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Numerical simulation of transient melting regimes inside an enclosure in the presence of a local heat source has 
been carried out. Mathematical model formulated in terms of dimensionless variables such as stream function, 
vorticity, and temperature has been numerically solved by finite difference method. Effects of the Rayleigh number 
4·105 ≤ Ra ≤ 5·107, Stefan number 2.21 ≤ Ste ≤ 5.53, and dimensionless time on velocity and temperature fields as well 
as on the local Nusselt number along the heat source surface have been analyzed in detail. The transient effects of 
the considered process at high values of the Rayleigh number have been identified. 
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The phase-change materials (alkanes, fatty acids, saline solutions) enjoy in recent years 
wide application in power engineering [1]. These substances have, as a rule, a relatively low tem-
perature of melting, high latent energy of melting, and high heat capacity. The energy absorp-
tion and heat release at the expense of phase changes is used at the cooling of electronics, in 
solar power storage devices, systems of thermal regulation in buildings, which is explained by 
the property of such materials to absorb and release a large amount of energy whereas retaining 
the temperature nearly invariable and performing concurrently the phase change. 

A few works have been published by now, which are devoted to the investigation of un-
steady regimes of natural convection in regions filled with phase change materials (PCMs) 
[1−11]. So, for instance, the results of an experimental study of the pure gallium melting inside 
a parallelepiped with two isothermal opposite vertical faces and the adiabatic remaining walls 
are presented in the work [2]. The authors have succeeded in watching the evolution of 
the melting front and to establish the correlation relations for the heat exchange coefficient. 
It is to be noted that this work is frequently used as a sample at the development of computer 
codes for modeling the convective heat transfer with phase changes [3−8]. Numerical model-
ling of the regime of the melting of PCM (n-octadecane) inside a rectangular cavity with 
the isothermal lower wall and thermally insulated remaining boundaries was carried out in 
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the work [3]. As a result, the velocity and temperature distributions were obtained by the finite 
element method, which show the evolution of the melting process as well as the thermal and 
hydrodynamic structures were presented, which illustrate the influence of the Rayleigh 
number. The investigation of the process of melting of a solid gallium in a closed rectangular 
cavity in the presence of the isothermal sine-shaped wall has been presented in the work [4]. 
The modeling was carried out by the control volume method using an unstructured grid and 
the enthalpy-porous approach to the melting front identification. An increase in the melting 
intensity with increasing amplitude of the curved boundary due to a growth of the area of con-
tact between the isothermal boundary and the melting material was revealed. It is to be noted 
that the use of wavy surfaces in closed technological systems enables a considerable intensifi-
cation of the heat transfer process [5]. An analysis of steady regimes of natural convection in 
the presence of phase changes in a closed differentially heated square cavity [6] has shown 
a significant dependence of the scales and intensity of the internal convective flow as well as 
the phase boundary shape on Rayleigh, Prandtl, and Stefan numbers. In particular, it was found 
that an increase in the Rayleigh number leads to a considerable curvature of the interphase 
boundary. 

A number of studies [7–11] were devoted to the development of an efficient system for 
cooling the electronic devices with the use of PCMs. The experimental investigation of 
the conditions for cooling the portable electronic devices based on PCMs, which are placed 
inside the heat removal zone, was carried out in the works [7, 8]. As a result, it was found that 
the use of the n-eikosane inside the aluminum structure for heat removal enables one to stabi-
lize the temperature of the entire system and increases the device lifetime. It is to be noted that 
the latter depends on the volume of the employed PCM and the power of the heat release 
source. An analysis of the efficiency of the aerial cooling system for telecommunication base 
stations using PCMs has been presented in the work [9]. The internal space of base stations 
was cooled at the expense of the conditioning of cold air masses of the ambient medium, 
and the excessive energy of cooling was accumulated in the containers filled with PCM. 
At the switch-off of the system for the room conditioning, the cooling was performed at 
the expense of phase changes inside the containers. It was shown that such a system enables 
a substantial reduction of the amount of the electric power consumption, in some regions, up to 
67 %. Numerical modeling of three-dimensional unsteady regimes of cooling a portable elec-
tronic device using PCMs was conducted in the works [10, 11]. It was found that the partition 
of the entire volume of PCM into several parts with the aid of heat-conducting diaphragms 
enables one to intensify the cooling regime and to stabilize the temperature inside the device 
itself during a long time. 

