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Numerical simulation of the flow of an aerosol of polydisperse composition in a plane duct, where the reso-
nance acoustic oscillations are generated, which are directed across the flow, has been carried out. The peculiarities 
of the flow, which is followed by coagulation and alteration of the distribution of particles over their sizes, have been 
described. The carrying medium has been modeled with the aid of the system of Navier−Stokes equations for compres-
sible heat-conducting gas. The polydisperse phase dynamics is described by the systems of equations involving 
the equations of continuity, conservation of the momentum and internal energy. Equations of the motion of carrying 
medium and disperse fractions are written with allowance for interphase exchange by the momentum and energy. 
A Lagrangian model has been used to describe the coagulation process. The dispersion alteration in the gas-particle 
flow under the action of acoustic oscillations, which are resonant for the duct cross section, is analyzed. 
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Introduction 

The quality of the separation of phases in separators of the inertial type depends on the dis-
persion of the vapor-gas-droplet flow. If there are in the flow the particles with the radius 
of the order of one micron and less, then one fails to separate them in inertial separators from 
the carrying medium by virtue of a small velocity delay with respect to the carrying phase. 
Such a phenomenon reduces the efficiency of the technologies for gasification of cryogenic liq-
uids as well as the technologies for the water cleaning and desalination, which are based 
on the adiabatic atomization of liquids in nozzles [1] and on the centrifugal separators and vortex 
pipes, which are used for separation of phases. Numerous experimental works show that 
a vapor-gas-droplet medium of a polydisperse composition, which is non-equilibrium 
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in velocity, forms at the liquid atomization [2]. One can increase the efficiency of centrifugal 
separation at the expense of a preliminary acoustic action on the medium with the aid of non-
linear waves contributing to the coagulation of fine-dispersed fractions and a reduction 
of their concentration. In doing so, the choice of the wave effect intensity is limited by a critical 
Weber number [3] in order to ensure that the coagulation of particles at their collision pre-
dominates their fragmentation. To describe the dynamics of a coagulating polydisperse gas-
particle mixture a mathematical model is applied, in which a certain fraction corresponds to 
each size of particles [4]. The carrying phase is described by the system of the Navier−Stokes equa-
tions with regard for the exchange of the momentum and energy with all disperse fractions. 
The disperse fraction includes n fractions, each of which is described by a system containing 
the continuity equation for the mean density, conservation equations for the momentum com-
ponents, and the equation for the internal energy conservation, which are written with regard 
for the exchange of momentum and energy with the carrying medium. The process of parti-
cles coagulation is described with the aid of a Lagrangian model, which enables the consid-
eration of an exchange of mass, momentum, and energy between fractions because of particles 
collisions [3, 5]. 

1. Equations of the motion of a multi-velocity multi-temperature 
    polydisperse gas-particle mixture  

As the carrying medium, the gas is considered. Its motion is governed by the system of 
the Navier−Stokes equations. The system of motion equations for the multi-velocity multi-
temperature gas-particle mixture includes the system of motion equations for the carrying phase 
(1) and n systems of motion equations for disperse phases (2). The systems have the following 
form in Cartesian coordinates in the two-dimensional statement [4]: 
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Here ρ, u, v, ui, vi, e, λ, μ are the density, components of the velocities of the carrying and dis-
perse phases, total energy, components of thermal conductivity and viscosity of the car-
rying phase, 

=1,

= i

i n

α α∑  is the volumetric content of the disperse phase, which is obtained by 

summation over the volumetric contents of fractions. The quantities Fxi, Fyi, and Qi are deter-
mined by the laws of the interphase friction and heat exchange. I = RT/(γ − 1) is the gas internal 
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energy, R and γ are the gas constant and the air adiabatic constant. The dynamics of each com-
ponent of disperse phase is described by the equation for the conservation of the mean density 
of disperse phase, conservation equations for the momentum components, and conservation 
equation for the internal energy [4]: 
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Here αi, ρi, ei, and Тi are the volume concentration, mean density, internal energy, and disperse 

phase temperature, Сpi and ρi0  are the specific heat and density of the solid phase substance. 
The aerodynamic friction components Fx and Fy are determined as follows [4]: 
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The carrying medium temperature is found from the relation T = (γ − 1)(e/ρ − 0.5(u2 + v2))/R. 
The internal energy of the solid phase suspended in gas is determined as ei = ρiCpiTi. 

