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The brain–computer interface (BCI) is a system
designed to transmit the intentions of humans to
external devices by means of brain signals. Currently,
intensive studies on the development and application
of BCIs are performed, and the scope of these studies
rapidly increases [1]. There are technical, scientific,
and social conditions for this. The appearance of inex�
pensive and powerful computers, mathematical soft�
ware, and microelectronics has made it possible to
process multichannel records of brain signals in real
time and to use the results of their processing to man�
age technical devices. The development of BCIs
requires distinguishing stable signs of brain activity
corresponding to thoughts and intentions of a person,
which contributes to solving the fundamental problem
of decoding their functional neural codes. Therefore,
the use of BCIs is considered as a new research para�
digm in studying the fundamental mechanisms of the
brain. A social condition for the BCI development is
the need for rehabilitation of patients with various
motor and neurological disorders.

There are reasons to assume that the invasive type
of BCIs, realized through microelectrodes implanted
in the brain, may be the most effective tool to restore
the contact with the outer world in the social rehabili�
tation of patients with a complete loss of motor func�
tions. Naturally, the fundamental problems of the
study and development of such BCI are solved in
experiments on monkeys, which cannot respond to

verbal instructions to perform the required movements
and generate brain activity associated with these
movements. Therefore, usually they are first trained to
perform motor tasks associated with purposeful move�
ments of the arm or with the control of external objects
with a joystick and other similar devices.

In the pioneering experiments performed on the
primary motor cortex (M1) of awake monkeys, Evarts
[2] found that the frequency of individual neurons of
M1 was strongly correlated with the strength and
torque developed in joints during the movement of
animal’s arm. It was shown that the temporal and
power characteristics of a single�joint movement of
monkey’s wrist can be predicted sufficiently accu�
rately by using a small population of simultaneously
recorded M1 neurons [3]. A landmark study in this
field showed that monkeys can arbitrarily control the
activity of a single M1 neuron using visual feedback
and rewards [4]. A significant contribution to laying
the foundations for the development of subsequent
BCI research was made by the studies that showed how
populations of firing neurons can predict the spatial
kinematics of the hand [5, 6]. It was found that M1
neurons exhibit directional sensitivity: the activity of a
single neuron reaches a maximum when the hand
moves in a direction determined for each neuron and
can be characterized by a directionality vector.
Accordingly, the hand movement vector at a given time
is determined by the sum of vectors of the neurons that
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are active at this time. Thus, on the basis of data
obtained during the performance of a certain motor
task by an animal, a program for classifying neuronal
activity can be developed, which can transcode neu�
ronal activity into control signals in real time and can
be used to control external device instead of using the
hand.

In 1999, it was shown that the rat can control the
one�dimensional movement of a food�supplying noz�
zle when the latter was controlled on the basis of
decoding multi�electrode recordings of spikes from
cortical neurons [7]. Subsequent studies showed the
possibility of mental control based on visual feedback
in monkeys [8–12], namely, by using a command
coming immediately from a population of cortical
neurons.

The Need to Introduce an Artificial Sensory Feedback 
for BCI

In each study, the BCI system consisted of four
components: (1) a multi�electrode device, (2) an algo�
rithm for classification of neuronal activity pattern in
real time, (3) a controllable device, and (4) a visual
feedback.

The development of invasive “brain–computer”
interfaces (BCIs) and their study in experiments on
monkeys showed that the most important factor in the
use of BCIs is the cerebral cortex plasticity, which can
improve the arbitrary modulation of neuronal activity
and manifests itself when animals are trained using a
biofeedback based on visual afferentation [13–15].
The training of monkeys to use BCI actually means
the formation of a new visual�motor coordination
skill, where a virtual object is used as an executive
organ. Meanwhile, in accurate manipulations with
objects, the somatosensory feedback is of great impor�
tance [16]. Signals from the mechanoreceptors in the
skin provide important information on the contact
[17] and the forces affecting the skin when grasping an
object, especially when the object is shifted relative to
the hand or the hand is shifted relative to the object
[18]. Without this information, a person either could
not hold or would destroy the manipulation object.
The importance of proprioceptive afferentation is
emphasized by the fact that, in the absence of propri�
oception, a person lacks the opportunity to plan the
movement of the limb [19, 20]. In addition, proprio�
ception gives the sensation that the limb belongs to the
body [21, 22].