The above overview has shown that the published results reflect only the influence of in-
finitely thin isothermal elements, which are located along the boundaries of the region under 
analysis, on the flow structure and heat transfer inside the cavity as a result of the work medi-
um melting. The presence of local isothermal elements of finite sizes is known to lead even 
in the case of the thermogravitational convection of the aerial medium to a substantial modi-
fication of hydrodynamic fields inside the cavity and manifests itself in the alteration of 
the intensity of heat removal from the surface of such heat-releasing elements [12]. It is neces-
sary to conduct further research for a detailed study of the influence of local heat-releasing 
elements on melting regimes. 

The purpose of the present work is the numerical analysis of unsteady regimes of 
the melting of PCM inside an enclosure with a local energy source of square shape, which is 
located at the lower boundary, and the vertical cooling walls. Unlike the works presented in 
the overview, the modeling is performed in the proposed study by using the transformed varia-
bles “stream function − vorticity − temperature”, which enables a substantial CPU time reduc-
tion at the expense of reducing the number of equations to be solved. 
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Mathematical model and solution method  

The unsteady process of the material melting inside a square enclosure in the presence of 
an isothermal source with temperature Th (Fig. 1) is considered. The solution region contains 
two vertical isothermal boundaries with temperature Tw (Th > Tw), the remaining walls are adi-
abatic. The heat supply to the region is carried out at the expense of a square source, which lies 
on the lower wall and has a constant temperature above the material melting temperature. 
At the initial moment of time, the material is in solid state and has the temperature equal to 
the material melting temperature Tm. It is assumed at the execution of numerical experiments 
that the heat transfer realizes inside the working medium at the expense of the heat conduction 
and convection mechanisms; the melt is a Newtonian fluid satisfying the Boussinesq approxi-
mation; the melt flow regime is laminar; one can neglect the viscous dissipation; the enclosure 
walls are impermeable for the melt. 

The process of the transfer of mass, momentum, and energy is described by the system of 
the Oberbeck−Boussinesq unsteady two-dimensional convection equations in natural variables 
“velocity−pressure−enthalpy” [11, 13]: 
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The energy equation is written in the enthalpy form: 
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Here g is the acceleration due to gravity, 

β is the thermal coefficient of volumetric expansion, x and y are the coordinates of a Cartesian 
coordinate system, ρs is the density of the material in its solid state, ρm is the melt density, Сs is 

the specific heat of the material in its solid 
sate, Сm is the melt specific heat, u and v 

are the velocity vector components in pro-
jection onto the x and y axes, respectively, 
t is the time, p is the pressure, ν is the ki-
nematic coefficient of viscosity, h is the en-
thalpy, λ is the thermal conductivity coeffi-
cient, Lm is the latent heat of melting. 

To eliminate the discontinuity of 
the enthalpy as a function of temperature 
the smoothing mapping was introduced at 
the interface [13, 14]: 

 
_______________________________________________________________________________________________________________________ 

Fig. 1. Solution domain of the problem. 
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where η is the transition zone size near the interphase boundary. The control parameter value η 
was determined from numerical experiments [13, 14]. 

The introduction of the smoothing function (5) reflects the presence of a transitional zone 
in the interphase boundary neighborhood and enables thereby a passage from the equation for 
the enthalpy (4) to the equation for temperature and no separation of the regions of the liquid 
and solid phases by solving the obtained energy equation by a homogeneous method 
[11, 13, 14]. 

To reduce the CPU time at the solution of the problem under consideration, the stream 
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 are introduced as 

the sought hydrodynamic functions. It is to be noted that the introduction of these functions 
enables one to eliminate from the consideration the pressure field and reduce thereby the number 
of the equations to be solved owing to the identical satisfaction of the continuity equation (1). 

