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Abstract—This paper considers the geochemistry and conditions of generation for the Mesozoic Au—Ag epi-
thermal deposits in the Okhotsk—Chukchi volcanic—plutonic belt (OChVB) in Northeast Russia. We provide
new data on the composition and concentrations of trace elements, including REEs, in the ores of epithermal
Au—Ag deposits. The ores were found to be enriched in a wide range of trace elements. The REE distributions
of these ores are dominated by light “hydrophile” lanthanoids of the “cerium” group. The Eu anomalies were
found to vary between high negative to low and high positive levels. Comparative analysis over the classes of
gold concentration showed a synchronous enrichment of the ores in similar sets of trace elements. A study of
fluid inclusions revealed that the ore-forming solutions had hydrocarbonate potassium or hydrocarbonate
sodium compositions. The fluids had high concentrations of sulfate ions for most deposits. The salinity of the
fluids was frequently found to increase toward later low-temperature mineralization phases. We identified the
tendency of increasing K* percentage in the fluid from the earlier oreless quartz to productive quartz with
increasing depth, as well as some decrease in the percentages of Nat, Ca**, and Cl~. The results indicate
magma chambers of andesite magmas and meteoric waters as the most likely sources of the fluids that gener-

ated the epithermal Au—Ag ores in the OChVB deposits.
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INTRODUCTION

The older placer areas are sufficiently well known in
Northeast Russia that it became obvious many years
ago that rapid growth in gold mining should primarily
be expected from exploration to detect epithermal Au—
Ag deposits in volcano-plutonic belts (the OChVB and
others). Over 140 tons of gold and 2000 tons of silver
have been extracted in the short timespan of 10 years in
the unique Kupol Au—Ag epithermal deposit.

The OChVB is the longest among all volcano-plu-
tonic belts in Northeast Russia (over 3000 km) (Fig. 1).
Most of the known OChVB Au—Ag epithermal depos-
its are being mined today. Several deposits have been
exhausted: Karamken, Vetvistoe (Magadan Region),
Sopka Rudnaya, and Severo-Vostok (Chukotka).
A number of deposits (Moroshka, Sentyabr’skoe,
Zhil’noe, and Gornoe) are being developed. Most
OChVB deposits are of the low-sulfidation type
(Kupol, Dvoinoe, Dzhul’etta, and others); the second
most numerous group of deposits have intermediate
(medium) sulfidation (Dukat, Lunnoe, Gol’tsovoe,
and others), while only two deposits (Svetloe and Per-
ekatnoe) can be classified as belonging to the high-
sulfidation subtype.

The OChVB was found to contain several tens of
promising ore occurrences, over 2000 mineralization
sites, and several thousand geochemical anomalies.
The mining companies reported extracting 30 tons of
Au and over 960 tons Ag from the OChVB epithermal
deposits in 2017.

The main goal of the present study is to sum the
data, both that available in the literature and new data
obtained by these authors, in order to identify geo-
chemical and thermal, pressure, and geochemical fea-
tures in the Mesozoic OChVB Au—Ag epithermal
mineralization, to derive new information concerning
the conditions of mineralization, to use the sum of this
knowledge in order to design new criteria and refine
known ones for assessment of industrial significance
and prediction of deposits. The method used in the
analytical studies was described in detail in our previ-
ous paper (Volkov et al., 2017b).

THE MESOZOIC VOLCANISM
AND EPITHERMAL Au—Ag
MINERALIZATION IN THE OCHVB

The OChVB is 3000 km long; its average width is
200 km. The OChVB was forming during 25 myr
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Fig. 1. A map showing the regionalization of the OChVB and the location of the known epithermal Au—Ag deposits. (1) a gener-
alized boundary of the OChVB igneous formations: Albian—Santonian: on land (a) and in sea (b); (2) boundary between the outer
and inner zones of the OChVB; (3) boundary of the subzones of depression grabens and of that of magmatogenic uplifts;
(4) inferred boundaries in water area; (5) boundaries of sectors in the outer zone and in flank zones; (6) volcanic rocks in outer

zone; (7) OChVB magmatogenic uplifts; (8—11) OChVB outer

zone, sectors: (8) Okhotsk, (9) Penzhina, (10) Anadyr, (11) Cen-

tral Chukchi; (12, 13) flank zones: (12) West Okhotsk, (13) East Chukchi); (14) Late orogenic (late Barremian to early Albian)
Mesozoic structures: O Omsukchan graben, P Verkhne-Penzhina, U Umkuveem, A Ainakhkurgen, T Tytyl’veem basins, KH
Khurchan—Ortukan TMA zone; (15) gold—silver deposits: (1) Nyavlenga, (2) Dzhul’etta, (3) Tikhoe, (4) Dukat, (5) Agan, (6) Oira,

(7) Dal’nee, (8) Kupol, (9) Moroshka, (10) Televeem, (10) Dv:

(Belyi, 1994) at the boundary between the continental
Verkhoyansk—Chukchi and Koryak—Kamchatka ter-
rane (see Fig. 1). The OChVB evolution proceeded in
two phases: (1) the earlier (Albian—Cenomanian)
phase in which approximately 90% of all volcanic
rocks were produced, and (2) the later (Turonian—
Santonian) phase when the Koryak—Kamchatka
structures evolved. The formation of the OChVB was
probably caused by the Pacific plate being subducted
under the collage of the terranes accreted to the Sibe-
rian continent. The main sources of acid magma were
in the continental crust during this volcanic episode;
the crust seems to have been Neoproterozoic (Tik-
homirov et al., 2008).

