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Abstract—In order to study the mechanisms of adaptation to loads requiring high endurance, a cardiointer-
valogram (CIG) of a 27-year-old Master of Sports of Russia in cross-country skiing was repeatedly recorded
under clinostasis conditions, with estimation of the total power (7°P) of the spectrum, as well as the absolute
power (ms?) of LF-, HF-, and VLF-waves and the relative power of these waves (as a percentage of TP), i.e.,
LF%, HF%, and VLF%. They were compared with the volume (Vy,,, V,ni,) and intensity (V,,) of training
loads. The volume of loads was maximum in the preparatory period (21 km/day) and minimum in the tran-
sition period (18 km/day), and their intensity was stable throughout the annual cycle (working pulse, 120—
121 bpm). With the change in the volume of loads, the values of the CIG indices also changed. For example,
in the preparatory period, the medians of TP, the power of HF-, LF-, and VLF-waves, as well as VLF%
increased; in this period, with an increase in the volume of loads (V,,,), the values of VLF% increased. In the
competition period, the medians of 7P, the power of HF-, LF-, and VLF-waves, and VLF% remained at a
high level. In the transition period, the medians of TP, the power of HF-, LF-, and VLF-waves, as well as LF%
and VLF%, decreased, whereas the median HF% increased. For the annual cycle, a direct dependence of the
median 7P on the volume of loads (V,,,,) and the median power of VL F-waves on the volume (V},,,) and inten-
sity (Vy,,) of the load was revealed. It is assumed that the values of TP, as well as HF-, LF-, and VLF-waves,
and VLF% (in clinostasis) reflect the influence of the parasympathetic part of the autonomic nervous system
on the heart (VLF% probably reflects the intensity of synthesis of non-neuronal acetylcholine by cardiomy-
ocytes, whereas LF% and HF% values reflect the formation of anxiety in connection with upcoming starts).

Keywords: cross-country skiing, adaptation to physical exercise, autonomic nervous system, heart rate vari-
ability, total spectrum power, absolute and relative power of HF-, LF-, and VLF-waves, periods of the annual
cycle of skiers
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INTRODUCTION

The processes of adaptation to physical loads that
require endurance are influenced by the volume and
intensity of training sessions; however, the nature of
this influence from a physiological point of view was
studied insufficiently [1, 2].

In view of above, the goal of this study was to assess
by means of cardiointervalography (CIG) the nature
of changes in the regulation of heart activity in an elite
skier over three periods of the ski season (preparatory,
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competition, and transition) depending on the volume
and intensity of the training load.

The method for assessing the state of the auto-
nomic nervous system (ANS) by the heart rate vari-
ability (HRYV) is widely used in clinical practice, and
the interpretation of its main parameters has been
described in detail in the literature [3—7].

In recent years, of the more than 30 HRV parame-

ters, much attention has been paid to the spectral
parameters of CIG [3—5, 7]. The latter include (1) the
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total power (7TP) of the spectrum, reflecting the power
of rhythm oscillations in the frequency range from
0.003to 0.5 Hz, i.e., the total effect of the sympathetic
(SP) and parasympathetic (PP) parts of the ANS and
a number of biologically active substances (BAS);
(2) the power of high-frequency (HF) waves, i.e., the
power of oscillations with a frequency of 0.15 to
0.40 Hz, reflecting the influence of the PP of the ANS
on the heart; (3) the power of slow (low-frequency,
LF) waves, i.e., the power of oscillations with a fre-
quency of 0.04 to 0.15 Hz, reflecting the effect of the
SP ofthe ANS on the heart, which is modulated by the
baroreflex; and (4) the power of very slow (very low-
frequency, VLF) waves, ie., the power of oscillations
with a frequency of 0.003 to 0.04 Hz, which probably
reflects the complex effect of SO and PO of the ANS,
as well as a number of BAS, on the heart. It is believed
that the relative power of HF-, LF-, and VLF-waves,
expressed as a percentage of TP (i.e., HF%, LF%, and
VLF%), reflects the specific contribution of the corre-
sponding parts of the ANS and BAS to the regulation
of the activity of the heart.

CIG has been widely used in sports practice to
assess the state of an athlete at training camps and
competitions [8—11]. However, little attention has
been paid to the dependence of HRV parameters in
endurance athletes on the periods of annual training
cycle (preparatory, competition, and transition) and
the volume of training loads. In view of this, the goal
of this study was formulated. Due to the fact that the
transition period is usually implemented at home,
CIG was performed in all three periods of the annual
cycle on one elite skier K.D. (the first author of this
article), taking into account the volume of his training
loads in all three periods.

