainder that can be ignored, was derived. To solve this problem, 
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we recall such efficient procedure for calculating Kapteyn series for a monopole line [12] 
in order to generalize it to the case of a dipole: 
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The matrix components ,I JB that are used to calculate the velocity field over the entire space 
are defined as 
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The functions included in the definitions of , , ,, , ,I J I J I Jα β γ are polynomials in 
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Obtaining accurate results for calculating flows using a series (1) in the azimuthal direc-
tion comes amid errors due to the approximation of an infinite series by a finite set of harmo-
nics. In this paper, to correctly model the velocity field, we use the approximation (2), in which 
the residual term (3) is small, and it can be ignored in formula (2) based on the data in Table 1 
and Fig. 5 from [11]. 

2. The velocity field induced by monopole and dipole helical lines  

Let us start by defining the geometry of a helical line of radius R in accordance with 
Fig. 1a from article [19]. Helical pitch L = 2πl is defined as the displacement along the axis 
at one revolution of a helix, and the helical angle is determined by the ratio tan 2L Rφ π= with 
the corresponding torsion of the helix .l Rτ =  In addition, the absolute velocity U induced 
by a helical vortex with a finite core radius ε = σR is determined either through binormal Ub 
and tangential Ut components, or through the axial Uz and azimuthal Uθ velocity projections. 
In the context of these same components of the total velocity U, the components of velocities 
induced by the monopole or dipole distributing along helical lines will be defined, but using 
the symbols u and v, respectively. 

In cylindrical coordinates (r, θ, z), according to the Kawada–Hardin solution [8–10], 
the axial uz and azimuthal uθ components of velocity induced by a monopole helical line out-
side the singular core have the form 
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where χ = θ – z/l, the upper expression in curly brackets corresponds to the case r < R, and 
the lower expression corresponds to r > R. 

The first representation of the velocity field induced by a dipole helical line was obtained 
using an exact analytical approximation through Kapteyn series in [17, 18]: 
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where d is the intensity of the dipole moment with the binormal direction of the dipole moment 
vector to the helical line. 

3. Dyson's method for approximating a helical vortex with a finite core  

In accordance with the procedure described in article [17], we will explain the main 
points of the Dyson method, which will be used to derive the final equations that determine the 
components of the total velocity U. In [20] to study Saturn rings, Dyson proposed an original 
high-precision method for estimating the velocity field in the vicinity of the core of an ax-
isymmetric vortex ring with a vorticity distribution proportional to the distance from the axis of 
the ring. The use of the shift operator and the properties of harmonic functions for the velocity 
field near the core allowed obtaining effective high-order asymptotic expansions that depend 
on a small parameter, the ratio of radii of the core and the ring. This method was generalized to 
an axisymmetric vortex ring with an arbitrary vorticity distribution, and the formula for self-
induced motion of a viscous vortex ring was improved for higher orders [21]. In fact, the Dy-
son method is extremely important for achieving high-order decompositions, since otherwise 
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decompositions may encounter a number of uncertain conditions. Later, the restriction of axial 
symmetry was removed for the Dyson method [17], whereby, for a helical vortex tube, the in-
fluence of its finite core was successfully represented as multipole decompositions. Here, 
the small parameter σ  is the ratio of the core radius to the normal radius of curvature. In this 
paper, shift operators were first used to perform integration across the core cross section 
in a volume integral, which then led it to a linear integral. The main term of the decomposition 
of the Biot–Savart integral was represented by a chain of monopole singularities located on 
the central line of a helical vortex tube. The intensity of monopoles is equal to the circulation 
of a helical vortex. The next contribution was made by a chain of dipoles whose intensity de-
pends on the vorticity distribution in the core. The key factor for dipoles was the influence of 
the curvature and torsion of the helix. Similar to the case of monopoles (4), the velocity field 
for a helical dipole line is written as Kapteyn type series (5). In this study, based on estimates 
of [17], we consider only the contribution of these two singularities: 

b b b t t t, , , ,z z zU u v U u v U u v U u vθ θ θ= + = + = + = +                       (6) 

where the binormal and tangential velocity components correlate accordingly with the azi-
muthal and axial components uθ  and zu  or vθ  and zv  through obvious relations [5, 12]: 
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It should be noted that the relative displacement of the vortex is determined only by 
the values ub and vb, while ut gives a purely tangential motion along the axis, and with the help 
of substitution (5) in vt = vz + rvθ /l we find that vt is zero. In accordance with section 2, suf-
ficient accuracy for infinite summation of the main components of velocities u and v in (6) 
is achieved when singularities are separated out using the closed analytical form (2). 