The OChVB consists of three elements (see Fig. 1):
the main arcuate part that extends from the lower
reaches of the Ul’ya River to the coast of the East
Siberian Sea (approximately 2000 km); this part is
called the Tauisk—Chaun arcocline, with the other
elements being the western Sea-of-Okhotsk and East
Chukchi flank zones (Belyi, 1994). In fact, these ele-
ments are independent structures that are joined
together by a left lateral end-part juncture that were
formed during the same span of geologic time.

The outer and flank zones of the OChVB typically
contain various isometric negative volcanic structures:
subsidence structures with a caldera form (depressions
and subsidences) and calderas; circular intrusive—
effusive edifices; and volcanic grabens and semi-gra-
bens that have inherited the fault directions in the
basement. Dome-like intrusive—effusive and crypto-
intrusive structures are abundant in all zones, but their
role is relatively small, although the mineralization
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oinoe, (11) Sentyabr’skoe, (13) Pepenveem, (14) Pechal’noe.

location is not infrequently controlled by these struc-
tures.

One important element in the OChVB structure
consists in magmatogenic uplifts where the principal
parts of the larger intrusive bodies are concentrated. In
the inner zone, most of these structures were evolving
inheriting the analogous uplifts in the Koni—P’yagin
zone of the Taigonos volcanic arc. These were forming
in the outer zone during the earlier phase in the
OChVB evolution and their relative area is consider-
ably below that in the inner zone. Some of these are
elongate parallel to the overall OChVB trend, while
others are transverse. Magmatogenic uplifts are infre-
quent in the flank zones.

The Verkhoyansk—Chukchi Mesozoic features
experienced the greatest activation in the late Creta-
ceous to early Paleogene; the activation seems to have
been synchronous with a phase in the OChVB evolu-
tion (Sidorov et al., 2013). The area of influence
exerted by the Late Mesozoic tectono-magmatic acti-
vation (TMA) is identified as a perivolcanic zone of a
hazy boundary (as wide as 500 km) that covers the
southern part of the Yana—Kolyma system, the Oloi
zone, and the Chukchi system. One feature that is
noticeable in the deep structure of the perivolcanic
zone is the presence of large low-density locations in
the lithosphere. These locations are frequently adja-
cent to the OChVB volcanogenic depressions and
basins that show some inheritance of the Mesozoic
structural plan. The linear TMA (tectono-magmatic
activation) zones are treated here as branches away
from the OChVB; chains of volcanic fields and intru-
sive bodies are also frequently located on extensions of
tongues of the belt blanket formations of varying
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lengths. At the same time, they are different from the
belt formations in having different tectono-magmatic
features, which are largely controlled by isolated local
occurrences of magmatism and by metallogenic fea-
tures.

All the OChVB structures and the feather TMA
zones described above have ore potential. However,
the ore potential of volcanogenic structures and of the
feather TMA zones are known fragmentarily for the
southern part of the Okhotsk sector of the OChVB, for
the outer part of the Central Chukchi sector, and very
poorly for the inner part of the Anadyr sector.

The complex structure of the basement terranes
gave rise to a great diversity of ore assemblages in the
OChVB (Sidorov et al., 2009). The inner zone of the
belt more frequently contains deposits of the Cu—Mo-
porphyry formation containing Au, Ag, and plati-
noids. The outer and perivolcanic TMA zones typi-
cally contain Au—Ag, Ag—base-metal and Sn—Ag
mineralization (Sidorov et al., 2011). Epithermal Au—
Ag deposits proper (with Au/Ag 1/1—1/10) are more
abundant in the outer zone. Silver-dominated deposits
(Au/Ag = 1/10—1/1000) are confined to the Omsuk-
chan riftogenic volcanic depression, which introduces
complications into the OChVB between the Yana—
Kolyma and Omolon terranes (Sidorov et al., 2009). It
should also be remarked that the OChVB does not
contain any significant Au—Ag—Te deposits and
occurrences, which were thought by Nolan (1933) to
be related to small volcanic bodies in the Cenozoic
volcanic belts of the western United States.

The generation of epithermal deposits of domi-
nantly Ag and Au—Ag types in the volcanic belts is
largely due to the fact that they are underlain by poten-
tially gold- and silver-bearing rock sequences of the
Verkhoyansk and Chukchi terrigenous units, as well as
by older metamorphic units of median massifs (cra-
tons), which were extra sources of metals for volcano-
genic—plutonogenic deposits (Volkov et al., 2006).

Comparison among different OChVB sectors by
the intensity of epithermal mineralization shows that
the well-known Okhotsk sector (the Karamken,
Nyavlenga, Dzhul’etta, and Dukat deposits, the
Evensk group, etc.) is inferior to the poorly known
Anadyr sector in terms of proved Au reserves in epith-
ermal deposits. The Anadyr deposits are Kupol,
Moroshka, Sentyabr’skoe, Valunistyi, and Dvoinoi.