Before describing the methods and main results of
this study, a number of important points should be
noted.

It was noted [3, 9, 12, 13] that data on the dynamics
of the absolute power of HF-, LF-, and VLF-waves, as
well as the dynamics of the relative power of these
waves expressed as a percentage of TP (i.e., HF%,
LF%, and VLF%), for skiers during the annual cycle
are scarce and ambiguous. For the TP value, it is
shown that it varies from 1515 to 14486 ms®> and
increases with the improvement of sportsmanship.
Very little is known about the dependence of TP values
on the period of the sports season and on the volume
and power of the training load of athletes, although
indirect data from a number of authors indicate that,
in the preparatory period (i.e., at high training vol-
umes), the activity of the PP of the ANS in elite skiers
continues to increase [9, 14, 15]. This is consistent
with the idea that endurance training increases the
activity of the PP of the ANS [3, 9, 14, 15]. However,
the issue of the specific mechanisms of vagotonia for-
mation during endurance training requires a detailed
study. From this standpoint, it is of great interest to
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analyze HRV parameters in elite athletes throughout
all three periods of their next annual cycle (season)
taking into account the volume and power of training,
which was the main goal of this study.

It is important to note that the volume and inten-
sity of training loads are expressed in different ways.
Foreign authors [11, 16—19] estimate the load volume
by the duration of training (min/day; h/day), whereas
Russian authors [20, 21] estimate it by the length of
the training path (km/day). The intensity or power of
load is estimated by the “working pulse” value [11, 17,
21, 22]. It is generally accepted [23, 24] that the work-
ing pulse values can reflect five intensity zones, the
first three of which (50—80% of HR,,,,) are regarded
as low-intensity zones, and zones 4 and 5 (i.e., higher
than 80% of HR,,,) are regarded as high-intensity
zones. The annual volume of training loads of elite ski-
ers is huge: it varies from 700 to 937 h [17, 18] or from
9150 t0 9493 km [21, 22]. The training load volume for
each elite cross-country skier is individual, because it
depends on the level of training, rate and quality of
recovery processes, and other factors [24, 25].
The goal of the coach and athlete is to come to the cru-
cial (prestigious) start with the maximum level of read-
iness [24].

MATERIALS AND METHODS

The study involved a 27-year-old cross-country
skier (K.D.), master of sports of Russia, member of the
Tatarstan cross-country skiing team, multiple cham-
pion and prize-winner of all-Russian and interna-
tional ski racing competitions among juniors and
youths. K.D. has 17 years of experience in cross-coun-
try skiing. The studies were performed from March
2019 to June 2020.

The physical performance of K.D. was tested in a
sports dispensary in Kazan on a Concept2 SkiErg ski
simulator (United States), which simulates the move-
ments of a simultaneous stepless skiing. It was found
(Table 1) that, when exhaustive muscular work in a
stepwise increasing manner until “failure” was per-
formed at the beginning of the preparatory period
(June 2019), the maximum oxygen consumption
(MOC) was 64.5 mL/kg or 4418 mL; the aerobic
threshold (AeT), i.e., the heart rate (HR) at which
there is still no rise in lactate during muscle exercise,
was 113 bpm; the anaerobic threshold (AnT), i.e., the
HR at which lactate concentration began to rise was
171 bpm; the maximum heart rate (HR,,,,), which is
achieved when performing work of maximum power
(when load increases every 2 min by 20 W), was 185
bpm; the maximum operating power (/V,,,,) reached
290 W, and the maximum rise in the lactate concen-
tration (L,,,,) was 8.52 mM. A similar test performed
at the end of the summer—autumn training, i.e.,
before “enrolling” (October 2019) showed (Table 1)
that the MOC was 69.3 mL/kg or 4845 mL, AeP was
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Table 1. Assessment of the level of physical performance and functional state of the key energy supply systems of athlete
K.D. during implementation of exhaustive muscular work of a stepwise increasing nature to “failure” (on the Concept2 Ski-
Erg ski simulator and treadmill, according to the data of the sports dispensary (Kazan))