The coefficient of the gas thermal conductivity λ  as well as the thermal flux due to the heat 
exchange between the gas and the particle: Qi = αT4πri

2(T − Ti )n = 6αi ⋅Nui ⋅λ⋅ (T − Ti )/(2ri )
2 

enter the energy equation for carrying phase, where Nui = 2⋅riα
T/λ is the Nusselt number, 

n is the concentration, ri is the radius of particles. 
The system of motion equations for the two-phase multi-temperature multi-velocity 

polydisperse medium was written in generalized moving coordinates and solved by the second-
order explicit MacCormack method [6−8] with a scheme of nonlinear correction [9]. 

2. Model of the coagulation of aerosol particles 

The equations for the evolution of mass, concentration, momentum, and temperature 
of disperse fractions because of coagulation may be written as follows [3]. The mass 
of the ith particle mi (i = 2,…, n) increases at the expense of the absorption of finer jth 
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particles with the mass mj (j = 1, 2, …i − 1): 
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of particles of the i-fraction, ri  > rj. Under the assumption on the coagulation of particles, 

the correction coefficient 0 1ijk =  in all cases of the contact. The coefficient 0
ijk  can general-

ly be determined as the number of the collisions with coagulation per the total number of colli-
sions for the particles of the ith and jth fractions. A new value of the mass of the particles of 
the ith fraction in the current node of the finite-difference grid enables one to determine a new 
value of the particle radius ri. A reduction of the concentration of the jth particles due to 
their absorption by the larger ith ones (i = j + 1, j + 2, … n) is described by the equation 
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fraction, which has changed due to coagulation, is determined as αi = 4/3π ri
3ni. 

The concentration ni is determined in terms of the mean density and the radius of the ith fraction at 
each step of computations. The confluence of fine droplets with the larger ones leads to a change 
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capacity, and the mass of the particle of the ith fraction after the coagulation, Ti , Ci, and mi  
are the same parameters prior to coagulation. The changes in velocity and temperature 
of the disperse phase, which are caused by coagulation, were taken into account at each time 
step of the main algorithm. 

3. Results of the computations of flow and gas-particle mixture 
    coagulation in a plane duct under the acoustic field action 

Let the gas-particle mixture consisting of five fractions with the particle radii 
r10 = 1 μm, r20 = 5 μm, r30 = 10 μm, r40 = 15 μm, r50 = 20 μm and being in a suspended state move 
at the initial moment of time at the velocity u0 = 35 m/s and fills uniformly a plane duct (Fig. 1). 
The duct length L = 0.5 m, the height d = 0.06 m. The density of the particles substance ρ10 = 

= ρ20 = ρ30 = ρ40 = ρ50 = 1000 kg/m3. The initial mean density of disperse fractions ρ1 = ρ2 = ρ3 = 

= ρ4 = ρ5 = 0.000025 kg/m3, the air density ρ0 = 1.21 kg/m3. The temperature of the carrying 
and disperse phase at the initial moment of time T = 343 K. The specific heat of the disperse 
fraction substance С = 4.2 kJ/kg⋅K. The slip conditions are set on duct walls for the velocity of 
the carrying and disperse fractions; for all remaining gas-dynamic functions, including the inlet 

and outlet boundaries, the homogeneous 
boundary conditions of the second kind are set. 
At t > 0, the process of in-phase oscillations of 
the transverse velocity component of the inter-
vals of the upper and lower duct walls starts 

 

Fig. 1. Channel scheme with a resonant site. 
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((L − L1)/2 < x < (L + L1)/2, y = 0), ((L − L1)/2 < x < (L + L1)/2, y = d) according to the law v(t) = 
= A⋅sin (ω t) (Fig. 1), which leads to the generation of oscillations in the carrying and dis-
perse phases. The oscillator length L1 = 0.1L. The oscillation frequency is equal to the first 

eigenfrequency with respect to the duct cross section ω = π с /d, where с = (γ RT)1/2 is the sound 
velocity in gas at a given temperature. The computations were done on an orthogonal grid con-
taining 200×30 nodes in the longitudinal and transverse directions. 