Numerical realization of the melting process was done in dimensionless variables. 
As the reference values for the distance, velocity, time, temperature, stream function, and vorti-
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where D is the cavity size (Fig. 1), X and Y are the dimensionless coordinates corresponding to 
the x and y coordinates; U and V are the dimensionless velocities corresponding to the velocities u 

and v; τ is the dimensionless time, Θ is the dimensionless temperature, Ψ is the dimensionless 

stream function, Ω is the dimensionless vorticity. 
With regard for the introduction of the smoothing function (5), the stream function and 

the vorticity as well as the dimensionless variables the governing equations (1)−(4) take 
the following form [11, 13−15]: 
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It is to be noted that the auxiliary functions ζ(ϕ) and ξ(ϕ) appear in equation (8) due to 
a passage from the energy equation in the enthalpy form to the energy equation written in 
terms of temperature. The use of the enthalpy form of the energy equation enables 
the application of a homogeneous method for determining the temperature field. Such 
an approach has been presented in more detail in the works [13, 14]. 

The initial and boundary conditions for the formulated system of partial differential equa-
tions (6)−(8) are as follows. 

The initial condition: ( ) ( ) ( ), ,0 , ,0 , ,0 0.X Y X Y X YΨ = Ω = Θ =  

The boundary conditions: 
− at the boundaries X = 0 and X = 1, the constant temperature of cooling Θ = Θc = –0.3 

is kept; in the case of the material melting up to the boundaries X = 0 and X = 1, the stan-
dard boundary conditions were considered for the stream function and vorticity: Ψ = 0, 

2 2 ;XΩ = −∂ Ψ ∂  

− thermal insulation conditions 0Y∂ Θ ∂ =  were considered on horizontal walls; in 

the case of the material melting up to these boundaries, the conditions of the form Ψ = 0, Ω = 

= 2 2Y−∂ Ψ ∂ were considered for the stream function and vorticity;  

 
 

Fig. 2. Location of the melting front at different moments of time 
in comparison with experimental data of [2]. 

1 ⎯ experimental data of [2], 2 ⎯ the computation. 
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− at the interphase boundary: ( )2 2 2 20,  ;X YΨ = Ω = − ∂ Ψ ∂ + ∂ Ψ ∂   

− on the energy source surface: Θ = Θh = 1, Ψ = 0, Ω = − ( )2 2 2 2 .X Y∂ Ψ ∂ + ∂ Ψ ∂   

It is to be noted that at the initial moment of time (τ = 0), the dimensionless temperature  
was equal to 0 in the entire region. At τ > 0, the temperature Θc = –0.3 was set immediately on 
the enclosure vertical walls, and on the energy source surface, the temperature h 1,Θ =  which 

was just the source of heat transfer inside the enclosure. 
The formulated boundary-value problem (6)−(8) with the corresponding initial and boun-

dary conditions was solved by a finite difference method [12, 15−18] on a uniform structured 
grid of size 200×200. The Samarsky monotone second-order scheme [18] was used for 

 
 

Fig. 3. Distributions of the local Nusselt number on the lower wall at different moments of time. 

The data of the work [3] (a) and the present work (b); τ = 709 (1), 851 (2), 1064 (3). 

 
 

Fig. 4. Streamlines Ψ and isotherms Θ at Ra = 4·105 and Ste = 5.53. 

τ = 244.8 (a), 489.6 (b), 734.4 (c), and 1713.6 (d). 
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the discretization of convective terms in the equation for vorticity dispersion (6) and in the energy 
equation (8), and the diffusion terms were approximated in all equations by central differences. 
The Poisson difference equation for the stream function (7) was solved by the method of 
the successive over-relaxation. The equations of the vorticity dispersion and energy were 
approximated by using the locally one-dimensional Samarsky scheme. The obtained difference 
equations were solved by the Thomas method.  

The developed solution method was tested on model problems [2, 3]. One can see in Fig. 2 
a sufficiently close proximity of the melting front, which was obtained by the numerical  
method, with experimental data [2]. It is to be noted that the observed deviations in the phase 
change boundary at the initial time stage are due to a three-dimensional character of the problem 
as well as to some anisotropy of the pure gallium properties, which was used in experiment [2]. 
A more detailed description of the given test problem is presented in the work [16]. 

Figure 3 illustrates a good agreement of the profiles of the local dimensionless heat flux 
on the bottom isothermal wall versus time with the numerical data of [3]. The moments of time 
shown in Fig. 3b are identical with the moments of time in Fig. 3а. 

The results shown in Figs. 2 and 3 clearly show that the employed numerical solution algo-
rithm leads to a fairly good agreement with experimental and numerical data of other authors. 