June 2019 October 2019
Parameter analyzed

Concept2SkiErg Treadmill Concept2SkiErg Treadmill
MOC, mL/kg/min 64.5 65.8 69.3 74
AeP, bpm 113 154 111 142
AnP, bpm 171 170 164 170
HR,,,, bpm 185 188 185 192
N, Wor V, km/h 290 W 12 km/h 310 W 13.5 km/h
L, mM 8.52 10.7 9.48

111 bpm, Anp was 164 bpm, HR,,, was 185 bpm, N,,,,
was 310 W, and L, was 10.7 mM. Tests on a treadmill
with a track slope of 10° at stepwise increasing loads
(every 2 min) until “failure” showed (Table 1) that, at
the beginning of the preparatory period (June 2019),
the MOC was 65.8 mL/kg or 4740 mL, AeP was
154 bpm, Anp was 170 bpm, HR,,, was 188 bpm, the
maximum running speed for 2 min was 12 km/h, and
Lax Was 9 mM. At the end of the summer—autumn
preparatory period (October 2019), the MOC was
74 mL/kg or 5173 mL, AeP was 142 bpm, Anp was
170 bpm, HR ., was 192 bpm, the maximum running
speed for 2 min was 13.5 km/h, and L ,,, was 9.48 mM.
Thus, tests of the physical performance of athlete K.D.
on the Concept2 SkiErg ski simulator and on the
treadmill showed similar results, which give grounds to
postulate that (1) athlete K.D., indeed, belongs to the
group of elite ski racers and (2) during the preparatory
period, his performance increases.

According to the literature, the absolute MOC val-
ues in six Swedish elite cross-country skiers were 5.1 =
0.1 L/min [26—28].

Importantly, the training camps (TCs) and compe-
titions were held in different regions of Russia and
abroad, including the plains and mountains (Table 2).
During these trainings, the first author of this article
(i.e., athlete K.D.) recorded the volume and power of
his training loads and performed self-recording of
CIG.

The volume of training loads (V,,,, V.,i,) of athlete
K.D. for each day that preceded the morning CIG
recording, was evaluated by summing up the time
spent on all workouts and morning exercises, which
was expressed in min/day (V,,;,), as well as in kilome-
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ters of cross-country skiing, roller skiing, or cross-
country running (V,,,). The intensity or power (Nyg)
of the training loads was assessed by the mean HR,,
recorded during each training session with a POLAR
430 heart rate monitor equipped with a GPS sensor
(POLAR, Finland). According to the POLAR pro-
grams, the HR,,, value made it possible to attribute
the load intensity to one of the five training zones
specified above [23, 24].

It should be noted that 5-min CIG self-recording
was performed in the subjects in the supine position
after night sleep (before breakfast) in comfortable con-
ditions using a VNS-Micro system (Neurosoft, Rus-
sia), and CIG analysis was performed using the Poly-
spectrum software (Neurosoft, Russia). Along with
other parameters, we evaluated the following HRV
parameters: the total power of the spectrum (7P, ms?);
the absolute power of HF-, LF-, and VLF-waves
(ms?), as well as the relative power of these waves
expressed as a percentage of TP (i.e., HF%, LF%, and
VLF%). The assessment of these parameters was
formed by summing up the results of individual studies
conducted in each month of the corresponding
period, which made it possible to evaluate statistically
significant differences between the values of the
parameters recorded in one month (period) from
those recorded in another month (period). In total,
athlete K.D. performed 217 CIG self-recordings, of
which 84 were performed during the preparatory
period, 74 during the competition period, and 59
during the transition period. All these HRV parame-
ters, as well as V,;,, Vim» and Nygr were calculated for
each month of the annual cycle and in general for each
of the three periods (preparatory, competition, and
transition) of the annual cycle. They were expressed as
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Fig. 1. Dynamics of the values of the total power of the wave spectrum (7P, ms2, columns) and the values of the volume (V) of
the training load (linear plot) of the elite skier K.D. The numbers in the columns reflect the months (top) from which this month
(bottom) differs statistically significantly in 7P values (according to Mann—Whitney test, p < 0.05), according to the results of

cardiointervalography performed under clinostasis conditions.

the median and 25 and 75 percentiles [29]. Differences
were assessed using the Mann—Whitney test and con-
sidered statistically significant at p < 0.05 [29]. Calcu-
lations, including the calculations of Spearman cor-
relation coefficient [29], were performed using the
BioStat2009 Professional ver. 5.9.8 software (Analyst-
Soft, United States).

RESULTS

The main results of the study are summarized in
Table 3 and in Figs. 1, 2.