Recent studies [21, 23–26] suggest that the supply
of artificial “sensory” information to the brain
through coordinated multi�channel microstimulation
of sensory cortical areas will make it possible to realize
a brain–computer–brain interface (BCBI), which
will provide new opportunities in the basic research
into the mechanisms of cortical plasticity and a break�
through in applied fields such as “natural” anthropo�
morphic control of multidimensional technical

devices and motor rehabilitation of patients with
severe injuries of the nervous system. Stimulation of
large areas of the brain hampers information process�
ing [27], whereas stimulation of small areas (the so�
called microstimulation) can cause motor and sensory
effects that mimic the natural activity of stimulated
areas [28, 29]. Several studies [30–35] have shown that
monkeys can distinguish the amplitude, frequency,
and pattern of microstimulation of the area of tactile
representation of fingers and palm of the hand in the
primary somatosensory cortex and, accordingly, that
cortical microstimulation can become the basis of
“sensitizing” of a controlled actuator.

Brain Cortex Microstimulation

The effect of microstimulation of different areas of
the brain depends on the position of microelectrodes,
stimulation parameters, and microstimulation pattern
[33, 36]. To minimize the damaging effect of electric
current on the brain tissue and the effect of the elec�
trode, which depends on many parameters and can
hardly be estimated [37], researchers use stimulation
with symmetrical biphasic rectangular pulses starting
with the negative phase (usually 2 × 100 µs) and an
amplitude of dozens (rarely more than 100) µA. A
poorly controlled microstimulation can lead to an
increase in the neuronal activity beyond the computa�
tional area [38, 39] as well as affect the excitability of
adjacent somatosensory cortical neurons by natural
afferent stimuli [40]. The use of an additional pairs of
microelectrodes that are subjected to aperiodic ran�
dom�amplitude microstimulation makes it possible to
reduce the threshold of microstimulation supplied as
an artificial sensory feedback to another pair of micro�
electrodes implanted in the primary somatosensory
cortex [41]. Another method to reduce the intensity of
microstimulation of cortical neurons and, therefore,
to decrease the risk of possible damage to the brain tis�
sue is to increase the number of microelectrodes used
for stimulation of a certain cortical area, when the cur�
rent density on each microelectrode is reduced. This
technique makes it possible to stimulate neurons with
a very high excitability threshold when the number of
stimulating microelectrodes significantly increases
[42]. This is a solution to the problem when the object
of artificial feedback is represented by proprioceptive
neurons of area 2 of the primary somatosensory cortex
of monkeys, the directional sensitivity of which was
shown when the animals ran the cursor using a manip�
ulandum [43]. However, Zaaimi et al. [42] used seven
microelectrodes inserted into area 2 of the primary
somatosensory cortex. In a more recent study [44], the
authors of which used two to four microelectrodes in
monkeys, area 3b/1 of the primary somatosensory cor�
tex and a different microstimulation pattern, the effect
of increased number of electrodes was negligible; as a
result, the authors concluded that this method of arti�



HUMAN PHYSIOLOGY  Vol. 42  No. 1  2016

ARTIFICIAL FEEDBACK FOR INVASIVE BRAIN–COMPUTER INTERFACES 113

ficial proprioceptive feedback realization is not prom�
ising and requires high energy costs.