Results of numerical modeling  

As the phase change material, the n-octadecane with the following characteristics was consi-
dered: ρm = 746 kg/m3, ρs = 814 kg/m3, β = 8.5·10–4 K–1, μ= 1.81·10–3 kg/(m·s),  
λm = 0.157 W/(m·K), λs = 0.39 W/(m·K), Tm = 301 K, Lm = 2.41·105 J/kg, Cm = 2200 J/(kg·K), 
Cs = 1900 J/(kg·K). Numerical investigations have been conducted at the following values of 
determining parameters: 4·105 ≤ Ra ≤ 5·107, 2.21 ≤ Ste ≤ 5.53, and Pr = 48.36, which are due 
to the analysis of the influence of the enclosure size and temperature head on flow structure and 
heat transfer. The enclosure size was varied from 1 to 5 centimeters, and the temperature head 
was varied from 10 to 50 °С. 

As was noted above, the heat is transferred inside the region under consideration besides 
the conductive mechanisms at the expense of the formation of convective flows arising in 
the melted material. The melt circulation has contributed to an accelerated melting and a more 
intense energy transfer from the source. 

The contours of the stream function Ψ and temperature Θ at Ra = 4⋅105 and Ste = 5.53 
at different moments of time are shown in Fig. 4. The phase change boundary is depicted in 
the figures by a solid line in the distributions of streamlines and by the isotherm Θ = 0 
in the distributions of temperature isolines. It is to be noted that at the initial time stage 
at τ ≤ 244.8 (Fig. 4a), the heat conduction is the determining mechanism of heat transfer 
in the melt zone, which is confirmed by a uniform distribution of isotherms in this region. 
At the subsequent moments of time, a thermal plume forms above the energy source and, 
respectively, a more intense melting of the material occurs in the vertical direction because of 
the intensification of the convective mechanism of energy transfer. The recirculation flow 
is characterized independently of time by two convective cells, which indicate the presence of 
an ascending flow directly above the heat-releasing element and two descending flows along 
the phase change boundary. With increasing τ the cores of convective cells shift in the vertical 

direction, which is explained by a flow intensification inside the melt zone: 
244.8

max
τ =Ψ = 0.0007 < 

< 
489.6

max
τ =Ψ = 0.0018 

734.4 1713.6
max max

0.003 0.0055.
τ τ= =< Ψ = < Ψ =  By the moment of time τ = 

= 1713.6 (Fig. 4d), the boundary of melting reaches the upper adiabatic wall in the presence of 
a pronounced thermal plume inside the melt. Starting from this time moment, an intense melt-
ing of the material realizes in the transverse direction. It is to be noted that at Y = 0, 
the motion of the melting front in the horizontal direction in the time range under considera-
tion is insignificant due to the domination of the conduction mechanism of heat transfer 
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in the neighborhood of the energy source and reaching some thermal equilibrium with the heat 
flux on the side of cooling vertical walls. 

Detailed temperature distributions in sections X = 0.5 and Y = 0.5 as well as of the verti-
cal velocity component in section Y = 0.5 are shown in Figs. 5 and 6а. 

Analyzing the temperature distributions one can note that with increasing time, the most 
intense heating and, respectively, the melting occur in the cavity central part. Directly above 
the energy source (0.2 < Y < 0.3), one observes even a temperature diminution at τ = 1713.6 as 
compared to the initial time stage τ ≤ 244.8, which is due to an intense convective flow and 
cooling of the melt descending flows on the side of the material being in solid state. Such 
a trend is observed also at a larger distance from the heat-releasing element. One should note 
a temperature drop in the upper part of the object under analysis (Y > 0.8) for two moments of 
time τ = 244.8 and τ = 489.6, which is due to different velocities of the advancement of the low-
temperature wave from the vertical walls and the material melting on the energy source side. 

 
 

Fig. 6. Profiles of the vertical velocity component V in section Y = 0.5 (а) 
and the local Nusselt number along the energy source surface (b) 

at Ra = 4·105 and Ste = 5.53 at different moments of time. 
See the notations in Fig. 5. 

 
 

Fig. 5. Temperature Θ profiles in sections X = 0.5 (а) and Y = 0.5 (b) 
at Ra = 4·105 and Ste = 5.53 at different moments of time. 