It was established (Table 3, Fig. 1) that the volume
of training loads of athlete K.D., expressed in km of
the path (V,,,), in the preparatory period was signifi-
cantly higher (p < 0.05) than that in the competition
period (median, 21 vs 19 km/day) and higher than in
the transition period (18 km/day, p > 0.05). However,
the load volume, expressed as V,;,,, was approximately
the same in all periods (judging by the fact that the dif-
ferences between the periods of the annual cycle were
statistically nonsignificant), although it had a wave-
like dynamics (in the preparatory, competition, and
transition periods, the median was 106, 82, and
105 min/day, respectively). In general, the annual
(from June 2019 to May 2020) load volume of athlete
K.D. amounted to 622 h. Thus, the training load vol-
ume of athlete K.D. in all study periods was relatively
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low as compared to the load volume of famous elite
cross-country skiers [11, 17, 18, 20, 21], which is asso-
ciated with the coach’s recommendations to reduce
the load due to the coronavirus pandemic (from
March to June 2020).

The training load intensity, judging by the values of
the working heart rate (Ngg) in all periods of the
annual cycle, was relatively constant: the median
HR,,, in the preparatory, competition, and transition
periods was 121, 121, and 120 bpm, respectively. Tak-
ing into account the division to five zones of load
intensity [22, 23], 41.4% of training sessions were
attributed to zone 1 (97—116 bpm); 37.0% to zone 2
(117—135bpm), 15.1% to zone 3 (136—154 bpm), 4.8%
to zone 4 (155—174 bpm), and 1.7% to zone 5
(175 bpm).

When analyzing the values of TP, as well as the
absolute and relative power of the HF-, LF-, and VLF-
waves of athlete K.D., recorded under clinostasis con-
ditions, the following general patterns were estab-
lished: (1) the values of these parameters depend on
the period of the annual cycle, with each parameter
being characterized by its own dynamics; (2) within
each period, the values of the parameter periodically
(from month to month) change (sometimes increase
and sometimes decrease); i.e., their dynamics is oscil-
latory (Table 3, Fig. 1).
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Fig. 2. Dynamics of the values of the median total power TP (msz), the absolute power of HF-, VLF-, and LF-waves, and
the relative power of these waves expressed as a percentage of TP (i.e., HF%, VLF%, and LF%) of elite skier K.D. in the prepa-
ratory (1), competition (2), and transition (3) periods (the 1st, 2nd, and 3rd columns, respectively), according to the results of
cardiointervalography performed under clinostasis conditions. Asterisks above the columns mean that the differences with the
competition (*) and/or transition (**) periods are statistically significant according to Mann—Whitney test.

The analysis of the dynamics of the median 7P in
athlete K.D. (Table 3, Fig. 2) showed that, in the pre-
paratory (9473 ms?) and competition (8047 ms?) peri-
ods, it was higher than in the transition period
(6961 ms?; p < 0.05), whereas the differences between
the preparatory and competition periods were statisti-
cally nonsignificant. Within the preparatory and tran-
sition periods, the 7P values changed from month to
month, but in the competition period they were rela-
tively stable (Fig. 1). In each of the three periods, there
was no statistically significant dependence of 7P val-
ues on the volume and intensity of training loads.
However, over the entire annual cycle in general, a sig-
nificant (p < 0.05) dependence of TP on the training
load volume (V,,,) and load intensity (Nyg) was found
(the Spearman coefficient was +0.18 and +0.17,
respectively). This suggests that, as the volume of
training loads (V,,,,) and their intensity (Nyg) increase,
the median 7P recorded under clinostasis conditions
increases. The identified 7P dynamics, taking into
account literature data on the nature of 7P [3, 7, 16]
and our data on the median absolute and relative
power of HF-waves in athlete K.D. (similarly to other

members of the Tatarstan national ski team), indicates
that the activity of the PP of the ANS in elite skiers
during the sports season is very high. However, it
undergoes certain changes: increases in the prepara-
tory period, remains at this level in the competition
period, and decreases in the transition period.

