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Recent years many flight control systems and industries are employing PID controllers to improve the dynamic 
behavior of the characteristics. In this paper, PID controller is developed to improve the stability and performance of 
general aviation aircraft system. Designing the optimum PID controller parameters for a pitch control aircraft is im-
portant in expanding the flight safety envelope. Mathematical model is developed to describe the longitudinal pitch 
control of an aircraft. The PID controller is designed based on the dynamic modeling of an aircraft system. Different 
tuning methods namely Zeigler–Nichols method (ZN), Modified Zeigler–Nichols method, Tyreus–Luyben tuning, 
Astrom–Hagglund tuning methods are employed. The time domain specifications of different tuning methods are com-
pared to obtain the optimum parameters value. The results prove that PID controller tuned by Zeigler–Nichols for 
aircraft pitch control dynamics is better in stability and performance in all conditions. Future research work of obtain-
ing optimum PID controller parameters using artificial intelligence techniques should be carried out. 
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Introduction  

Wright brothers conducted thousands of experiments in gliders in developing successful 
airplane. After successful invention, the aircraft soon started with designing of dynamic charac-
teristics. The dynamic performance such as stability and control characteristics of an airplane 
are termed as aircraft flying qualities. In general, airplanes with poor flying qualities will be 
difficult to fly and could be dangerous. This paper focuses in designing PID controller and op-
timum values for general aviation aircraft. General aviation flights range from gliders and 
powered parachutes  to corporate jet flights. General aviation covers a large range of activities, 
both commercial and non-commercial, including flying clubs, flight training, agricultural avia-
tion, light aircraft manufacturing and maintenance [1−3]. The main objective of the paper is 
to design PID controller for pitch control general aviation aircraft. To obtain optimum parame-
ters value from different closed loop tuning methods such as Zeigler–Nichols method (ZN), 
Modified Zeigler–Nichols method, Tyreus–Luyben tuning, Astrom–Hagglund tuning methods 
are employed. The classical approach root locus method is employed in determining the ulti-
mate gain constant and period of oscillation of aircraft dynamics. Simulation is performed by 
using Matlab–Simulink model. The approach of the work illustrates time domain specifications 
of the system performance as affected due to parameter variations [4−5]. 
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1. Mathematical model of an aircraft  

The standard notation [6–9] for describing the motion of, and the aerodynamic forces and 
moments acting upon, flight vehicle is indicated in Fig. 1. The variables x, y, and z represent 
coordinates, with origin at the center of mass of the vehicle. The x-axis lays in the symmetry 
plane of the vehicle and points toward the nose of the vehicle. The z-axis also is taken to lie in 
the plane of symmetry, perpendicular to the x-axis, and pointing approximately down. The y-axis 
completes a right-handed orthogonal system, pointing approximately out the right wing. 
The variables u, v, and w represent the instantaneous linear velocity components in the direc-
tions of the x, y, and z-axes, respectively. The variables X, Y, and Z represent aerodynamic 
force components of rotational velocity about the x, y, and z-axes, the variables p, q, and r 
represent the instantaneous angular rates around the x, y, and z-axes, respectively.  

The equations of motion for a flight vehicle are obtained from Newton’s second law, 
which states that the addition of all the forces acting on a vehicle will be the same measure as 
that of momentum of vehicle; and the aggregate of the moments acting on the vehicle will be 
same as that of measure of angular momentum. The force equation can be expressed as follows, 

( ),
d

F mv
dt

=                                                            (1) 

where F represents force components such as Fx, Fy, and Fz on three axes: x, y, and z. When 
working out the acceleration of each mass element (m), v represents velocity contributions from 
both linear (u, v, and w) and rotational rates (p, q, and r) about x, y, and z-axes, respectively. 
The force components are composed of contributions due to sum of aerodynamic, propulsive 
and gravitational force acting on the airplane. The moment equation can be expressed as follows, 

( ),
d

M H
dt

=                                                               (2) 

where M represents moment components such as L, M, and N on the respective three axes  x, y, 
and z-axes. Also H represents moment of momentum components such as Hx, Hy, and Hz along 
x, y, and z-axes, respectively. 

2. Longitudinal equation 

The aerodynamic forces and moments can be expressed as a function of all the motion 
variables. The complete set of equation of motion is given in equation (3), equation (4) and 
equation (5). 