τ = 244.8 (1), 489.6 (2), 734.4 (3), 1713.6 (4). 
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The noted intensification of the convective mechanisms of energy transfer in the cavity upper 
part, which is reflected in the temperature decrease near the source, is presented in Fig. 5b, 
where one can see a significant pressure drop in section Y = 0.5 with increasing dimensionless 
time from τ = 734.4 to τ = 1713.6. A symmetric distribution of streamlines and isotherms 
(Fig. 4, 5b) is due to the symmetry of boundary conditions and moderate values of the de-
termining parameters (the Rayleigh and Stefan numbers). 

The profiles of the vertical velocity component in section Y = 0.5 (Fig. 6а) show both 
the melt zone sizes and the dominance of the vertical direction of melting process as compared 
to the transverse one. One should also note the commensurable intensity of descending flows 
with the ascending flow, which is just a reason for the temperature decrease even in the cavity 
central part with increasing time (Fig. 5b). 

The temporal dependence of the local Nusselt number ( )Nu n= ∂Θ ∂  along the source 

surface is shown in Fig. 6b. One observes with increasing τ an increase in the local di-
mensionless heat-transfer coefficient. A drop of Nu on the source upper wall as compared to 
the side boundaries is due to the thermal plume formation and, respectively, a more intense 
heating in this zone, which leads to a temperature gradient decrease. A symmetric distribution 
of all parameters under consideration with respect to the axis X = 0.5 is reflected in 
the coincidence of the values of mean Nusselt numbers on the vertical walls of the energy 
source. 

An increase in the temperature head by the factor of 2.5 leads to a growth of the Rayleigh 
number and decrease in the Stefan number, which manifests itself in a significant modification 
of the distributions of stream function and temperature contours (Fig. 7). One should note 
a high intensity of the melting process as compared to the lower temperature head, which is 
confirmed by a considerable advancement of the melting front. At the initial time stage 
at τ ≤ 77.4 (Fig. 7а), the heat conduction is also a determining mechanism of energy transfer, 
and the formed hydrodynamic structure  does not differ from the case presented above in Fig. 4а. 
The time increase leads to the development of two temperature plumes near  the corner points 
of the energy source, which is evidenced by the appearance of two extra recirculation flows 
directly above the heat-releasing element. Such a distribution of streamlines characterizes 
the formation of an ascending flow along the axis of each thermal plume and three descen-
ding flows along the symmetry axis of the object under analysis and along the  melting front. 

 
 

Fig. 7. Streamlines Ψ and isotherms Θ at Ra = 106 and Ste = 2.21. 

τ = 77.4 ( a), 387 (b), 774 (c), 1935 (d). 
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One should pay attention to a significant difference from the foregoing melting regime (Fig. 4), 
which is expressed by a more intense melting of the material also in the transverse direction. 
The descending flow along the symmetry axis characterizes the formation of a low-temperature 
plume on the solid material side. In the time interval from τ = 774 to τ = 1935, there occurs 
the merging of two thermal plumes into a single one and, respectively, the formation of only 
two convective cells of equal intensity, which show the melt motion in the clockwise and 
counter-clockwise directions. 

Figures 8 and 9a show the profiles of temperature Θ in sections X = 0.5 and Y = 0.5 as 
well as the vertical velocity component V in section Y = 0.5 at Ra = 106 and Ste = 2.21. Unlike 
the foregoing melting regime, a less significant growth of temperature in the range from 0 
to 0.2 also occurs in the enclosure central part. One observes here a considerable reduction 
of Θ immediately above the energy source with increasing time, which is due to the formation 
of a central descending melt flow. A complex structure of the temperature and velocity fields is 

 
 

Fig. 8. Temperature Θ profiles in sections X = 0.5 (а) and Y = 0.5 (b) 
at Ra = 106 and Ste = 2.21 at different moments of time. 

τ = 77.4 (1), 387 (2), 774 (3), 1935 (4). 

 
 

Fig. 9. Profiles of the vertical velocity component V in section Y = 0.5 (а)  
and the local Nusselt number along the energy source surface (b) 

at Ra = 106 and Ste = 2.21 at different moments of time. 
See notations in Fig. 8. 