It was established (Table 3, Fig. 2) that the median
absolute power of HF-waves (AMHF), reflecting the
effect of the PP of the ANS on the heart, was 3793 ms? in
the preparatory period, 3519 ms? in the competition
period, and 3371 ms? in the transition period. The dif-
ferences between the preparatory and transition peri-
ods were statistically significant (p < 0.05). This is
consistent with the literature data, according to which,
with an increase in the skill of a cross-country skier,
the value of this parameter increases, which is much
higher than that of athletes in team sports and martial
arts [30]. We found no dependence of AMHF on the
volume (Vi,, Vi) and power (Nyg) of the load,
including over the entire annual cycle in general
(Spearman’s coefficient was +0.12, +0.12, and +0.10,
respectively). Thus, AMHF (i.e., the absolute power of
HF-waves) increases in the preparatory period,
2023
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remains elevated in the competition period, but
decreases in the transition period, when the volume
and intensity of training loads decrease. Taking into
account the nature of HF-waves [3—5, 7] it can be pos-
tulated that the dynamics of the median AMHF
recorded in clinostasis indirectly indicates an increase
in the effect of the PP of the ANS on the activity of the
heart under the influence of endurance training and a
decrease in this effect with a decrease in the volume of
training loads.

It was shown (Table 3, Fig. 2) that the median rel-
ative power of HF-waves (i.e., HF%) was 44.7% in the
preparatory period, 41.7% in the competition period
(differences between them were statistically signifi-
cant, p < 0.05), and in the transition period it
increased statistically significantly to 47.3% (p < 0.05).
This means that, in the preparatory and especially in
the competition periods, the median HF% decreases,
whereas in the transition period it increases, which
may be due to a decrease in the influence of the SP of
the ANS on the work of the heart in the transition
period. We found no statistically significant depen-
dence of the median HF% on the volume (V. or V,.;,)
and intensity (Nyg) of training loads, including for the
annual cycle (Spearman’s correlation coefficient was
—0.12, —0.03, and —0.09, respectively).

It was found (Table 3, Fig. 2) that the median abso-
lute power of LF-waves (AMLF), which, in opinion of
the authors of [3—5, 7], reflects the effect of the SP of
the ANS on the heart, was 1962 ms? in the preparatory
period, 2032 ms? in the competition period, and
1480 ms? in the transition period. The differences
between AMLF values in the preparatory and compe-
tition periods were nonsignificant (p > 0.05), whereas
the differences between this parameter in these two
periods and in the transition period were statistically
significant (p < 0.05). Thus, the absolute power of LF-
waves increased in the preparatory period, remained at
this level in the competition period, and decreased in
the transition period. We found no dependence of
AMLF on the volume (Vi,, Viin) and intensity (Nyg)
of the load, including for the entire annual season in
general (Spearman’s coefficient was +0.11, +0.08, and
+0.09, respectively). Taking into account the genesis
of LF-waves [3—5, 7], it can be postulated that the
dynamics of the median AMLF indirectly indicates
that endurance training increases the effect of the SP
of the ANS on the activity of the heart during CIG
registration in clinostasis. This is due to the formation
of anxiety in the preparatory and, especially, competi-
tion periods before the starts, and a decrease in this
feeling in the transition period.

It was established (Table 3, Fig. 2) that the median
relative power of LF-waves (LF%) was 22.5% in the
preparatory period, 24.5% in the competition period
(the differences between them were statistically signif-
icant, p < 0.05), and 21.7% in the transition period
(differences between the preparatory and transition
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periods were nonsignificant). This means that the
median LF% in the preparatory period remains at the
same level as in the transition period, in the competi-
tion period it increases, and in the transition period it
decreases again, although statistically nonsignifi-
cantly. We found no dependence of the median LF%
on the volume (V,,,, V.i,) and intensity (Nyg) of train-
ing loads, including the annual cycle in general
(Spearman’s correlation coefficient was —0.01, +0.02,
and +0.01, respectively).

We found (Table 3, Fig. 2) that the median absolute
power of VLF-waves (i.e., AMVLF), which apparently
reflects the effect of BAS on the heart [3—5, 7], was
2818 ms? in the preparatory period, 2622 ms? in the
competition period, and 1874 ms? in the transition
period. The differences between the median AMVLF
in the preparatory and competition periods were non-
significant (p > 0.05); however, the differences
between the values of this parameter in these two peri-
ods and in the transition period were statistically sig-
nificant (p < 0.05). Thus, AMVLF (i.c., the absolute
power of VLF-waves) increases in the preparatory
period, remains at this level in the competition period,
and statistically significantly decreases in the transi-
tion period. This dynamics in many aspects is similar
to the dynamics of median TP and median AMHF. We
established the dependence of the absolute power of
VL F-waves on the volume (V,,,) and intensity (Nyg) of
the load throughout the entire annual cycle in general,
whereas the dependence on the load volume expressed
in minutes (V,;,) was not found (Spearman’s coeffi-
cient was +0.19, +0.14, and +0.09, respectively).