This fact seems to be due to the rather complex
geological structure of the Okhotsk sector. In this sec-
tor one finds abundant rejuvenated epithermal depos-
its (Goncharov and Sidorov, 1979). In addition, the
Okhotsk sector is dominated by acidic igneous units of
the Ag—Sn—Mo type (Sidorov et al., 2009). At the
same time, one discerns a pronounced relationship
between epithermal Au—Ag mineralization and the
Cu-porphyric ore-forming system on the Kupol
deposit in the Anadyr sector (Volkov et al., 2012).
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The geochemical features of Au—Ag ores in epith-
ermal deposits that will be discussed below show many
similarities to the ore assemblage patterns pointed out
above.

THE GEOCHEMICAL FEATURES
OF THE OCHVB EPITHERMAL ORES

The ores sampled from the Mesozoic epithermal
Au—Ag deposits are dominated by SiO, (67.6—92.8%)
along with noticeable concentrations of Al,O; (3.2—
14.0%), K,O (0.44—5.5), and Fe,0, (0.48—5.1) (Table 1).
The ores of the Tikhoe deposit are found to contain
noticeable concentrations of Na,O (2.27%) and CaO
(4.83%) (see Table 1), which is caused by mineraliza-
tion in an argillite zone (Volkov et al., 2015). The
Dukat ores typically show high concentrations of
MnO (3.9) and the Nyavlenga ores have high concen-
trations of MgO (3.46) (see Table 1), which is due to
the special type of mineralization in these deposits
(Volkov et al., 2014). The metasomatic ores of the
Agan deposit (Volkov et al., 2015) show the highest
total Na,O + K,O (see Table 1). Judging from the data
in this table, the concentration of sulfides in the ore
samples studied here varies in a wide range (S, is
between 0.3% and 3.2%).

The results of trace-element analyses for the
OChVB ores of volcanogenic epithermal Au—Ag
deposits and host rocks are presented in Table 2 and in
Fig. 2 where the values have been normalized by the
means for the upper crust (Taylor and McLennan,
1985). It follows from Table 2 and Fig. 2 that the ores
are clearly enriched in a wide range of elements (Li, P,
Rb, V, Cr, Sc, Ba, Mn, Au, Ag, As, Sb, Te, Cu, Mo,
Zn, Pb, In, Cd, Ga, Co, Mo, Bi, TI, Cs, Be, Se, W,
and U) compared with the upper crustal means (Tay-
ler and McLennan, 1985). The enrichment ratios vary
between a few times (Li, P, Sc, Rb, Cs, Cr, V, Tl, Ba,
Se, W, and U) and a few tens (Mo, Mn, and Sn), hun-
dreds (Pb, Cu, Zn, Be, and Te), and thousands (As,
Sb, In, Cd, and Bi), reaching a few tens or hundreds of
thousands of times (Au and Ag), thus providing evi-
dence of a geochemical affinity of trace elements and
their synchronous participation in the mineralization.

Comparative analysis of mean trace-element con-
centrations in the ores of the OChVB epithermal Au—
Ag deposits shows great similarities in composition
and distribution (see Table 2, Fig. 2). This shows that
the mineralization of these deposits occurred under
similar conditions. At the same time, the Dukat ores
are characterized by an appreciable synchronous
enrichment in Be and Mn (see Fig. 2), which is due to
a wide abundance in the ores of minerals that contain
these admixtures (Konstantinov et al., 1998). The
Pechal’noe ores show an obvious synchronous enrich-
ment in Li, Be, Rb, Cs, Mo, W, and TI, which corre-
sponds with the composition of the host volcanic
rocks (Egorov et al., 2005; Volkov et al., 2017b). The
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Fig. 2. Trace elements in the ores of the OChVB epithermal Au—Ag deposits as normalized by the mean upper crustal values (Tay-

lor and McLennan, 1985).

epithermal ores in the Agan deposit have a distinguish-
ing feature, viz., a high enrichment in Sn (see Fig. 2),
which classifies the ores as belonging to the tin-por-
phyritic mineralizing system (Volkov et al., 2015).
Similar distributions but different intensities of indi-
vidual elements occur in the Kupol, Moroshka, Dvoi-
noi, Sentyabr’skoe, Televeem, Dzhul’etta, Oira,
Dal’nee, Nyavlenga, and Tikhoe deposits (see Fig. 2),
which may have been because they belong to the Cu—
Mo-porphyritic mineralizing system (Volkov et al.,
2012, 2014). The low intensity of elements in the dis-
tribution of the Nyavlenga deposit compared with the
ores of the other known deposits seems to be due to
thermal metamorphism of the ores (Savva et al., 2007).
The noticeable enrichment in Bi and W observed in the
Pepenveem ores provides evidence that this deposit
belongs to a mineralizing system related to granitoid
intrusions (Lang et al., 2000).

Comparative analysis of the trace-element distribu-
tions in the ores over gold concentration class (Fig. 3)
emphasizes a synchronous enrichment of the ores in a
similar set of trace elements from low (1—5 g/t) to high
class (>100 g/t).

