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Abstract—This paper discusses the use of a fully connected neural network to classify images of firing pin
impressions. The purpose of this work is to investigate the effectiveness of clone images of firing pin impres-
sions in improving the quality of training of fully connected neural networks. Another purpose of the work is
to estimate the accuracy of multigroup classification of firing pin impressions left by different firearms by
using a neural network. The scientific novelty of this work is in the use of augmentation for creating images
of firing pin impressions to increase the number of objects in the training dataset and to artificially improve
the feature diversity of objects of each class. The conducted investigation shows that the accuracy of classifi-
cation of the analyzed objects reaches approximately 84% for a fixed value of the classification criterion and
94–98% when the classification is carried out based on three maximum signals on output neurons. The work
is of interest to developers of automated ballistic identification systems.
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1. INTRODUCTION

Firearms identification by the marks on cartridge
cases is one of the important problems of forensic bal-
listics. Its solution makes it possible to link a particular
firearm to a place of its criminal use. Even though,
during a shot, the firearm leaves many marks on car-
tridge cases, firearms identification is a rather complex
and sometimes ambiguous procedure. To make an
identification conclusion, firearm examiners use sub-
jective criteria, which are based on their previous
experience.

The purpose of this work is to investigate the possi-
bility of developing an objective computerized method
suitable for forensic firearms identification. One of the
stages of the research is examining the possibility of
effective training of a fully connected neural network
(FCNN) by the augmentation of the training dataset
of source images of firing pin impressions. The aug-
mentation is carried out by subjecting the source
images to spatial and brightness distortions in accor-
dance with the predicted variability of individual fea-
tures. The FCNN is trained using the augmented
dataset and the accuracy of multigroup classification
of firing pin impressions is estimated.

Figure 1 shows the marks left by firearms on dis-
charged cartridge cases. The most informative ones
are the marks of a firing pin, breach face, ejector, and
ejection port, as well as marks that depend on the fire-
arm’s action, etc. Firearms identification is often car-
ried out by examining marks of firing pin impressions.
In this work, images of hemispherical firing pin
impressions were used.

The development of an effective algorithm for
automated classification of images of firing pin
impressions is a complex technical problem, which is
first of all due to the wide variety of types of micro-
inhomogeneities on the firing pin surface that are
transferred to the marks. For example, Fig. 2 shows
images of firing pin impressions with dominant fea-
tures of different types [1]. In addition, significant
variability of features can be observed within one class
(in this case, one class means firing pin impressions
made by the same firearm). This variability of features
can be caused by different reasons, e.g., the use of car-
tridges from different manufacturers, the presence or
absence of a lacquer coating on the surface of a primer,
different amounts of lubricants in the firing mecha-
nism, etc. These factors significantly complicate the
comparison of images of firing pin impressions and,
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Fig. 1. Firearm marks on a discharged cartridge case: 1 is
the firing pin impression, 2 is the mark of the ejection port,
3 is the ejector mark, 4 are the breech face markings, 5 is
the extractors mark, 6 is the indicator mark, and 7 is the
mark of the indicator aperture.
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therefore, identification of firearms. For instance, Fig. 3
shows two pairs of firing pin impressions. The first
pair represents the marks left by different firing pins
(different classes), while the second pair represents the
marks left by one firing pin (one class). Visually, the
second pair has more differences than the first one.

2. MAIN CAUSES OF THE VARIABILITY
OF FIRING PIN IMPRESSIONS

The high variability of features in firing pin impres-
sions within one class complicates the procedure of
automated comparison of their images and, ulti-
mately, reduces its effectiveness. The main factors that
lead to the high variability of the marks in firing pin
impressions are as follows.

1. Despite the unification of ammunition, each
shot occurs under slightly different conditions (the
rate of increase in the pressure of gunpowder gases, the
value of the maximum pressure, the weight of gun-
powder and modifications of gunpowder made by dif-
ferent manufacturers, different behaviors of the
primer mixture, including misfire or hangfire, etc.).
This causes the formation of firing pin impressions in
which individual characteristics look different.

2. The presence of various inhomogeneities in the
form of oxidation, lacquer coating, specks, etc. on the
primer before the firing pin strikes it is random and can
significantly distort the overall picture [2]. Figure 4
PROGRAMMING A

Fig. 2. Images of firing pin impressions wit
shows main types of inhomogeneities on the primers
that are not related to the shot itself: traces of primer’s
foil roll, notches and grooves, cavities caused by ero-
sion of the surface of old primers, oxidation spots, and
manufacturer’s markings on primers. These inhomo-
geneities can be partially preserved in firing pin
impressions, which can significantly complicate the
process of comparison of individual characteristics.