Analysis of the dynamics of the median relative
power of VLF-waves (i.e., VLF%) showed (Table 3,
Fig. 2) that VLF% values in athlete K.D. varied
throughout the season from 24.1 t0 49.1%. In the pre-
paratory and competition periods, the contribution of
VLF% to the total spectrum was equally high, i.e.,
higher than in the transition period (median VLF%
were 32.6 and 32.8%, respectively, with no differences
between them, p > 0.05) and lower in the transition
period (median, —27.7%; p < 0.05). In the preparatory
period, a statistically significant dependence of the
median VLF% on the volume of training loads (V;,,)
was revealed (Spearman’s coefficient was +0.24 (p <
0.05)). This indicates that, with an increase in the vol-
ume of training loads (V,,), the median VLF%
increases. However, for the competition and transition
periods, this dependence was statistically nonsignifi-
cant (Spearman’s coefficient was +0.05 and —0.17,
respectively). Probably for this reason, for the annual
cycle in general, we found no dependence of VLF% on
the volume of the load (V,,, or V,,,;,) and on its inten-
sity (Nggr) (Spearman’s coefficient was +0.12, +0.02,
and +0.05, respectively).
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DISCUSSION

Regarding the interpretation of the results of the
study of the elite skier K.D., five important points
should be noted.

(1) It can be assumed that the values of TP, the
absolute power of HF- and VL F-waves, and especially
the relative power of VLF-waves (i.e., VLF%) reflect
the degree of influence of the PP of the ANS on the
heart, because the effect of the PP of the ANS on the
heart in elite skiers is significantly higher than in non-
athletes or in beginner skiers [3, 9]. This statement is
consistent with the generally accepted idea that endur-
ance training significantly increases the activity of the
PP of the ANS [2, 14, 15].

(2) Taking into account modern ideas about the
ability of the myocardium [31—35] and other tissues
[36] to synthesize acetylcholine (ACh), i.e. non-neu-
ronal ACh, it can be assumed that vagotonia, which is
characteristic of endurance athletes [2, 14, 15], is due
to the fact that, during training, the effect of the PP of
the ANS on the heart increases, and the myocardium
acquires the ability to synthesize ACh. It is known
[31—33] that synthesized ACh is a potent antioxidant
that is involved in the elimination of free radicals gen-
erated during intense activation of [},-adrenergic
receptors during physical load. This ultimately
increases the viability of cardiomyocytes, causes phys-
iological hypertrophy of the myocardium, and
increases the performance of the heart as a pump. Evi-
dence for the role of non-neuronal ACh in the origin
of sports vagogonia is the published data [3, 37] on the
increase in VLF% values with an increase in sports-
manship. We have shown that the increase in VLF% in
athlete K.D. is associated primarily with an increase in
the volume of training loads. This means that ACh
synthesis in cardiomyocytes is probably activated
during high-volume exercise. From this standpoint,
the idea of some authors [3—5, 7, 38, 39] that the
power of VLF-waves reflects the involvement of
humoral factors in the regulation of the activity of the
cardiovascular system probably most accurately
reflects the nature of VLF-waves.

What underlies the appearance of the ability of car-
diomyocytes to synthesize ACh? Obviously, from the
standpoint of the body’s adaptation to the loads that
require high endurance (i.e., high intensity of adenos-
ine triphosphate resynthesis for a relatively long time),
a high level of antioxidants and factors that prevent
apoptosis is required. This property is characteristic of
ACh [7, 32—34]. It is also known that the synthesis of
ACh requires two initial components: choline, which
is formed from membrane lipids, and acetyl, which is
formed from acetylcoenzyme A, the main source of
which is the Krebs cycle [40]. It is known that endur-
ance training increases the intensity of mitochondrial
biogenesis, which leads to an expansion of the mito-
chondrial network both in skeletal muscles and in the
myocardium [41—45]. This creates conditions for the
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constant synthesis of ACh in cardiomyocytes, which is
probably facilitated by the increase in the expression of
the gene for choline acetyltransferase, which is
involved in the synthesis of ACh, in cardiomyocytes
[31, 33, 34, 40]. Thus, we can put forward a hypothesis
that the increase in 7P values and, especially, in the
relative power of VLF-waves (i.e., VLF%), which is
characteristic of elite skiers, reflects the formation of
non-neuronal ACh synthesis in cardiomyocytes.
However, this hypothesis requires more solid evi-
dence.