The OChVB host volcanic rocks are also enriched
in a wide range of elements (Li, Sc, Ti, V, Mn, Sr, Co,
Ba, REEs, etc.) compared with the upper crustal val-
ues (Taylor and McLennan, 1985), but the enrichment
ratios for most of them are low (2 to 5 times). The
highest enrichment ratios ranging between 5 and 10 or
higher (As, Ag, Pb, Sb, and Mo) were found for host

JOURNAL OF VOLCANOLOGY AND SEISMOLOGY  Vol. 12

rocks within the epithermal ore fields (Sakhno et al.,
2015; Kravtsova, 2010).

According to V.A. Zharikov et al. (1999), light
REEs pass into aqueous fluid as the pressure
increases, while heavy ones are retained in the magma,
so that one can treat the former as “hydrophile” ele-
ments and the latter as “magmaphile” ones. Three
REE sets can be identified (Mineev, 1974): the cerium
set (La, Ce, Pr, and Nd), the yttrium set (Sm, Eu, Gd,
Dy, and Ho), and the scandium set (Er, Yb, and Lu).
Judging from the data in Table 3, the REE distribu-
tions of the ores are dominated by light “hydrophile”
lanthanoids of the “cerium” set. A similar REE com-
position is also typical of the OChVB host volcanic
rocks (Kravtsova et al., 2005; Kravtsova and Almaz,
2006; Kravtsova, 2010; Tikhomirov et al., 2008, 2016;
Sakhno et al., 2015).

We know that Cl-bearing hydrothermal fluids can
effectively concentrate light REEs, but are depleted in
heavy REEs (Oreskes and Einaudi, 1990); in that case
the Hf/Sm, Nb/La, and Th/La ratios in the ores are
generally below 1, while F-rich fluids synchronously
concentrate light and heavy REEs, since the Hf/Sm,
Nb/La, and Th/La ratios are usually greater than 1
(Oreskes and Einaudi, 1990). The ores in most of the
OChVB epithermal Au—Ag deposits are evidently
enriched in light REEs and depleted in heavy REEs,
and have Hf/Sm, Nb/La, and Th/La ratios below 1
(see Table 3); one exception is the Sentyabr’skoe
deposit where Hf/Sm = 1.13. It follows that the ore-

No.6 2018



366 VOLKOV et al.

(a)
10000 -
21000 -
o
=
=
13}
=
b= 100
o
153
5y
o
o)
2 10t
k4
o
=
<
” 1
Li  BePScMnCo Zn Ga As SeRbMo Ag Cd In Sb Te Cs W TI Pb Bi Cu
(b)
10000 +
Z 1000 |
5
=
=
=
= 100 -
=
]
15}
53
&
% 10
2
o
=
<
” 1
Li BeP Sc CrMnCo Zn Ga As Rb Mo Te GCs W TI Pb Bi Cu
10000 -
1000 +
100

Samples/upper continental crust

isse, NM“ ﬂN i

Li BeSc V Cr MnCoZn Ga As Rb Mo Sb  Cs BaEuW Pb Bi Cu

Fig. 3. The trace-element distribution over classes of Au concentration in the ores of the OChVB epithermal Au—Ag deposits as
normalized by the mean upper crustal values (Taylor and McLennan, 1985). Classes of Au concentration (g/t): >100 (a), 10—20
(b), and 1-5 (¢).

JOURNAL OF VOLCANOLOGY AND SEISMOLOGY Vol. 12 No. 6 2018



367

EPITHERMAL MINERALIZATION

"HAY Axeoy 10 THYH ‘Y WS 10§ spuess FAYT “ aay (¢/(Nws + Neqg))/Nop = 400/ (;/(;,,(NngNa1)Nws)/Nog = .ng/ng