4. Flow and coagulation of the gas-particle mixture at the first 
    eigenfrequency of resonance oscillations of the gaseous column 
    in the transverse direction  

Figures 2a and 2b show the temporal dependencies of the longitudinal and transverse 
components of the velocity of the carrying and disperse phase of five fractions in the flow on 
which a standing wave field with the first eigenfrequency of transverse oscillations of the gas-
eous column and the amplitude A = 0.0003 m of the oscillations of the transverse velocity 
component on the walls acts locally. The oscillations of the transverse velocity component are 
nonlinear, with a steep leading front and a gentle rear front. The amplitude of oscillations 
of the transverse velocity component reaches 60 m/s (Fig. 2a). The velocity slip of the car-
rying phase and the finest fraction (r1 = 1 μm) is insignificant, the velocity curves are very 
close (Fig. 2b). With the increasing radius of particles, the amplitude of the velocity oscilla-
tions of the solid fraction decreases, the temporal delay of the variation of the disperse phase 
velocity relative to the carrying medium increases. The highest value of the Weber number for 
the fraction of water droplets with radius r = 20 μm is reached in the loop of standing waves 
and makes Wemax = 2ρ r50 max | u − u5| /σ = 4.4, where ρ and σ are the carrying medium 
density and the surface tension coefficient of water. Thus, Wemax is less than the critical range 
of the Weber numbers Wecr = 10−20. Hence, one can suppose that the particles retain their 
stability at collisions, and their coagulation is a predominant process at the collisions of drop-
lets. During one period of the oscillations of the transverse velocity component, there occur two 
periods of the longitudinal component oscillations (Figs. 2a and 2b). At the initial moment 
of time the velocities of the carrying phase and disperse fractions are equal. The motion velocity 
of solid fractions in the longitudinal direction decreases with time. Velocity oscillations in 
the axial direction lag in phase from the oscillations of the transverse velocity component, 
and the maxima of the transverse acceleration component correspond to the maxima of 
the longitudinal velocity component. The minima of the longitudinal velocity component cor-
respond to the maxima of the transverse velocity component (Figs. 2a and 2b). 

Figures 3a and 3b show the functions describing the changes of the gas-particle mixture 
dispersion with time due to coagulation. The radii of particles of all fractions, except for 

 
 

Fig. 2. Temporal dependences of speeds of fractions at point (L/2, d/2). 
Velocity components: the transverse component (a), axial component (b); 

R0 = 1 μm (1), 5 μm (2), 10 μm (3), 15 μm (4), 20 μm (5). 
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the finest one, grow with time (Fig. 3a), whereas the mean density of fractions changes 
nonmonotonously. The fraction mean density with particles radius 1 μm monotonously 
drops in time and nearly vanishes by the moment of time t = 0.04 s. The mean density of larger 
fractions (5 μm, 10 μm, and 15 μm) at first reaches the highest value, and after that, decreases 
monotonously. At the same time, the mean density of the largest fraction permanently increases 
with time (Fig. 3b). 

Figures 4a and 4b show the functions characterizing the variation of the dispersion of solid frac-
tions by the moment of time t = 0.15625 s. The highest rate of the diminution of the concentration 

 
 

Fig. 3. Temporal dependencies at point (x = L / 2, y = d/2). 

a ⎯ the radius of aerosol particles with the initial radius R0 = 1 μm (1), 5 μm (2), 10 μm (3), 15 μm (4), 20 μm (5);  
b ⎯ mean density of disperse fractions with the initial radius of particles R0 = 1 μm (1), 5 μm (2), 10 μm (3), 15 μm (4), 20 μm (5). 

 
 

Fig. 4. Characteristics of dispersion of solid fractions and the transverse velocity component 
of fractions along the channel axis (y = d/2) at the moment of time t = 0.15625 s. 

a ⎯ distribution of concentrations, b ⎯ radii of particles of fractions, c ⎯ mean density of fractions,  
d ⎯ transverse velocity component of fractions; R0 = 1 μm (1), 5 μm (2), 10 μm (3), 15 μm (4), 20 μm (5). 
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of particles because of their coagulation in the acoustic field is observed for the finest fraction. 
In the neighborhood of the source of acoustic oscillations, the concentration of particles 
with the radius of 1 μm drops by about four orders of magnitude (Fig. 4a). The effective 
radius of particles of all fractions, except for the finest one, rapidly increases in the same 
region (Fig. 4b). A zone extended downstream forms, in which the mean density of fine dis-
persed fractions drops, and the mean density of the fraction of particles with R0 = 20 μm 
increases (Fig. 4c). Thus, the action of resonance wave fields on the coagulating gas-particle 
mixture flow enables one to reduce efficiently the concentration of fine dispersed fractions, 
which may be used as a preliminary stage for increasing the efficiency of separating the phases 
in the separators of inertial type. 
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