(3) Our data show that, when CIG is recorded
under clinostasis conditions, the greatest contribution
to the total power spectrum (i.e., TP) is made by HF-
waves (41.7—47.3% of TP). VLF-waves rank second
(27.7-32.6%), and LF-waves rank third (21.7—
24.5%). Apparently, in conditions of physical activity,
this 7P structure will be different, and LF-waves,
which reflect the activity of the SP of the ANS modi-
fied by the baroreflex, will rank first.

(4) When recording CIG under clinostasis condi-
tions (i.e., in conditions close to basal metabolism),
the activity of the sympathetic system is naturally
much lower than during physical load. Therefore, the
change in the absolute and relative power of LF-waves,
detected in the course of the skier’s annual cycle
during clinostatic CIG recording most likely reflects
the emotional state of the athlete, including the for-
mation of emotions such as anxiety. In general, this
state reaches its maximum in the competition period,
which indirectly affects the dynamics of the absolute
and relative power of HF-waves, but does not affect
the dynamics of the absolute and relative power of
VL F-waves, which reflects primarily the level of pro-
duction of the non-neuronal ACh by cardiomyocytes.

(5) This point has an applied value. It can be
assumed that, if an increase in 7P and AMHF values
without an increase in VLF% is observed on a CIG of
a skier recorded during training under clinostasis con-
ditions, this means that the effect of the PP of the ANS
on the heart, indeed, increases, but the synthesis of
non-neuronal ACh is not yet activated. If VLF% val-
ues increase simultaneously with an increase in TP
and AMHF values, this means that the non-neuronal
ACh in the myocardium of the athlete is synthesized.
Of course, this assumption requires rigorous proofs,
which, most likely, can only be obtained in experi-
ments on animals.

CONCLUSIONS

(1) Multiple CIG recordings under clinostasis con-
ditions in an elite skier K.D. throughout the annual
cycle, which allows to evaluate HRV such parameters
such as TP, absolute (ms?) and relative (as a percentage
of TP) power of LF-, HF-, and VLF-waves, as well as
fixing the volume of training loads (by the path length
(Vim) o1 by their duration (V,,;,)) and the intensity of
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loads (by HR,,) showed that the volume of training
loads is maximum in the preparatory period
(21 km/day or 106 min/day), decreases in the compe-
tition period (19 km/day or 82 min/day), and remains
at this level (18 km/day) or even increases
(105 min/day) in the transition period. The intensity
of the training loads in all periods of the annual cycle
is uniform: in the preparatory and competition peri-
ods, the HR,,, is 121 bpm, and in the transition
period it is 120 bpm.

(2) In the preparatory period, simultaneously with
the increase in the volume of training loads, the medi-
ans of TP, the absolute power of HF-, LF-, and VLF-
waves, as well as the relative power of VLF-waves (i.e.,
VLF%) increase. The relative power of LF-waves
(LF%) remains low, and the relative power of HF-
waves (HF%) decreases. It was found for this period
that VLF% values increase with an increase in the vol-
ume of training loads (V,,,)-

(3) In the competition period, against the back-
ground of a consistently high volume of training loads,
the medians of TP, the absolute power of HF-, LF-,
and VLF-waves and the median VLF% remain at a
high level, whereas the median HF% remains at a low
level and the median LF% increases.

(4) In the transition period, with a decrease in the
volume of loads, the medians of 7P, the absolute
power of HF-, LF-, and VLF-waves, as well as the
medians of LF% and VLF% decrease, whereas the
median HF% increases.

(5) For the annual cycle in general, we found a
direct dependence of the median 7P on the volume of
loads, Vi, (the higher the volume, the higher the
median 7TP), as well as a direct dependence of the
median absolute power of VL F-waves on volume (V,,,)
and intensity (Nyg) of the load.

(6) A hypothesis was formulated that the TP, HF-,
LF-, and VLF-waves, as well as VLF% values recorded
under clinostasis conditions reflect the effect of the PP
of the ANS on the activity of the heart, and VLF%
probably reflects the intensity of synthesis of non-
neuronal acetylcholine by cardiomyocytes, whereas
the LF% and HF% values reflect the formation of anx-
iety due to the upcoming starts.
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