020°0 | 81070 ¥10°0 620°0 €60°0 | 2S00 | 6100 |1€00 | 00| SO0 | 8€0°0 | 9100 ¥01°0 810°0 20/ng
SLY'91| LTITE | TIPS b6£°€T T60°TT | LZT9T| LSL'ST | €TSLT | 69LTI| YLL'ST | SO'SI| 8L8OT | LLI'VT | 96V1T V)
L61°0 | 89T°0 $ST0 60€°0 62€°0 | ¥€9°0 | 6070 | LIEO | 1LZ0| SS¥O | 66€0 | +TI'0 9560 L61°0 ws/ng
PPIT| €250 6050 SET pOY'T | 10T | SSFT | L0671 | LESTT| S6L°0 | ¥20T | ¥6T'1 6€1°0 862°0 08X
7009 | TSH'l 8€0°€ A 60v'S | 99v'v | 10Sv | SILL | SE€bv| vITE | 6S9°T | 9€T€ 8LLO £90°1 AX
VL6VE| 6SE9T | 9IL'€T SIL'TE 989°IS | 81Y'9T| 868°€E | S6'9F | STH'SI| S68°vT | €I'vI| SPL'ET | I8€E 6859 0%
€99 | T0SOT | 6LI'0T 8TH'8 959°'L | STTOI| SS8'8 | STI'6 | SoL€| €658 | €Ib'S | TSIY 896°06 | PLOPI | NNI/N®T
$0ET | ££6°0 €Ip'€ LIS'T SPLT | 80I'T | T€T | T9rT | LOWT| SS6'T | 100l | 68T 1T8T PII'C | NAA/NPD
s6re| IS L19°€ LSH'E 950°¢ | 66V'€ | 89K'E | bEO'E | SLT| €06T | S€L€ | TaT LSS'T 1L8T | NWS/NeT
€165 | LISTIT| +66'8T €pI'8 88C°L [866'8 | TII'S | €206 | €I€€| ST99 | €SL°S | LETE pIEL 129 | NAA/N®T
€560 | 160 2660 6860 TI0T | S00T | 600 |TEOT | 6807 | TS60 | 6060 | 1L0TT 680°T ST'T 2/
969°0 | ¥00'T 290 €60l 9901 | 9¥LT | 6LL0 | 110T | 9160 | TS arr | 88t0 $€9°C €LL°0 Lng/ng
S10°0 | L¥1'0 L00°0 9zI'Tl VLS'y | €8Y'TE| LT00 | LO6TT | L€9°0| €SO | Tv¥O | STIO S6b'€ €990 8y/ny
609°0 | S8t - 290 b€0'0 |[bZST | 1200 | 69Y°0 | 98V | — 800°0 0 8S1°0 118°0 as/aL
$90°0 | 70 850 €9€°C LL9T | L8L°O | LTTO | SOU'9 | L6SE€| +I9T | STLT | 9876 €ILT 688°0 IN/0D
65581\ SLF91 1Tyl 986'C1 CILLL | T6TST|  €LI'ST | THI'ST | €€ISI| 69L°0T | 668L | S'IT - €LTLE e1/aN
€86'6€| LbL'SE | €1ST8ET|  THO'OE PPy e | 691°CH| 889°SE | 9TTLE | TTS6E| S09°6E | PISTIE| €5L°9€ | 606'SSEI|  TS6'0L JH/1Z
7900 | 6£0 10 €LT0 1200 | LITT | 9410 [L0V'0 | 19€°0| 80€0 SI'T | 920°0 200 6550 eq /1S
$89°L | 6L8°C 171 118°0 65V°0 | 9¥E€0 | 9L£'8 [ 819°0 | LSTT| +TOT | 8LS°O | S9TSI | bbeEl 4383 I1S/q4
S0S°T | TTH o $L9°0 LYT0 pLE'0 | €6T°0 | STEO | 91€0 | ¥IFO| SILO | 6IS0 | 11¥0 LES O 125°0 uLr/n
bEO'EE| LLL6T | 8ESET €LYLT SIL'8T | 18'8T| 68L°ST | ¥ISST | 66€°5T| 8€€E | 16871€| S6v°0€ | I8YTH 16'6€ OH/A
8870 | L6£0 65€°0 6vS°0 €970 |T6T0 | €970 96070 | TSEO| SII0 | €5T°0 | S6€0 1L1°0 LSL'0 eT/uL
0¥C0 | LTE0 2600 €LE0 9zL'0 | 8610 | 90¥°0 |9¥T0 | +TE0| 6VI0 | €€T°0 | 8€T0 | 900 8¥T°0 eT1/AN
€6L°0| 8780 $00°0 LETT L0 | LhL0 | 6€8°0 |129°0 | €06'0| #9S°0 | 9SIT | 29€0 1200 £19°0 ws/JH
dTIHL
LES'S| TI6TT | S6E01 8L1'S €80°L | LIS'L €8 |wTL | S9vv| €€ss | 9TS | 920p 1759 1929 /3391
9z€9 | T 96€°T L60'y €SLL | ¥IL€ €y 1589 | €8v'b| T06T | SS8'T | Ts9'€ LS°0 €10°T a99YHT
926'9¢| SYO'LT | 106'T 10S°€€ €16'4S | €6T°8T| 169°SE [ 8S8°6v | ¥10°07| 95091 | S10°ST | €0L¥1 €Le 878°9 aT91%
STE S9E81 | 96T'LT 865°LE 999'79 | LSO'TE|  66'6E | ¥IL'9S | L6v'bT| 8S6'ST | €L8'LI| SSESI €y 198°L a3dx
uedy | WA | tooAuado | 90¥S IqeAIUS | BIUSTARAN] | QOUYIL |20U [BY09] |99U, [e(I| BIIQ |eYysoIojA| Todny | 1evn(q |ene, [nyz( | 20UuToA(]
SIojedipu
SLIsoddd P

susodep Sy—ny [ewayiide gAUDO Y3 woly pafduues 210 Jo sidjowered 101edIpul oY *€ dqe],

2018

No. 6

JOURNAL OF VOLCANOLOGY AND SEISMOLOGY  Vol. 12



368

forming fluids of the deposits belonged to a NaCl—
H,O0 hydrothermal system that was enriched in CI rel-
ative to F; this agrees with studies of fluid inclusions in
ore quartz (Volkov et al., 2012; Kolova et al., 2015;
Prokof’ev et al., 2015, among others).

The U/Th ratio for an ore reflects the redox condi-
tions of the host rocks (Jones and Manning, 1994):
U/Th < 0.75 occurs in an oxidizing environment;
U/Th 0/75—1.25 is characteristic of an environment
without oxygen, and U/Th > 1.25 for a reducing envi-
ronment. Judging from the data in Table 3, the U/Th
ratios in the ores of the deposits studied here are below
0.75 (they vary between 0.24 and 0.71), providing evi-
dence of an oxidizing environment during their miner-
alization (Jones and Manning, 1994). The high values
of that ratio (1.5) in the Agan ores (see Table 3) indi-
cate a reducing environment of mineralization that is
characteristic for the shallow level of the epithermal
system where the deposit was formed (Volkov et al.,
2015).