0 0cosu w
d

X u g X w
dt

θ − + − =    

e Te T ,X Xδ δδ δ= +                 (3) 

0(1 )u w w q
d

Z u Z Z w u Z q
dt

   − + − − − + +    


 

Te0 0 e Tsin ,g Z Zδδθ δ δ+ = +        (4) 

 

 

Fig. 1. Force, moments, and velocity components 
                  in a body fixed coordinate. 
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( )u w w
d

M u M M w
dt

 − − − +  
 e T T ,q

d
M q M M

dt δ δ δ − = +  
                     (5) 

where Xw, Zw, Mw, and wM   are called stability derivatives, that are evaluated at the reference 

flight condition. The control variables δe and δT correspond to perturbations from trim in 
the elevator and thrust (throttle) settings. Also Xδe

, Zδe
, Mδe

 correspond to elevator settings for X 

force, Z force and pitching moment. The variables XδT
, ZδT

, MδT
 correspond to throttle settings 

for X force, Z force and pitching moment [10–14]. The dot above the variables denotes in equa-
tions (3)–(8) the derivative of these variables. The relation of stability derivative for longitudi-
nal motions to dimensionless derivatives aerodynamic coefficients is shown in Table 1. 
The stability coefficients 

0
, ,

ux x xC C C
α

 are related to the corresponding to X force coef-

ficients with respect to angle of attack, reference value and change speed. The variables 

0
, , , ,

u qz z z z zC C C C C
α α

 are called stability coefficients correspond to Z force with respect to 

reference value, change speed, angle of attack and pitch rate. The stability coefficients ,
umC  

,mC
α

 ,mC
α

 
qmC  are related to the corresponding to pitching moment coefficients. The term Iy 

is the mass moment of inertia of the body about the y axis. The terms m, 0,c u  and Q are 

the mass, the wing mean aerodynamic chord, reference flight speed and the dynamic pressure 
of the vehicle. 

The nonlinear equations of motion can be linearized by using small disturbance theory. 
Small disturbance theory is applied considering small deviations about steady flight conditions. 
The following equations (1), (2), and (3) represent linearized equations of pitch control dynamics 
of an aircraft.  

T
e T

,
X X X X

X u w
u w

δ
δ δ

∂ ∂ ∂ ∂Δ = + + +
∂ ∂ ∂ ∂

                                          (6) 

e
e T

,
Z Z Z Z Z Z

Z u w w q
u w w q

δ
δ δ

∂ ∂ ∂ ∂ ∂ ∂Δ = + + + + +
∂ ∂ ∂ ∂ ∂ ∂




                               (7) 

e T
e T

.
M M M M M Z

M u w w q
u w w q

δ δ
δ δ

∂ ∂ ∂ ∂ ∂ ∂Δ = + + + + +
∂ ∂ ∂ ∂ ∂ ∂




                        (8) 

T a bl e  1  
Stability derivatives for longitudinal motions 
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In these equations, the control variables δe and δT correspond to perturbations from trim 
in the elevator and thrust (throttle) settings. Note that the Z force and pitching moment M are 
assumed to depend on both the rate of change of angle of attack w and the pitch rate q, but 
the dependence of the X force on these variables is neglected. The linearized longitudinal equa-
tions give valuable information of dynamic characteristics of airplane motion. 

Equation (9) gives the transfer function for the change in the pitch rate to the change 
in elevator deflection angle. 

( )( ) ( )( )

e ee
e

0 0 0
2

e 0 0

( )
.

( )
q q

M Z M Z Z M
M s

u u uq s

s s M M Z u s Z M u M

δ δ δα α α
δ

α α α αδ

   + +− + −   
Δ    =
Δ − + + + −




                     (9) 

3. PID controller  

The PID controller is closed loop feedback mechanism widely used in many industries 
and flight control systems. The PID controller calculates an “error” value as the difference be-
tween a measured process variable and a desired set point. The controller attempts to minimize 
the error by adjusting pitch control inputs. The PID controller parameters are called three-term 
control such as the proportional, the integral, and derivative values denoted P, I, and D 
[15−17]. Tuning the three parameters in the PID controller algorithm, the controller can pro-
vide control action designed for specific flight requirements. The response of the controller can 
be described in terms of the responsiveness of the controller to an error, the degree to which 
the controller overshoots the set point, and the degree of system oscillation. The structure is 
also known as parallel form and is represented by, 

( )P I D P I D( ) (1/ ) 1 1/( )G s K K s K s K T s T s= + + = + +                           (10) 

where KP is the proportional gain, KI is the integral gain, KD is the derivative gain, TI  is 
the integral time constant, and TD is the derivative time constant. 

The simple block diagram of general aviation aircraft with actuator dynamics and PID 
controller is shown in Fig. 2. The proportional term provides the error signal through 
the constant gain factor. The integral term is to reduce steady-state, and the derivative term is 
to improve transient response. The effect of variation of parameter for closed loop response 
is given in Table 2. The combination of PID controller performs better compared to independ-
ent operations. The selection of gains for the PID controllers can be determined by various 
closed loop tuning methods. 

