
ISSN 0362-1197, Human Physiology, 2022, Vol. 48, No. 8, pp. 938–945. © Pleiades Publishing, Inc., 2022.
Russian Text © The Author(s), 2018, published in Annaly Klinicheskoi i Eksperimental’noi Nevrologii, 2018, Vol. 12, No. 1, pp. 61–68.
MRI in the Assessment of Cerebral Small Vessel Disease
E. V. Gnedovskayaa, *, L. A. Dobryninaa, M. V. Krotenkovaa, and A. N. Sergeevaa

aResearch Center of Neurology, Moscow, Russia
*e-mail: lavrentevan@mail.ru

Received January 15, 2018; revised February 6, 2018; accepted February 25, 2018

Abstract—Cerebral small vessel disease (cSVD) is the leading cause of vascular cognitive impairments and
dementia, cerebral hemorrhages and lacunar strokes, as well as the most common form of asymptomatic vas-
cular brain lesion. Major forms of cSVD are age- and arterial hypertension (AH)-associated arteriolosclerosis
and cerebral amyloid angiopathy. The etiologies and the underlying mechanisms of disease development and
progression remain unclear for a substantial group of cSVD types. Significant difficulties in the study of this
pathology are explained by technical limitations in assessing smallest vessels in vivo. A modified correlation
between MRI equivalents and their morphological manifestations in cSVD to use them subsequently as a sur-
rogate marker of lesions in small vessels has allowed clinicians to establish disease progression regularities and
the association of the latter with clinical symptoms. This review presents the results of studies showing the
clinical significance and role of the leading MRI features in the assessment of disease progression, including
white matter hyperintensity (WMH, formerly known as leukoaraiosis), lacunes, enlarged perivascular spaces,
and microbleeds. The recognition of MRI features as diagnostic criteria for cSVD was specified by interna-
tional experts in the Standards for Reporting Vascular Changes on Neuroimaging (the STRIVE criteria).
Despite the enormous importance of this standardization for the improvement of concepts about the signif-
icance of different factors in the development and understanding of heterogeneity of cSVD forms, this cate-
gorization cannot provide for the prediction of the disease course in a particular patient and assess the treat-
ment efficacy in short- and medium-term prospects. One of the approaches to solution was based on the use
of diffusion methodologies for assessing a microstructural lesion in the visually unaltered brain matter. The
obtained consistent association of the expressiveness of microstructural alterations with clinical impairments
substantiates the expediency of multimodal MRI studies aimed to evaluate the pathophysiological mecha-
nisms of disease progression, beginning from the subclinical brain lesion stage.
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INTRODUCTION

Scientific publications in the English language
apply the terminology “cerebral small vessel disease”
(cSVD) exclusively to describe clinical (including cog-
nitive impairment and dementia), neuroimaging, and
morphological manifestations caused by the lesion of
perforating cerebral arterioles, capillaries, and
venules, which lead to impairments in the brain white
matter and nuclei [1]. In Russia, this pathology is con-
sidered within a broader context of dyscirculatory
encephalopathy. cSVD is currently among the priority
problems for the health care systems of developed
countries, judging by its participation in invalidation
and mortality [1–3]. CSVD has been recognized as
the leading cause responsible for vascular cognitive
impairments and dementia [4, 5], intracerebral hem-
orrhages [6], a fifth of ischemic strokes [7], and the
most common asymptomatic vascular brain lesions [5,
8], as well as a risk factor for Alzheimer’s disease [9].
The most frequently occurring cSVD forms are age-