The Co/Ni ratios in the Dvoinoe, Pechal’noe, Tik-
hoe, Pepenveem, Televeem, and Agan ores (see Table 3)
are considerably below 1.0 (they vary between 0.06 and
0.88), which is characteristic for medium- and low-
temperature hydrothermal fluids of meteoric origin
(Kun et al., 2014). Values above 1.5 in the Dzhul’etta,
Dukat, Kupol, Moroshka and other ores (see Table 3)
provide evidence of an obvious role played by a mag-
matic fluid in the mineralization (Kun et al., 2014).
The high Co/Ni ratio in the ores shows the superposi-
tion of a later magmatic fluid on the earlier mineral-
ization and is a consequence of a rejuvenated mineral-
ization (Goncharov and Sidorov, 1979).

Effective use of the Y/Ho ratio for assessing the
origin of mineralizing fluids was shown in (Bau, 1991;
Jones and Manning, 1994; Monecke et al., 2002).
According to Table 3, the Y/Ho ratios in the OChVB
epithermal Au—Ag ores studied here vary between
23.53 and 42.48, which corresponds with the range of
the ratios that are characteristic of the present-day
hydrothermal fluids in backarc basins (Bau, 1991;
Jones and Manning, 1994; Monecke et al., 2002).

The REE composition in the OChVB epithermal
Au—Ag ores studied here is shown in Table 2, while the
chondrite-normalized REE distributions are plotted
in Fig. 4. Abnormally low values of XREE (between
4.3 and 18.95 g/t) were found in the Dvoinoe,
Dzhul’etta, Dukat, Kupol, Moroshka, and Televeem
ores (see Table 3). Lower values of XREE (24.49—
39.99 g/t) are characteristic for typical epithermal ores
in the Oira, Pechal’noe, Tikhoe, Pepenveem, and
Sentyabr’skoe deposits. Higher values (43.25—62.66)
of XREE were found in the Agan, Nyavlenga, and
Dal’nee ores. Low total REE concentrations, the
same as in the OChVB deposits, were found in pro-
ductive quartz in the ores of the epithermal deposits on
the Kuramin Range, Uzbekistan and of the Banska
Stiavnica area, Slovakia (Vinokurov et al., 1999). The
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total REE concentration in the epithermal Au—Ag
ores of the deposits studied here (see Table 3) is appre-
ciably lower than those in the OChVB igneous and
volcanic rocks and in island-arc andesites (Kravtsova
et al., 2005; Kravtsova and Almaz, 2006; Kravtsova,
2010; Tikhomirov et al., 2008, 2016).

The chondrite-normalized REEs of the ores stud-
ied here make slightly dipping near-chondrite distri-
butions (see Fig. 4a) that exhibit many similarities in
their configurations to those of the REE distributions
for the OChVB rocks (see Fig. 4c), as well as for
island-arc andesites (Kravtsova et al., 2005; Kravtsova
and Almaz, 2006; Kravtsova, 2010, among others).

The REE distributions clearly distinguish three sets
of ore (see Fig. 4a). The distributions of the first set
(Dzhul’etta, Moroshka, Tikhoe, and Kupol) show
well-pronounced Eu maxima (see Figs. 4a, 5). Pro-
nounced Eu minima were found for the distributions
of the Dvoinoe, Dukat, Pepenveem, and Agan ores
(see Figs. 4a, 5). The slightly dipping near-chondrite
distributions that involve no pronounced Eu maxima
and minima are characteristic for the ores of the third
set (Nyavlenga, Televeem, Pechal’noe, Oira, and Sen-
tyabr’skoe). Differently directed distributions were
found for the Kupol ores (see Fig. 5), which supports
the identification of two types, viz., high- and low-sul-
fidation epithermal mineralization, on this deposit
(Volkov et al., 2012).

The REE distributions clearly separate the OChVB
host volcanic rocks into two sets. Acidic rocks typically
show distributions with pronounced Eu minima,
while intermediate rocks make slightly dipping near-
chondrite distributions. We note that the epithermal
Au—Ag Cenozoic deposits of Kamchatka that are
localized in intermediate (andesitic to dacitic) rocks
were found to have near-chondrite REE distribution
configurations (Takahashi et al., 2007; Andreeva,
2013).

To summarize, we can state that the different ratios
in the ore-containing section that is composed of vol-
canic rocks with different compositions seems to con-
trol the REE distribution configurations in the ores.
These results suggest that the OChVB host rocks, as
well as the host rocks in the other volcano-plutonic
belts in Northeast Russia (Volkov et al., 2017a) might
be the source of the REEs and possibly of other trace
elements for the ore-forming fluids.