4. Comparison of two calculation methods for a vortex with a Rankine core  

The next question of interest concerns the verification of the Dyson method for descri-
bing the self-induced motion of a helical vortex with a finite core size of constant vorticity 
through representations of the velocity of monopole and dipole singular vortex lines (6). 
A simple way to estimate the velocity in a vortex is to take the value U between two diamet-
rically opposite points on the radius of the vortex core R = ε /σ, that is, at the point 
( , , ) ( ,0,0),r z Rθ ε= ± then the motion of the vortex will be represented by the average of these 
two values: 
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Previously, this procedure was used for a monopole helical line only with ub, but such an ana-
lysis performed in [5, 7, and 11] requires an additional correction for the finite core found 
by direct comparison with the solution for the corresponding vortex ring [6]. The first realistic 
formula for the binormal velocity of a helical vortex with a finite core 
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where the additional term “1/4” in squ-
are brackets defines the correction Δε , 
associated with the finite core of the he-
lical vortex, and  
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describes the regular part of Kapteyn series with subtraction of the pole 1/σ and the logarithm 
ln (1/σ ) from the original representation of the series (1), where H( ) denotes the step function. 
However, for helical vortex lines, equation (8), as well as the Biot–Savart law, cannot be inte-
grated in a simple analytical form, so W was found numerically with an accuracy of up to six 
significant digits for the 21st step values of τ, which is shown in the table of [7]. As before, 
the analytical form of the Kapteyn series (2) in combination with formulas (4) and (5) after 
substitution in (7) is used to obtain analytical expressions for self-induced velocities. To com-
pare the Dyson method (7) with the formula (8), we need the value of the dipole moment inten-
sity for the Rankine vortex in the core of the vortex. The estimate from [17]  gives  the formula  

23 16 .Rd σ π= − Γ                                                         (9) 

The binormal velocity (see 2 in Fig. 1) is calculated as a function of the torsion using 
the new analytical formula (7). It is compared with solution 1 of [7], where the W-integral 
formula (8) was used. The results obtained by both methods demonstrate excellent consistency, 
which proves the high accuracy of the Dyson method for determining the self-induced velocity 
of helical vortices with a Rankine core. Additionally, the approximation (2) of Kapteyn series 
for velocity fields induced by monopole and dipole lines was performed. 

5. Self-induced velocity for a helical vortex with a Gaussian core  

To obtain the self-induced velocity of a helical vortex, we use the Dyson approach (7) 
to estimate the velocity field induced in the vicinity with a non-constant Gaussian vorticity 
distribution in the core. In contrast to the Rankine vortex (9), the intensity of the dipole mo-
ment for the Gaussian vorticity distribution takes a different value. Comparison with experi-
mental data [16] gives the formula 

G 0.13. d = −                                                             (10) 

In Fig. 2, the self-induced angular velocity calculated via the binormal component (7) for 
a Gaussian vortex core (line 2) with dipole intensity (10) gives a good agreement with the data 
of direct numerical simulation (DNS) based on the solution of the Navier–Stokes equations for 

 

Fig. 1. Correlations of dimensionless binormal 
velocity of a helical vortex with the Rankine 

core calculated using different methods.  
1 — UbB&W

 calculated by formula (8) from [7],  
2 — the binormal velocity Ub calculated from the used 

analytical decomposition of (7) and (9)  
in accordance with the Dyson method [20]. 
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the development of the helical vortex core 
in time with a fixed pitch of l = 0.5 (see 
Fig. 9b from [16]). Thus, for the first time 
in a closed form, solution (7) with dipole intensity (10) is obtained to describe the motion 
of a helical vortex in space with a Gaussian vorticity distribution in the core. 

Conclusion  

In this paper, we have tested the Dyson method for determining the velocity field in 
the vicinity of helical vortices with a Rankine core by direct comparison with another estimate 
of the self-induced velocity obtained using Ricca modeling [1], which has been analytically 
proved by the authors [3]. The high accuracy of the Dyson method is demonstrated, which 
opens the possibility for developing new fundamental solutions, in particular, for a helical vor-
tex with a Gaussian core. The proposed solutions can be used to describe various typical vorti-
city distributions in the vortex core, which give a more realistic description in applications, 
for example, for tip vortices behind rotors, tornadoes or axial vortices in aerodynamic devices 
such as vortex apparatuses and generators: cyclone separators and combustion chambers, etc. 
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