and arterial hypertension (AH)-induced arterioloscle-
rosis and cerebral amyloid angiopathy [1, 5, 8]. How-
ever, researchers admit that both the etiology and the
underlying development mechanisms in a significant
number of cSVDs remain not well understood so far
[3, 5], and that it is impossible to predict the reversibil-
ity of brain impairment even in cases with fully con-
trolled hypertensive microangiopathy [10]. The main
complexity in cSVD studies is explained by technical
limitations of small vessel imaging in vivo. Essential
breakthroughs in the understanding of the pathology
became possible owing to the modified correlation
between the neuroimaging equivalents and morpho-
logical manifestations of cSVD and their use as surro-
gate markers of small vasculature impairment and dis-
ease progression. The accumulation of evidence con-
firming associations between neuroimaging features
and clinical manifestations and invalidation of
patients served as a foundation for systematizing the
ideas and applying the MRI criteria clinically signifi-
cant in cSVD as diagnostic, using STandards for
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ReportIng Vascular Changes on nEuroimaging
(STRIVE) [11]. The criteria include recently occur-
ring small subcortical infarcts, lacunes, white matter
hyperintensities (WMHs) (formerly, leukoaraiosis),
enlarged perivascular spaces, and microbleeds, etc.
[11]. This review presents data on the MRI features on
which numerous confirmations of their association
with disease progression have been obtained, includ-
ing their neuroimaging characteristics and the clinical
significance of the feature expansion, as well as the
confirmed risk factors for their development.

White matter hyperintensities (WMHs, or formerly
leukoaraiosis) are MP signal zones of increased inten-
sity on T2- and proton density-weighted f luid-attenu-
ated inversion recovery (FLAIR) images [11, 12]. The
WMH focal shapes are rather variable, including
periventricular caps or strips, multiple pinpoint-sized
or larger foci, partially or fully confluent, commonly,
bilateral and symmetrical [13].

The expansion and expressiveness of WMHs are
assessed in the periventricular, deep, and subcortical
white matter. To assess the expressiveness of white
matter lesions, clinicians use different visual scales and
volumetric methods. Among the most popular is the
Fazekas scale with three lesion stages, namely, Faze-
kas I, II, and III, respectively [14]. Other visual assess-
ment tools include the Rotterdam Scan Study (RSS)
[15], the Scheltens [16], Wahlund [17], and Longstreth
[18] scales, and the Prins scale for rating WMH
changes in dynamics [19].

Comparisons between WMHs on postmortem
MRIs and the histological changes in the brain con-
firmed the association between their expressiveness
and the expansion of changes [20]. The myelin pale-
ness is associated with periventricular WMHs, loos-
ened fibers, venular tortuosity, and, more frequently,
with the absence of arteriolosclerosis and the loss of
the ependyma integrity with gliosis of different expres-
sivity degrees. Deep WMH was characterized in indi-
vidual foci by the absence of ischemic changes, loss of
myelin, atrophy of neuropil surrounding arterioles
with hyalinosis and perivenous alterations; in early
confluent foci, by perivascular myelin thinning, mild
or moderate fiber losses, and different severities of gli-
osis; and in confluent foci, by uneven sites of incom-
plete parenchymal necrosis with transition to true
infarctions [20].

Clinical significance. WMHs have long been con-
sidered as a neuroimaging phenomenon associated
with normal aging of the brain. Both population-based
cohort and clinical studies have later shown that
WMH intensity expansion over time depends not only
on aging. The established WMH expansion rate varies
from 0.1 to 2.2 mL/year, differing by more than 20
times between groups [21–24].

Numerous prospective MRI-based studies have
proven the significance of WMHs in the development
of clinical manifestations associated with cerebral
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small vessel lesions. It has been shown that the pres-
ence of WMHs is accompanied in elderly people by an
increased risk of dementia and stroke [25], progres-
sion of cognitive impairments in patients with both
neurodegenerative and vascular diseases [26, 27],
invalidation [28] and depression [29]. We should note
that the absolute majority of studies included the
senior age group, whereas data on the middle-aged
group (45–60 years) were more limited. For example,
the Northern Manhattan (NOMAS) [30] and Ameri-
can Religious Identification Survey (ARIS) [31] pop-
ulation-based cohort studies have shown an increased
risk of stroke in a group of middle-aged persons with
asymptomatic lacunar foci and WMHs, and these
results coincided with the data obtained in the senior
patient category. At the same time, the ABC study
based on a cohort of 320 people aged below 60 years
has shown no significant associations, in contrast to
the older group, between WMHs and impairments in
cognitive performance [32].

The literature contains solid reports confirming the
influence of genetic factors on the WMH progression.
There were descriptions of monogenic forms of the
disease, and a high level of leukoaraiosis hereditability
was shown in twin-based studies [33], whereas the
genome-wide association studies (GWASs) allowed
researchers to identify the locus associated with an
increased risk of WMH development [34–36]. Some
studies have recently shown that epigenetic deregula-
tion, including DNA methylation alteration and
deregulation of microRNA expression, is also signifi-
cant for WMH formation and progression [37].