According to S.V. Vinokurov et al. (1999), positive
Eu anomalies constitute a characteristic feature of
productive quartz in epithermal Au—Ag deposits,
while oreless quartz in such deposits exhibits negative
Eu anomalies (Vinokurov et al., 1999). This inference
is also supported by our results (see Fig. 4b). Judging
from this figure, the distributions of rich ores differ
from those of poor ores in having pronounced Eu
maxima. It may be hypothesized that the Eu maxima
in the ores of the first set (see Fig. 4a) are due to their
richness.
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Table 4. The physico-chemical parameters of mineral-forming fluids at the OChVB Au—Ag deposits

Physico-chemical parameters of fluids
Deposit References
T, °C C,wt % d, g/cm’ P, bars

Dukat 201-357 (6) 2.5-2.8 0.63—-0.88 90 (1) Berman et al., 1993
Dal’nee 220—-355 (22) 0.6—2.4 0.57—0.86 — Kravtsova, 2010
Dukat 185—435 (46) 1.5-37.0 0.64—1.11 — Kravtsova, 2010
Kupol 222-267 (4) 2.1 0.78—0.86 - Volkov et al., 2006
Kupol 225 (1) 1.9 0.85 — Sidorov et al., 2007
Kupol 222-276 (12) 0.5-3.2 0.75—0.86 — Volkov et al., 2012
Dvoinoe 154-251 (7) 0.2—-5.0 0.80—0.95 — Volkov et al., 2012
Arykvaam 234—-267 (10) 0.4—1.2 0.79—0.82 — Volkov et al., 2012
Kupol 224276 (12) 0.5-3.2 0.75—-0.86 — Prokof’ev et al., 2012
Dvoinoe 154—-251 (7) 0.2-5.0 0.80—0.95 — Prokof’ev et al., 2012
Dvoinoe 133—-254 (9) 0.5-3.9 0.82—0.94 — Nikolaev et al., 2013
Sentyabr’skoe 155—360 (32) 0.9-8.1 0.24—-0.94 80—570 (8) Nikolaev et al., 2013
Nyavlenga 157—359 (27) 0.3-8.2 0.56—0.93 — Volkov et al., 2014
Dzhul’etta 126—222 (20) 1.2-5.6 0.86—0.97 - Prokof’ev et al., 2015
Tikhoe 105—260 (11) 1.0-9.2 0.82—1.01 — Kolova et al., 2015
Sentyabr’skoe 137—296 (34) 0.0-7.4 0.69—0.96 — Savva et al., 2016

The number of determinations is enclosed in parentheses, a dash means no data.

Eu and Ce anomalies are commonly treated as
marking the redox potential of a mineralization envi-
ronment (Bortnikov et al., 2007; Goryachev et al.,
2008; Jones and Manning, 1994). The ores sampled
from the OChVB deposits (see Table 3) show 6Ce and
OFu varying between negative or weakly negative and
moderately positive values (8Ce = between 0.90 and
1.15) and (8Eu = between 0.48 and 2.63). This combi-
nation of dCe and 8Fu indicates low-oxidation and
oxidation conditions that existed during the deposi-
tion of the OChVB epithermal ores. The low Eu/Sm
ratios (<1) in the ores studied here (see Table 3) sug-
gest the inference that the OChVB mineralization
occurred in the upper crust under similar physical and
chemical conditions (Vinokurov, 1996).

Comparison between the data obtained here and
known published examples (Vinokurov et al., 1999;
Kravtsova, 2010, among others) indicates that the pat-
terns identified here, viz., the depletion of ores in rare-
earth elements, the prevalence of light lanthanoids
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over heavy ones, low Eu/Sm ratios (<1), and positive
Eu anomalies, all constitute, in all probability, typical
features for the epithermal mineralization system.

THE DISTINGUISHING FEATURES
OF THE ORE-FORMING FLUIDS

Many results have been reported concerning phys-
ico-chemical parameters and composition of ore-
forming fluids for the OChVB Au—Ag deposits (Table 4,
Fig. 6). Papers exist concerning the conditions of min-
eralization for the Dukat (Goncharov and Sidorov,
1979; Berman et al., 1993; Kravtsova et al., 2003;
Konstantinov et al., 1998, among others), Dal’nee
(Kravtsova et al., 2003; Kravtsova, 2010), Kupol
(Volkov et al., 2006, 2012; Sidorov et al., 2007
Prokof’ev et al., 2012), Dvoinoe (Volkov et al., 2012;
Prokof’ev et al., 2012; Nikolaev et al., 2013; Kolova et
al., 2018), Arykvaam (Volkov et al., 2012), Senty-
abr’skoe (Nikolaev et al., 2013; Savva et al., 2016),
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Nyavlenga (Volkov et al., 2014), Dzhul’etta (Prokof’ev
et al., 2015), and Tikhoe deposits (Kolova et al., 2015).

The ore-forming fluids of most deposits had tem-
peratures of 105—359°C and salinities of 0—9.2 wt %-
equi NaCl. Higher temperatures (up to 435°C) and
salinities (up to 37.0 wt %-equi NaCl) have only been
recorded for fluids of the late mineralization phase on
the Dukat deposit (Goncharov and Sidorov, 1979;
Berman et al., 1993; Kravtsova, 2010). This phase is
thought to have been related to the influence of a gran-
itoid massif that was emplaced near the deposit. Some
deposits were found to involve the action of heteroge-
neous fluids (Dukat and Sentyabr’skoe); this enables
us to estimate the pressure that existed during the min-
eralization to be in the range 80—570 bars. These pres-
sures are relevant to shallow and medium (subvolca-
nic) depths of mineralization.