T a bl e  2  

Parameters affecting system dynamics 

Closed loop 
response 

Proportional gain 
(KP) 

Integral gain 
(KI) 

Derivative gain 
(KD) 

Rise time  Decrease  Decrease  Small change  
Overshoot  Increase  Increase  Decrease  
Settling time  Small change  Increase  Decrease  
Steady-state error Decrease Eliminate No change 

 
 

Fig. 2. Block diagram of PID controller. 
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4. Aircraft dynamics without controller effect

In general, the non-linear aircraft model is complex, and the complexity arises from 
the mathematical model of dynamics given in equation (7). 

G(s) = 
4 3 2

120 253.8
.

13.17 44.64 129.4

s

s s s s

+
+ + +

     (11) 

Figure 3 shows step response of system without controller. The rise time is 1.1 secs, and 
settling time is high in the range of 9.3 secs. The simulation is carried out using Matlab–Simulink 
model [12].Though overshoot is less but the response leads to oscillation for longer period. This 
leads the aircraft difficult to fly and makes the performance unstable in nature. Table 3 shows 
the values of parameters of dynamic response of aircraft without PID controller. 

5. Tuning methods

The selection of gains for PID controller can be determined by various tuning methods 

[18−21]. The gains are determined in terms of two parameters, kpu, called the ultimate gain, and 
Tu, the period of the oscillation that occurs at the ultimate gain. From Fig. 4, the ultimate gain 
can be obtained as 1.87, and the period of oscillation can be determined as 1.22. 

Case 1: Ziegler–Nichols (ZN) method 

Ziegler and Nichols (1942) first proposed a trial and error tuning method. This method 
most widely used method for tuning of PID controllers. This method does not require process 
model. This method is applicable for closed loop flight control systems. The values of KP, KI, 

and KD can be determined from Table 4 as 1.122, 1.833, and 0.1711. The step response of air-

craft dynamics using ZN method is shown in Fig. 5. 

T a bl e  3  

Effect of closed loop response without controller 

Parameters Rise Time (tr)  
in secs 

Settling Time (ts)  
in secs 

Delay Time (td)  
in secs 

Overshoot (% Mp)  
in % 

Transient 

Values 1.1 9.3 0.46 20 Oscillation

Fig. 3. Step response of aircraft dynamics without controller.
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T a bl e  4  
Different Tuning Methods 

Methods Proportional Gain  
(KP) 

Integral Gain 
(KI) 

Derivative Gain 
(KD) 

ZN Method 0.6 kpu 2 kpu / Tu kpu Tu / 8 

Modified ZN Method 0.33 kpu Tu / 2 Tu / 3 

Tyreus–Luyben Method 0.45 kpu 2.2 Tu Tu / 6.3 

Astrom–Hagglund Method 0.32 kpu 0.94 0

Case 2: Modified Ziegler–Nichols (ZN) method 

For some control loops, the measures of oscillation provided by 1/4 decay ratio and 
the corresponding large overshoots for set point changes are undesirable, therefore, more con-
servative methods are often preferable such as modified ZN settings These modified settings 
are shown in Table 4. The values of KP, KI, and KD can be calculated as 0.6171, 0.61, and 
0.406. The step response of aircraft dynamics using modified ZN method is shown in Fig. 6. 

Case 3: Tyreus–Luyben method 

The Tyreus–Luyben method is similar to the Ziegler–Nichols method but the final con-
troller settings are different. This method only proposes settings for PI and PID controllers. 
The values of KP, KI, and KD can be calculated as 0.8415, 2.684 and 0.193. The step response 
of aircraft dynamics using Tyreus–Luyben method is shown in Fig. 7. 

Fig. 4. Root locus for aircraft system.

Fig. 5. Step response of ZN method.
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Case 4: Astrom–Hagglund tuning method 

This method is proposed by Astrom and Hagglund. They used nonlinear relay feedback. 
The ultimate gain and period of oscillation can be obtained from the limit cycle oscillation. 
The values of KP, KI, and KD can be estimated as 0.5984, 0.94, and 0. The step response of air-
craft dynamics using Tyreus Astrom–Hagglund method is shown in Fig. 8. 

Fig. 7. Step response of Tyreus–Luyben method.

Fig. 6. Step response of modified ZN method.

Fig. 8. Step response of Astrom–Hagglund method.
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The different tuning methods are compared, and the results are shown in Table 5. 
The delay and rise time give a measure of how fast the system responds to a step input. Rise 
time is less in Modified ZN method compared to other methods. The settling time is less in ZN 
method and Tyreus–Luyben method. Peak overshoot is less in Modified ZN method. Astrom–
Hagglund method response is oscillatory. This leads to unstable dynamics of aircraft. 
Compared to all methods, Modified ZN method shows good in time response characteristics. 
Though Modified ZN method is better but it has high settling time as 5.5 secs. From 
the standpoint of aircraft control system design, the required characteristic is that the system 
has to respond rapidly for any change in input. This helps the flight to fly in safe envelope. 
By considering this, ZN method gives optimal gain values of PID controller parameters. 