A large number of studies have confirmed the asso-
ciation of WMH expressiveness with the duration,
profile, and manageability of AH as the leading car-
diovascular risk factor [25, 28, 38, 39]. WMH progres-
sion was more clearly expressed in patients with
untreated uncontrolled AH, compared to the treated
patients with the same diagnosis [10]. We have previ-
ously shown the association between the WMH
expressiveness and the severity of AH in asymptomatic
first-ever diagnosed patients during the indiscriminate
screening of an open population of working-age per-
sons [41].

Other factors influencing WMH progression
include diabetes mellitus, smoking at the time of
assessment, and background WMH expressivity [19,
38, 42]. The Austrian Stroke Prevention Study has
established that the volumetric growth rate was
1.3 mL/year in persons with confluent WMH foci,
whereas changes practically did not grow in patients
with pinpoint-sized foci [43]. Similar data were
obtained in the Redboud University Nijmegen Diffu-
sion Tensor and Magnetic Resonance Imaging Cohort
(RUN DMC) study, for example, the probability of
WMH progression was higher, if WMH was recorded
as moderate and severe during the background assess-
ment, whereas no progression of foci has been identi-
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fied over a 9-year observational period in patients with
mild WMH [44]. Differences in WMH progression
regularities may most probably depend on the degree
of their background expressivity. The expansion of
focal and early confluent WMH was found to progress
from the frontal to parietal brain regions and from the
subcortical to deep white matter [40], whereas conflu-
ent WMH progression was associated with the trans-
formation of the visually unaltered WMH penumbra
into visual WMH [41, 45].

The studies have identified the association between
risk factor significance and age. According to a large
multifocal study comprising 2699 patients with stroke,
an increased cholesterol level was an important risk
factor for WMH appearance in old age patients with
AH, whereas age in itself was an important risk factor
in elderly patients without AH [46]. Similar data were
obtained by the Rotterdam study, for example, a more
expressed WMH progression was recorded in the
group of more elderly persons irrespective of AH [15].

Lacunes (lacunar strokes) of vascular etiology are
rounded or ovoid f luid-filled cavities with diameters
from 3 to 15 mm, corresponding to an earlier occurred
acute small deep cerebral infarct or a microbleed into
the basin of one perforating artery. The signal of lacu-
nar strokes is analogous to the cerebrospinal f luid
under T2 and T1 modalities, i.e., hyper- and
hypointensive, respectively; under the FLAIR modal-
ity, lacunes have a hypointensive MP signal (analo-
gous to the cerebrospinal f luid) with a hyperintensive
ring in the periphery [11].

The lacunar frequency rate reaches 9.5% per year,
significantly differing between clinical and popula-
tion-based studies [47]. For example, the annual fre-
quency of lacunar detection in the large population-
based Age, Gene/Environment Susceptibility Study
(AGES-Reykjavik) constituted 0.8%, and the corre-
sponding figures in the Rotterdam Scan Study and the
Cardiovascular Health Study were represented by 3.5
and 2.9%, respectively. At the same time, according to
the clinical Leukoaraiosis and Disability (LADIS)
and Scan studies, the frequency of lacunar detection
was equal to 5.8 and 9.5% per year and was most prob-
ably associated with both the expressiveness of clinical
symptoms and the age of patients under observation.

The predictors of lacunar detection in dynamics
include WMH expressiveness, the presence of lacunes
during the baseline assessment, a stroke in anamnesis,
atrial fibrillations, carotid artery atherosclerosis, and
the presence of vascular risk factors, such as arterial
hypertension and hypercholesterolemia [48, 49]. The
newly detected lacunes are predominantly localized in
the cerebral regions closely located to existing WMHs
or those partially overlaying the latter [50].