Bulk analysis of the composition of fluid inclusions
in quartz monofractions furnished data on fluid com-
positions for ten OChVB Au—Ag deposits (Table 5,
Fig. 7): Dvoinoe, Kupol, Nyavlenga, Pepenveem,
Pechal’noe, Dukat, Moroshka, Dal’nee, Dzhul’etta,
and Tikhoe. The main components in the fluid
include (g/kg H,0): carbon dioxide (1.3—58.1), meth-
ane (0.02—3.18), chlorine (<0.1-5.15), sulfate ion
(<0.3-21.65), hydrocarbonate ion (0—116.51), Na
(0.79—-23.90), K (0.16—18.79), Ca (0—4.70), and Mg
(0—7.02). The following trace elements have been
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determined (mg/kg H,0): Br (0—972.8), As (6.52—
1921.4), Li (2.39—184.42), Be (0—0.19), B (38.85—
7603.0), Rb (0—61.98), Cs (0—26.42), Sr (0—144.36),
Mo (0—41.18), Ag (0—15.98), Sb (0.88—903.82), Cu
(0—641.75), Zn (0—654.57), Cd (0—0.66), Pb (0—
122.51), Bi (0-0.08), Th (0—0.20), U (0-0.10), Ga
(0—-0.59), Ge (0—1.01), Ti (0—12.74), Mn (0—1599.9),
Fe (0—1772.2), Co (0—10.15), Ni (0-5.46), V (0—
3.84), Cr (0—5.46), Y (0—4.50), Zr (0—1.20), Sn (0—
3.09), Ba (0—33.65), W (0—184.64), Au (0—0.669),
Hg (0—1.35), T1(0—0.85) and REE (0.003—0.49). The
ratios of the most typical components vary as follows:
Na/K from 0.2 to 15.4, CO,/CH, from 3.2 to 216.0,
and K/Rb from 122.8 to 2725.5.

The analyses for the composition of mineral-form-
ing fluids at the OChVB deposits are consistent with
the results of cryometric studies: the fluids have low
salinity and low concentrations of chlorine, carbon
dioxide, and methane. The anions are dominated by
the hydrocarbonate ion and, occasionally, by the sul-
fate ion, while the cations are dominated by sodium
and potassium. Among the trace elements, one notes
higher concentrations of Br, As, Li, B, Sb, Zn, and W.

The concentrations of cations and anions show a
tendency of increasing K+ from earlier oreless quartz
to productive quartz with increasing depth, as well as a
slow decrease in the percentage of Na*, Ca**, and CI.
One observes a direct Ag—K correlation and an inverse
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Ag—Na correlation for productive quartz. The K/Rb
ratio for solutions is generally high (occasionally
reaching 2725), which may be evidence of an interac-
tion between the ore-forming fluid and the host rocks.
One occasionally encounters values below 250, which
must most likely have resulted from a magmatic source
of the fluid.

The most-pronounced feature that distinguishes
the deposits studied here consists in sulfate concentra-
tions in the fluid. One notes deposits with appreciable
sulfate concentrations in the fluid (Dvoinoe, Kupol,
Nyavlenga, Pepenveem, and Pechal’noe) and deposits
with low sulfate concentrations (Dukat, Moroshka,
Dal’nee, Dzhul’etta, and Tikhoe).

CONCLUSIONS

‘We conclude by noting that the ores of the OChVB
epithermal Au—Ag deposits are characterized by an
obvious enrichment in a wide range of elements com-
pared with the mean upper crustal values.

Comparative analysis of the trace-element distri-
butions in the ores studied here over classes of gold
concentration shows a synchronous enrichment of the
ores in similar sets of trace elements and allows indica-
tor elements to be used to determine the type of ore-
forming fluid.

The patterns identified here, viz., the prevalence of
light lanthanoids over heavy ones and positive Eu
anomalies, seem to be typical of the epithermal ore-
forming system. The presence of Eu maxima in the
REE distributions of epithermal ores is a characteristic
feature of ore columns. The REE distributions of the
ores studied here, as well as of the host rocks, are dom-
inated by light “hydrophile” lanthanoids of the
“cerium” set.

The epithermal ores studied here were mostly
formed by fluids coming from depth (in the lower
crust), as well as by solutions that were produced by
deep fluids mixed with shallow infiltration waters. The
fluid salinity increased toward later, low-temperature
phases during the mineralization process. The ore-
forming solutions are of the hydrocarbonate potas-
sium type, having 60—80% hydrocarbonate and potas-
sium of the total amount of cations and anions. The
concentration of anions and cations shows a tendency
of the potassium percentage to increase from the ear-
lier oreless quartz toward productive quartz with
increasing depth, as well as a slow decrease in the per-
centages of Na*, Ca*™, and Cl~. One observes a direct
Ag—K correlation and an inverse Ag—Na correlation
for productive quartz. The most-pronounced feature
of the deposits studied here consists in sulfate concen-
trations in the fluid.

The results indicate magma chambers of andesite
magmas and meteoric waters as the most likely sources
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of the fluids that went to form the epithermal Au—Ag
ores in the OChVB deposits.
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