Primary Somatosensory Cortex

To ensure an artificial feedback, intracortical
microstimulation of the primary somatosensory cortex
(S1) consisting (according to Brodmann) of areas 1, 2,
and 3 (the latter, in turn, is divided into area 3a and 3b)
is used. These areas are located in the anterior and
posterior banks of the central sulcus and the postcen�
tral gyrus surface. In the rostral�caudal direction,
these areas are situated as follows: 3a, 3b, 1, and 2.
Area 3a receives primary proprioceptive information
from the muscle spindles [45] and is projected on areas
3b, 1, and 2, whereas area 3b receives primarily inputs
from the skin receptors [46] and is projected on areas
1 and 2 [47–49]. Area 1 receives inputs from areas 3a,
3b, and 2; it is activated by stimulation of skin recep�
tors and sends feedback to area 3b [48]. Area 2 is sen�
sitive to both stimulation of the skin and activation of
deep receptors similar to muscle spindles [48].
According to the conventional ideas about the organi�
zation of area 3b, the cell responses in this area are
determined by the correspondence of receptive fields
to individual digits [50]. Recent studies showed a sig�
nificant interdigital integration in area 3b [51–53] and
in area 1 [54]. However, the data obtained have shown
that the interdigital integration of tactile information
begins with area 3b [55]. The primary somatosensory
cortex contains numerous somatotopic maps, which
correspond to the skin areas on the contralateral side.
Each area S1 contains the complete somatotopic map
of the body, located in the mediolateral direction so
that the leg is represented by the first one and the face
is represented by the last one (most lateral). This order
corresponds to the position of parts of the body in the
primary motor cortex. The selection of the position of
the electrodes for microstimulation depends on the
part of the body for which a sensory channel is created.
Even fairly small modern matrix multi�microelec�
trodes, in relation to the cortical representation of the
limb and their size in S1, may be incompatible with the
objective of their placement (e.g., in the central sul�
cus). Therefore, reasonable determination of an ade�
quate place for the implantation of multi�microelec�
trodes at the current level of electrode manufacturing
technology becomes crucial [56].

Approaches to Creating an Artificial Sensory Feedback

An artificial feedback signal should not be func�
tionally different from the natural feedback signals: it
should provide the necessary sensory information and
allow multisensory integration with the visual channel
to reduce the variability of movement when both sig�
nals are used. Currently, there are two approaches to
creating such an artificial sensory feedback [22, 57]:
biomimetic, when microstimulation of brain struc�

tures should correspond to the existing anatomical and
physiological knowledge, and “adaptive,” which is
based on the cortical plasticity and the learning pro�
cess and requires creating a “map” between the sen�
sors and the brain microstimulation patterns, but
without the limitations characteristic of the biomi�
metic approach. In particular, when the biomimetic
approach is used, the problem of using the hand as an
artificial feedback from proprioceptors becomes
rather difficult because microstimulatory pulses
should be transmitted directly to the proprioceptive
representation of the hand, which is often located at
the fundus of the central sulcus [58, 59]. The authors
of a series of papers [60–63] developed an approach in
which this problem does not arise because in these
studies the integration of the two sensory signals
(proprioceptive and visual) depends primarily on the
spatiotemporal correlation between the two signals,
which allows the underlying neurons to learn to recog�
nize the common causative factor (e.g., the position of
the hand) rather than on the neuronal activity patterns
for coding spatial information.

The “brain–computer–brain interface” (BCBI)
ideology has led to the emergence of fundamentally
new potential possibilities of mental control of exter�
nal objects. The authors of a modeling study per�
formed under the supervision of Mussa�Ivaldi [64]
attempted to assess the possibility that the behavior of
the part of the central nervous system in a closed�feed�
back system consisting of a BCI and an artificial sen�
sory channel may differ from the combination of the
properties of neuronal and artificial components of
this system. A question was raised whether it is possible
to simultaneously regulate the bidirectional brain–
computer communication so that the desired dynamic
behavior of the combined system would form. Using
the bidirectional connection between the sensory and
motor areas of the brain of an anesthetized rat and a
virtual dynamic object with programmable properties,
the authors of this study showed that the interaction
between the brain activity and the state of the external
object generated a family of movement trajectories of
the object, which converge at the selected point of
equilibrium regardless of the initial position. Thus, the
bidirectional interface makes it possible to determine
not only an individual trajectory of movement but also
the whole family of trajectories, including those resis�
tant to unexpected disturbances.