Thermophysics and Aeromechanics, 2016, Vol. 23, No. 4  

 563 

confirmed by the Θ and V profiles in section Y = 0.5 (Fig. 8b and 9а), where the location of two 
thermal plumes is depicted, which merge by the moment of time τ = 1935. One should also pay 
attention to an insignificant transverse heating of the material at the variation of τ from 774 
to 1935, which manifests itself in a substantial reduction of the transverse velocity of 
the material melting (Fig. 9а). 

The most significant variations of the local Nusselt number occur on the sidewalls 
of the energy source at the time variation in the range from τ = 77.4 to τ = 387 (Fig. 9b). 
The appearance of two thermal plumes and, respectively, of the central descending flow 
manifests itself in an increase of the Nusselt number on the heater upper surface because of 
the temperature gradient growth. The formation of a single central temperature plume leads 
to a decrease in the local Nusselt number along the entire upper wall of the energy source. 

A fivefold increase in the enclosure size leads to a growth of the Rayleigh number under 
the constancy of the Stefan number, which manifests itself, as at the temperature head increase, 
in a significant modification of the flow structure and the temperature field (Fig. 10). In this 
case, the Rayleigh number inside the melt zone reaches the value 5·107, which assumes 
the formation of a highly intense convective flow. It is to be noted that the growth of the Ray-
leigh number not only leads to the alteration of the flow structure inside liquid phase but also, 
as a consequence, affects the shape of the interphase boundary. The flow complicates sub-
stantially, the formation of two thermal plumes is observed with increasing temperature head, 
which shift with time to the upper wall center and merge. At the expense of the appearance 
of two thermal plumes and additional recirculation flows, the melting above the source 
occurs uniformly both in the vertical and horizontal directions. With the melt zone growth 
the temperature plume starts oscillating, and the flow pattern becomes asymmetric. Such 
an alteration is due to the predominance of the buoyancy force over the internal forces, which just 
manifests itself in the formation of an asymmetric flow pattern and heat transfer. 

The detailed profiles of temperature and velocity in mid-sections X = 0.5 and Y = 0.5 of 
the object under analysis are presented in Figs. 11 and 12a. The observed changes confirm 
completely the above-described peculiarities, which are due to a significant growth of the lift 
magnitude. The appearance of two temperature plumes and their evolution in the process of 
melting is reflected in the non-uniformity of the local Nusselt number distributions (Fig. 12b). 

 
 

Fig. 10. Streamlines Ψ and isotherms Θ at Ra = 5·107 and Ste = 5.53. 

τ = 329.4 (a), 1098 (b), 1427.4 (c), and 3843 (d). 
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Conclusion  

The unsteady problem of the material melting inside a closed square cavity with isother-
mal vertical walls in the presence of a local energy source has been solved numerically. 
The distributions of the stream function and temperature contours, the temperature and velocity 
profiles in the mid-sections of the solution domain as well as the local Nusselt number profiles 
along the energy source surface, which illustrate the influence of determining complexes (4·105 ≤ 
≤ Ra ≤ 5·107, 2.21 ≤ Ste ≤ 5.53) on the flow structure and heat transfer have been presented. 
It has been found that an increase in the Rayleigh number manifests itself in a substantial compli-
cation of fluid dynamics and heat transfer of the process: one observes the formation of two 

 
 

Fig. 12. Profiles of the vertical velocity component V in the section Y = 0.5 (а)  
and the local Nusselt number along the energy source surface (b) 

at Ra = 5⋅107 and Ste = 5.53 at different moments of time. 
See notations in Fig. 11. 

 
 

Fig. 11. Profiles of temperature Θ in sections X = 0.5 (a) and Y = 0.5 (b) 
at Ra = 5⋅107 and Ste = 5.53 at different moments of time. 

τ = 329.4 (1), 1098 (2), 1427.4 (3), and 3843 (4). 
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temperature plumes, which merge with increasing time. It has been found that an asymmetry 
is possible in the distributions of local structures at a substantial domination of the buoyancy 
force over the internal forces of friction. It has been shown that a reduction of the local 
Nusselt number on the upper wall of the energy source is due to the heating of the melt 
zone above the heater and, respectively, the temperature gradient reduction. In the case of 
the formation of two temperature plumes, a central descending flow arises between them, 
which leads to a local growth of the Nusselt number on the upper wall of the heat-releasing 
element. 
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