The lacunar syndromes with their characteristic
neurological symptoms develop when lacunes are
located in the projection of conductors significant for
clinical symptoms. Among lacunar syndromes, the
absolute majority of cases are represented by pure
motor, pure sensitive, and ataxic hemiparesis. The
development of lacunes beyond the projection of sig-
nificant conductors is commonly unaccompanied by
clinical symptoms in patients with early cSVD. How-
ever, as the LADIS 2001–2011 [51], NOMAS [52],
Rotterdam Scan [53], and Cardiovascular Health [48]
Studies have shown, the risk of strokes, dementia, gait
disorders, and developing pseudobulbar and pelvic
impairments increases with the number of silent
lacunes growing (NOMAS [52], Rotterdam Scan
Study [53], Cardiovascular Health [48], and LADIS
[51]).

Microinfarcts are ischemic foci with sizes of 50–
400 μm to 3 mm, which were localized in the cortical
grey and subcortical matter. Their number may reach
hundreds and thousands per elderly person [18, 54].
They may be diagnosed under microscopy [55] and on
a high-resolution 7T-MRI, corresponding to lacunes
in their characteristics. The visualization of strokes on
an MRI is limited to the sizes of 1–3 mm, and, there-
fore, MRI detection constitutes 0.5% of strokes
detected microscopically [56, 57]. The current techni-
cal complexities in in vivo imaging of microinfarcts
limit the use of this symptom as a clinical marker of
cSVD progression. At the same time, their presence
confirmed by the microscopy data is recognized as a
reliable neuropathological symptom of vascular
dementia [58].

Cerebral microbleeds correspond, in a majority of
cases, to small areas of hemosiderin accumulation in
macrophages. Microbleeds are identified as
hypointensive rounded foci with sizes from 2 to 5 mm,
and, rarely, up to 10-mm foci on “gradient echo” MP-
sequences sensitive to paramagnetics (hemosiderin),
including T2-GRE, SWI sequences, and those unde-
tected under standard MRI modalities [11, 59]. They
are located at the boundary of the cortex and the sub-
cortical white matter, in the cortex, the deep white
matter of the hemispheres, in the stem, and the cere-
bellum. The diagnoses of cerebral amyloid angiopathy
[60] in case of their lobar location and sporadic
nonamyloid, cSVD in case of their deep location [61]
should be considered possible.

Population-based and clinical studies annually
detect 2.9–3.5 and 2.2–31.2% of cerebral
microbleeds, respectively [62–64]. The studies under-
lined the association of their growth with age. Accord-
ing to the population-based RSS data, the annual
detection rate for microbleeds was 7.6% in 60–69-year
olds, 15.6% in persons aged 70–79 years, and 18.6% in
patients over 80 years [62]. Their highest detection rate
(up to 41.8 per year) was recorded in patients with
intracerebral hematomas and cerebral amyloid angi-
opathy.

The population-based Rotterdam study [65]
showed the association of deep microbleeds with vas-
cular risk factors, such as AH and smoking, whereas
HUMAN PHYSIOLOGY  Vol. 48  No. 8  2022



MRI IN THE ASSESSMENT OF CEREBRAL SMALL VESSEL DISEASE 941
lobar microbleeds were shown to be associated with
the risk of developing cerebral amyloid angiopathy,
the apolipoprotein E epsilon 4 (APOE ε4) genotype
[66]. Among other factors in favor of microbleed
expansion are their number during the baseline assess-
ment, the presence of lacunes, WMH expressiveness,
and the identified APOE genotype.

Perivascular spaces (Virchow–Robin Spaces) are
liquor-filled expansions surrounding vessels. Perivas-
cular spaces may be linear in shape, if the scanning
sections are parallel to the course of vessels and circu-
lar or ovoid if the sections are perpendicular to the
course of vessels. The perivascular spaces in norm fre-
quently become expanded in normal aging. The Vir-
chow–Robin Spaces contain cerebrospinal liquor,
and therefore, their signal is of increased intensity on
T2-weighted imaging (WI) and FLAIR and decreased
in the T1 sequence. They differ from lacunes in the
absence of hyperintensive signal in their periphery in
the FLAIR sequence and, generally, in smaller sizes.
Perivascular spaces are usually localized in the semio-
val center, subcortical formations, and the hippocam-
pus. This state is called état criblé in the cases when the
expansion of these spaces is expressed [11, 13].