Mathematical modeling showed [65] that the sen�
sorimotor interaction realized in BCBI gives an idea of
both a three�dimensional environment and the
scheme of the body, even in the case of a relatively sim�
ple model of the human consisting of a tactile�sensi�
tive body and a proprioceptive�sensitive hand with
many degrees of freedom.
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Electrodes for Recording Electrical Signals and Cortical 
Microstimulation

One of the major factors hampering the develop�
ment of BCI is the problems associated with the tech�
nology and stability of recording of electrical signals of
the brain [66]. Each type of the used signals (spike
activity of individual neurons, multiunit activity, and
low�frequency cortical field potentials) has its advan�
tages and disadvantages [15, 67–70]. Existing studies
often lead to inconsistent conclusions in comparing
the amount of information in these signals based on
the basis of the accuracy with which they could be used
to reconstruct the kinematics of movement of the arm
to the target and grasping it in two� and three�dimen�
sional space. The inconsistencies could be caused by
the differences in the motor tasks used, in the areas of
registration, in the decoding algorithms or in the num�
ber of spikes per channel, which characterized each of
the studies [71–75].

The consequences of long�term chronic recording
of the electrical activity of the brain or its microstimu�
lation with electric current with the use of microelec�
trodes are the major constraint to the real introduction
of neurointerfaces into the clinical practice. The accu�
mulated experience showed that the work with multi�
channel chronic electrodes significantly differs from
the use of an electrode in an acute experiment [76]. In
microstimulation of brain tissues, the strongest impact
is caused by the electric current as such, which in the
absence of compliance with the safety regulations [37]
may cause injury of the patient [77]. At the same time,
changing the frequency and amplitude of current
pulses of a certain form and the duration of supply of
these pulses can allow reflecting the touch force vari�
ability or surface roughness of the study objects [21,
78, 79]. In this regard, a significant number of research
groups including various specialists work to improve
the material of electrodes, their coating and structure,
and the methods of their implantation into the brain
[80]. The results of a recent study on a long�term
microstimulation of the primary somatosensory cortex
in three rhesus monkeys using chronically implanted
electrodes are encouraging [81]. Stimulation was per�
formed for 4 h per day for 6 months using various
microstimulation patterns. It was found that the range
of variation of the impedance and voltage of the elec�
trode, characterizing the electrode–tissue surface
state, decreased and stabilized after 10–12 weeks of
stimulation. The magnitude of this decrease depended
on the amplitude of the current and, to a lesser extent,
on the duration of pulses. Moreover, there were no dis�
turbances in the fine motor control.

Simultaneous Recording of Electrical Signals 
of the Cortex and Its Microstimulation

The location of the recording electrodes of BCI,
which are characterized by a very high sensitivity, and
the stimulating electrodes in electrically conductive

brain tissue leads to the distortion of recorded neural
signals of BCI when attempting to directly use artifi�
cial feedback with the aid of microstimulation [79].
The most obvious and common solution is to block the
inputs of amplifiers of BCI recording channels for the
period of microstimulation, which is performed as
pulse spikes of a certain duration. However, the inevi�
table occurrence of transient processes associated with
switching on and off in electrical circuits, this method
leads to the loss of information about the neuronal
activity of the brain structure used in the BCI [79]. A
better solution is to filter the occurring artifact to
restore the original signal. This method was first suc�
cessfully used in the combination of EEG with transc�
ranial magnetic stimulation [82] and then in the
experiments on monkeys performing the task of run�
ning a computer cursor [83].