3. Differences in the mechanical properties of the
primer’s foil can cause impressions of the same firing
pin with varying depths, diameters (Fig. 3b), and dif-
ferent levels of distinctiveness in individual character-
istics.

4. The impossibility of absolutely identical installa-
tion of cartridge cases in the scanner for scanning the
base of a cartridge case leads to different positions of
matching features in different images of impressions of
the same firing pin (match marks). This can cause
angular misorientation of one image relative to
another, as well as left-right and up-down displace-
ments of images of analyzed marks. The displace-
ments generally do not exceed 10% of the diameter of
a firing pin impression. Thus, the matching features of
different impressions of the same firing pin can have
different positions relative to the center of the image.

3. EFFECT OF THE TOPOLOGY OF FEATURES 
ON THEIR STABILITY

The topology of the inhomogeneities on the strik-
ing surface of the firing pin affects the repeatability of
the marks in the impressions. Folds and stiffening ribs
in the microrelief of the firing pin are consistently car-
ried over to the impressions. Figure 5 shows images of
impressions of the same firing pin with clearly defined
boundaries of its individual characteristics in the form
of spots of indeterminate shape (see mark 1 in Fig. 5).
The boundaries of the spots quite accurately match
when compared. The same is true for other marks with
sharp boundaries. It can be assumed with high proba-
bility that the boundaries of these marks change
slightly for different shots when using cartridges from
the same manufacturer. The regions with a smoothly
changing microrelief are more susceptible to changes,
e.g., due to different maximum pressures of gunpow-
der gases on the inner surface of the primer for differ-
ND COMPUTER SOFTWARE  Vol. 50  No. 1  2024
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Fig. 3. Firing pin impressions: (a) non-matching marks and (b) impressions of the same firing pin.
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Fig. 4. Main types of inhomogeneities on the surface of primers that can be preserved in firing pin impressions: (a) traces of prim-
ers foil roll, (b) notches and grooves, (c) cavities caused by erosion of the surface of old primers, (d) oxidation spots, and (e) man-
ufacturer’s markings on primers.
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Fig. 5. Firing pin impressions: mark 1 represents sharp
boundaries of individual characteristics and mark 2 rep-
resents blurred boundaries of individual characteristics.
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ent shots. In Fig. 5, the regions with a smoothly
changing microrelief in the central part are indicated
as mark 2. It can be seen that the variability of the cen-
tral regions of the spots is much higher than the vari-
ability of the sharp outer boundaries. These features
can be taken into account to predict the most probable
variation of firing pin impressions, e.g., when creating
images with slightly modified individual characteris-
tics.

In general, despite the variability of the character-
istics and the presence of the masking inhomogene-
ities on the surface of primers, the presence of three
firing pins impressions for each firearm specimen
allows the examiner to visually identify matching indi-
vidual characteristics and, when forming an aug-
mented dataset, purposefully make modifications in
individual characteristics. In this case, the pro-
nounced inhomogeneities on the primer’s surface are
partially or completely eliminated by superimposing
images of neighbor fragments of the primer’s surface.

4. METHODS FOR ESTIMATING 
THE SIMILARITY OF FIRING PIN 

IMPRESSIONS
Let us briefly consider main methods for estimat-

ing the similarity of firing pin impressions. In various
automated ballistic identification systems, the similar-
ity of images of firing pin impressions is estimated
PROGRAMMING AND COMPUTER SOFTWARE  Vol. 
mainly by the maximum of a cross-correlation func-
tion (CCF), which shows the degree of their similarity.
The position of the maximum corresponds to the
coordinates of the central element of a mask for which
the maximum similarity of the images is observed
(Fig. 6a). The CCF of the images of different firing pin
impressions is usually characterized by several equiva-
lent maxima with relatively small values (Fig. 6b).
It should be noted that the CCF is not invariant to the
rotation, scale, and position of one image relative to
another. Thus, to implement this method, the CCF is
evaluated for various rotations of one image relative to
another. This makes it almost impossible to perform
50  No. 1  2024
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Fig. 6. Cross-correlation function: (a) images of two impressions of the same firing pin and (b) images of two impressions of dif-
ferent firing pins.
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Fig. 7. Method of correlation cells: (a) image of the first firing pin impression with a superimposed grid of equidistant cells, (b)
image (shiftable along x and y) of the second firing pin impression with a superimposed grid of equidistant cells, (c) and (d) are
distributions of maximum CCF values on the shift diagram for the images of impressions of the same and different firing pins,
respectively.
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multigroup classification when conducting a search
through an electronic database with thousands of dig-
ital images of firing pin impressions. The presence of
various artifacts and flares in the images also signifi-
cantly reduces the effectiveness of the correlation
analysis.