The differences detected between healthy subjects
and patients with cSVD in the significance of enlarged
perivascular spaces were as follows: no cognitive dys-
functions were present in this case in healthy subjects
[69], whereas the presence of cognitive impairments
was associated with age and cognitive losses in patients
with cSVD [70, 71]. The interest in the role of perivas-
cular spaces in cSVD was mainly caused in the last
years by the correlation of significance of the recently
discovered glymphatic system in the development of
cognitive impairments belonging to this system.
Their expansion is considered as one possible sign of
stasis in the interstitial f luid with brain drainage dys-
function [72].

Diffusion-Weighted MRI Methodologies
The absence of a direct association between WMH

expressiveness and cognitive impairments [67] in a
significant portion of cSVD cases, which may be
explained by heterogeneity of pathological processes
underlying this phenomenon [20], motivated the
search for sensitive indicators of the microstructural
brain impairments. The diffusion-weighted (DW-
MRI) methodologies with assessing different charac-
teristics of free (extracellular) water diffusion in the
brain matter and, correspondingly, the maintenance
of its microstructural integrity, allow researchers to
approach to the explanation of individually specific
clinical manifestations of the disease and, possibly,
predict its course under dynamic observation. The
main indicator of a DW-MRI is the measured appar-
ent diffusion coefficient (ADC, or mean diffusivity).
The diffusion-tensor MRI, a modification of this
method, offers estimated indicators, such as fractional
HUMAN PHYSIOLOGY  Vol. 48  No. 8  2022
anisotropy, axial and radial diffusion, to give one a
possibility to determine not only the value, but also
directionality (anisotropy) in the diffusion of water
molecules. The lower significance of fractional anisot-
ropy and, correspondingly, a high mean diffusion
coefficient reflect a great loss to the microstructure.
The axial and radial diffusion are used as the markers
of neuronal impairments, which, according to experi-
mental data, are associated, respectively, with the
involvement of axon and myelin [73, 74]. The results
of some accomplished studies dedicated to the correc-
tion of association between microstructural alterations
in the brain of patients with cSVD and clinical mani-
festations of the disease have recently been published.
An increase in ADC was diagnosed in the externally
unaltered matter as a result of memory losses, disor-
ders in controlling brain functions and the speed of
psychic processes, but irrespective of vascular risk fac-
tors and the volume of a white matter lesion [67]. The
association has also been found between an increase in
ADC in the hippocampus, thalamus, cingulate gyrus,
and hook-like bundle and subclinical depression,
alarmism, and memory difficulties in patients with the
first-ever diagnosed asymptotic AH and cSVD-spe-
cific MRI alterations [41]. It has also been found that
fractional anisotropy and medium diffusion are asso-
ciated in cSVD with AH severity, as well as fractional
anisotropy and radial diffusion are associated with
cognitive and gait disorders [75, 76]. The predictive
ability of diffusion-weighted methodologies has also
been shown in relation to the appearance of WMH
under dynamic observation in the visually unaltered
white matter with decreased fractional anisotropy and
increased diffusion [77].

CONCLUSIONS

Thus, the current numerous evidences of associa-
tion between the leading MRI features of cSVD and its
clinical manifestations allow us to recognize the expe-
diency of diagnosing this pathology only with its neu-
roimaging confirmation. Diagnosing cSVD by MRI
must become for clinicians a foundation for correcting
the form of the disease, its possible risk factors, and
prediction. It should be recognized that the estab-
lished regularities in the progression of the main MRI
features at the group level are not reproduced at the
individual level, generally demonstrating non-corre-
spondence between the expressiveness of WMHs and
cognitive impairments. In addition, the disease pro-
gression rates obviously depend on different cSVD
forms, but this issue is not debated in the literature.
These contradictions were partially resolved with the
start of using the diffusion-weighted methodologies
for assessing the structural brain lesions. However, this
approach is currently limited to the confirmation of
association between microstructural and clinical
impairments. Taking into account the fact of a high
social significance of the disease and population aging
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potentially increasing the percentage of cSVD
patients, it is very important to conduct prospective
studies, starting from the stage of subclinical brain
lesions, using the MRI sequences aimed to assess dif-
ferent components of the pathological process. Con-
sidering that the therapeutic successes in the manage-
ment of arterial hypertension, as the leading cSVD risk
factor, have not led to a reduction in the healthcare
burden generated by this pathology, it is necessary to
consider different potential risk factors and their asso-
ciation with the disease progression.
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