6. Results and discussion  

The longitudinal equations developed in equations (6) to (8) are simple, and the coef-
ficients in the differential equations are made up of the aerodynamic stability derivatives, mass 
and inertia characteristics of the airplane. These equations can be written as a first order differ-
ential equation, called the state space equations and are represented in equation (12). 

,x = Ax + Bη                                                                        (12) 

where x is the state vector, η is the control vector, and the matrices A and B contain aircraft 
dimensional stability derivatives. The stability coefficients are calculated using the values 
obtained from Table 1. The longitudinal state space matrix is given in equation (13). 

 
 

Fig. 9. Root locus of PID controller with aircraft dynamics response. 

T a bl e  5  
Comparison of Different Tuning Methods 

Parameters ZN Method 
Modified  

ZN Method 
Tyreus–Luyben 

Tuning 
Astrom–Hagglund 

Tuning 
Delay Time Td in secs  0.3 0.2 0.45 0.62 

Rise Time Tr in secs  0.6 0.4 0.9 1 
Settling Time Ts in secs  3.8 5.5 3.8 5.8 
Peak Overshoot Mp in %  37 18 46 50 
Transient behavior Smooth Smooth Smooth Oscillatory 
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63.17 203.14 776.4 0.0000

1.00000 0.0000 0.0000 0.0000

0.00000 1.0000 0.0000 0.000

0.0000 0.0000 1.0000 0.0000

− − − 
 
 =
 
 
 

A                                     (13) 

The eigenvalues of the longitudinal transport are given in equations (9) and (10). 

1,2 0, 60λ =                                                             (14) 

3,4 1.585 3.22.iλ = − ±                                                 (15) 

The root locus of closed loop PID controller for aircraft dynamics is shown in Fig. 9. 
The roots are real, there is of course no period, and only parameter is the time to double or half. 
When the modes are oscillatory, it is envelope ordinate that doubles or halves. Since 
the envelope may be regarded as an amplitude modulation, then we may think of the doubling 
or halving as applied to the variable amplitude. The stability of the airplane is governed by 
the real parts of the eigenvalues, roots of the characteristics equation. 

The step response of the PID controller is shown in Fig. 10. The delay time is 3 secs, rise 
time is 8 secs, settling time is 33 secs, and peak overshoot is 59 %. The response is oscillatory 
in nature. 

Conclusions  

The parameters of a control system may have tendency to vary due to changing environ-
ment conditions, and this variation in parameter affects the desired performance of a control 
system. Hence, in this paper, optimum gain values of PID controller parameters are obtained 
for controlling non-linear longitudinal pitch control of an aircraft. In recent years, many tech-
niques are developed using PID controller to control aircraft dynamics. Compared to various 
tuning methods, Zeigler–Nichols Method gives optimum gain values of PID controllers. 
The tuned parameter values of PID controller can effectively eliminate the dangerous oscilla-
tions and provide smooth operation. This optimum value works efficiently for nonlinear 
dynamics of pitch control aircraft where safety is high priority. 

 
Fig. 10. PID controller response. 
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Nomenclature 

 g ⎯ acceleration due to gravity,  
 Mq ⎯ dimensional variation of pitching moment  

               with pitch rate, 
 Mu ⎯ dimensional variation of pitching moment  

               with speed, 
 Mα ⎯ dimensional variation of pitching moment  

               with angle of attack, 

Mα  ⎯ dimensional variation of pitching moment 

               with  rate of change angle of attack, 
 q ⎯ perturbed pitch rate, 
 S ⎯ reference wing area, 
 T ⎯ thrust, 
 u ⎯ perturbed velocity along X,  
 Xq ⎯ dimensional variation of X force with pitch rate, 
 Xtu ⎯ dimensional variation of X force due to thrust 

             with speed, 

 Xu ⎯ dimensional variation of X force with speed, 
 Xα ⎯ dimensional variation of X force with angle  
             of  attack, 
 w ⎯ perturbed velocity along Z, 
 Zq ⎯ dimensional variation of Z force with pitch rate, 
 Zu ⎯ dimensional variation of Z force with speed, 
 Zα ⎯ dimensional variation of Z force with angle of attack, 

Zα ⎯ dimensional variation of Z force with rate of change  

            angle of attack, 
 α ⎯ perturbed angle of attack, 
 ςp ⎯ damping ratio the phugoid, 
 ςsp ⎯ damping ratio the short period, 
 θ ⎯ disturbed pitch attitude angle, 
 θ1 ⎯ steady state pitch attitude angle, 
 ρ ⎯ air density, 
 ωnp ⎯ frequency of phugoid, 
 ωnsp ⎯ frequency of short period. 
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