J. Song developed the congruent matching cells
(CMC) method, which allows one to effectively com-
pare digital images of breech face markings [3, 4]. This
method is based on the exclusion of low-informative
regions of compared images from further analysis and
the identification of matching inhomogeneities con-
gruently located in the image. For this purpose, the
analyzed images are divided into cells of the same size.
Cells suitable for correlation (which contain spatial
inhomogeneities) are used in the analysis.

The method of correlation cells, which is similar to
the CMC method, was proposed in [5]. It is based on
superimposing a grid of cells of the same size onto the
analyzed images, finding the CCF maximum for the
same-name cells of the first and second images, and
determining shifts of an image relative to the superim-
posed grid (see Figs. 7a and 7b) for which the number
of matched cells with the greatest CCF values is max-
imum. The similarity of the coordinates of the shifts
PROGRAMMING A
for which the maximum number of matched cells with
the maximum CCF value is observed (Fig. 7c) charac-
terizes the degree of similarity of the inhomogeneities
(characteristics) distributed over the compared
images. The method of correlation cells can be suc-
cessfully used to analyze images of breech face impres-
sions and firing pin impressions.

The disadvantages of the CMC method and
method of correlation cells include their low efficiency
in analyzing firing pin impressions and breech face
impressions with characteristics in the form of arcs
and circles, as well as the difficulty of their use for
multigroup classification.

Another approach is the method of potential func-
tions, which, to describe the relief of firing pin impres-
sions, uses descriptors that do not depend on the ori-
entation of images, e.g., perimeter (P), area of a char-
acteristic (S), maximum and minimum moments of
inertia (Imax and Imin) (see Fig. 8). The descriptors

form what is known as feature space [6, 7], and the
comparison of the coordinates of features in compared
images allows one to draw conclusions about their
similarity. Each object is characterized by a point in
the feature space or a feature vector. The closer an
object from the test set is to the analyzed mark in the
ND COMPUTER SOFTWARE  Vol. 50  No. 1  2024
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Fig. 8. Methods for comparing firing pin impressions with individual characteristics in the form of large spots: (a) extraction of
descriptors in the firing pin impressions and (b) coordinate system and description of the object’s boundary in complex coordi-
nates (the object’s boundary is shown by the dashed line).
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feature space, the greater is the similarity between
their descriptors. This method is effective when com-
paring toolmarks with large individual characteristics
in the form of arbitrary-shape spots (Fig. 8a).

In [8, 9], toolmarks with features in the form of
large spots were compared using contour analysis.
Representation of features as contours is especially
useful when the image is binary and the information
relevant for identification is contained in boundaries
of objects. To represent characteristics as contours, the
boundary of each characteristic is described by unit
vectors that connect points in accordance with the
directions of an 8-connected system (Fig. 8b). The
thus-encoded contours have remarkable properties,
namely, the maximum absolute value of the normal-
ized scalar product of the contours is invariant to their
rotation, plane position, and scale [10]. In this case,
the absolute value of the normalized scalar product
indicates the degree of similarity of the contours,
while the argument represents the angle of their mis-
orientation. The disadvantage of this method is its low
efficiency when analyzing contours similar to a circle
and when each mark has several characteristics.

Machine learning methods can also be employed
for firearm examination. In [11], a neural network was
used to classify images of firing pin impressions on the
surface of a primer. The original images were prepro-
cessed without spatial distortion of individual charac-
teristics. In that work, all 747 cartridges, which were
scanned to obtain images of firing pin impressions and
form the training and test sets, were discharged from
only five specimens of a 9 mm Parabellum Vector SPI
pistol. The small number of classes makes it difficult to
qualitatively estimate the classification accuracy of a
neural network. Since there were 747 original images
for 5 classes, the authors did not need to form an aug-
mentation sample and estimate its effectiveness.