The Use of S1 Microstimulation in Experiments 
on Monkeys

Currently, there is no data indicating whether the
microstimulation of S1 areas in monkeys causes any
(and which exactly, if any) sensations. It is only known
that animals can perceive microstimulation as a guide
to action and can differently respond to microstimula�
tion patterns with different parameters [78]. In
another study [84], monkeys were able to distinguish
the amplitude of microstimulation effects simulating
the indentation of the skin on digits to different
depths. The animals equally well distinguished both
the indentation depth and the corresponding micro�
stimulation amplitudes; i.e., they perceived both types
of stimuli in a similar manner. In the study with the use
of a combination of BCI and an artificial sensory feed�
back [79], monkeys were trained to active examination
of two visually identical targets on the display screen
with a joystick controlling a symbolic image of the
hand. When the hand symbol got on one of the targets,
it caused microstimulation of the area of tactile repre�
sentation of digits and palm of the hand in the primary
somatosensory cortex by sending a pulse with a con�
stant frequency. The second target caused microstim�
ulation with the same mean frequency of pulses but
with a disturbed periodicity. When holding the hand
symbol on the target that caused a pulsed stimulation
at a constant rate for the required period of time, the
monkey received reinforcement with juice and gradu�
ally learned to significantly discriminate between the
targets. Thus, it was shown that a certain change in the
cortical microstimulation pattern becomes sensorily
significant for the monkey. Combinations of changes
in the amplitude, frequency, and pattern of microstim�
ulation are quite sufficient to reconstruct a wide vari�
ety of tactile sensations.
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CONCLUSIONS

In general, invasive BCIs are developing in several
directions. These efforts will not only help patients but
also expand the fundamental knowledge of the func�
tional mechanisms of the human cortex, which, in
turn, should help to increase the BCI efficiency. The
study and analysis of the formation of BCI for the
visual feedback closure can provide ample material for
understanding the processes of training of motor skills,
on the one hand, and help to create the next genera�
tion of neuroprostheses, on the other [85]. In other
words, the potentials of the existing BCIs are limited
by the insufficient fundamental knowledge about the
brain function rather than by the restrictions in the
power of computers and characteristics of electronic
devices [1]. In particular, the neuronal mechanisms of
control and adaptation of hand movements are not
quite clear partly because the connection between the
activity of neurons in many areas of both the frontal
and parietal cortex and the resulting movement of the
hand is almost always indirect and difficult to identify
[86]. Transcoding programs in BCIs set a unique con�
nection between the activity of recorded neurons and
the movements of the effector. Therefore, the use of
BCIs provides a unique technology for studying motor
control and its adaptation [25]. An example of this was
the study on monkeys [87], in which 10–15 neurons in
the M1 area, stably recorded for many days during the
implementation of the cursor running task by the
monkey, were selected. After calibration of the
transcoder for the activity of the selected neurons, the
monkey was transferred into the BCI operation mode
with a closed feedback and then trained to a suffi�
ciently high level of task implementation. Then, sig�
nificant changes were made in the transcoder pro�
gram, which did not allow the monkey to perform the
task, although the animal coped with the first
transcoder was used. The new achievement of the
same high level of the task implementation by the ani�
mal within several days gave a unique material on the
learning of a new pattern of activity by a certain lim�
ited number of neurons. In another study in monkeys
[88], which were trained to run the cursor using a BCI
in a three�dimensional visual space, the researchers
changed the random sample of recorded neurons and
turned the map of the directional patterns of their
activity by 90 degrees. In the first sessions performed
after these changes, the monkeys moved the cursor at
an angle to the desired direction and then gradually
partially (approximately by 25%) compensated for the
mistake after a long period of training. Thus, informa�
tion on the neuronal activity before, during, and after
adaptation as well as comprehensive information
about the algorithmic conversion of signals make it
possible to study the mechanisms of motor learning.
Similarly, the use of BCI and artificial sensory feed�
back with parameters that are changed in the course of
the study can become a method for studying the
mechanisms of sensory rearrangements.
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