In [12], a Siamese neural network was used for
binary classification of matching and non-matching
images of firing pin impressions. Instead of two-
dimensional images, point clouds generated by 3D
confocal scanning of firing pin impressions were used.
In addition, the purpose of that research was the
binary classification into categories “match” and
“non-match”, rather than multigroup classification
(where several predefined classes are specified).
PROGRAMMING AND COMPUTER SOFTWARE  Vol. 
This overview of related works allows us to con-
clude that there is no universal method for multigroup
classification of firing pin impressions with different
types of individual characteristics given a small num-
ber of objects in each class.

5. ARTIFICIAL NEURAL NETWORKS

Recently, artificial neural networks have become
widely used in forensic science. Fully connected neu-
ral networks (FCNNs), being one of the simplest
architectures, have been successively employed in
solving multigroup classification problems [13–15].
A FCNN consists of a layer of input neurons, several
hidden layers, and a layer of output neurons. The
numbers of input and output neurons are strictly
determined: the former depends on the number of pix-
els (M) in analyzed images, while the latter depends on
the number of classes (N) that constitute the training
set (Fig. 9). The number of neurons in hidden layers
and the number of hidden layers are not strictly speci-
fied.

At the preliminary stage, the network is trained to
extract features characteristic of each class of objects.
The training process is based on the reception of an
error signal, its backpropagation, and adjustment of
weight coefficients wij that connect neurons of adja-

cent layers (Fig. 9). Initially, the weight coefficients of
the connections between neurons of adjacent layers
are set randomly, with their total value generally not
exceeding 1 for each layer. In the process of training,
the neuron connection weights are adjusted in such a
way that, when a test image of class i is input, the out-
put neuron corresponding to this class receives a signal
close to 1, whereas the signal on the other output neu-
rons is close to 0. The connection weights are adjusted
to meet a chosen criterion of neural network perfor-
mance. In this work, the adopted criterion was the
condition that the difference (ε) of signals at each out-
put neuron must be less than a predefined threshold
(e.g., 0.05):

where dj is the ideal signal at the jth output neuron
(0 or 1), yj is the real signal at the jth output neuron,
and N is the number of classes.

= ε < = …– 0.05 for [1, , ],| |j j jd y j N
50  No. 1  2024
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Fig. 9. Typical architecture of a fully connected neural network.
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Fig. 10. Example of a source image and its clones with modified individual characteristics: (a) source image, (b) image with mod-
ified individual characteristics without rotation, (c) and (d) are images with modified individual characteristics, rotated by an
angle of 7° and 15° clockwise, respectively.
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As a result of training, the FCNN learns to ignore
various random artifacts in the images of the training
set and, at the same time, to extract features that char-
acterize a particular class.

The use of neural networks for firearms identifica-
tion by digital images of firing pin impressions is com-
plicated by a small number of objects for each firearm.
This is due to the fact that, to collect samples of car-
tridge cases during testfire, a small number of car-
tridges are discharged. For instance, in the Russian
Federation, three rounds are fired from each firearm;
in other countries, from two to five rounds. It is well-
known that, to effectively train a neural network, each
class requires a large number of images, which are rep-
resented at different scales, have different orientations
and positions of the object in the frame, represent dif-
ferent overlaps of the object with other objects, etc.
The higher the variety of objects for each class, the
better the network is trained and the more accurate the
classification.

The analysis of images of firing pin impressions
suggests that the effective training of the FCNN may
require a training sample with a much smaller number
of objects for each class than it is necessary for solving
traditional image classification problems. Indeed, the
analyzed images of firing pin impressions suitable for
identification have the same scale, the same resolu-
tion, are identically centered, and almost always repre-
PROGRAMMING A
sent the complete image of the impression. Therefore,
it can be assumed that 20 to 30 images per class can be
sufficient to train the neural network.

6. CREATING IMAGES WITH DISTORTED 
INDIVIDUAL CHARACTERISTICS

The problem of a small number of objects in the
training set can be solved by transforming each source
image into a set of images with individual characteris-
tics modified within acceptable limits. For this pur-
pose, at the first step, source images 500 × 500 px in
size were obtained, where the center of the firing pin
impression was positioned in the center of the frame.
The frame regions not related to the firing pin impres-
sion were blackened. Then, the images were subjected
to homomorphic processing [8, 9] to equalize their
brightness (Fig. 10a). At the second step, to obtain an
extended training dataset, images were created by the
following method.

1. The brightness of the regions with a small gradi-
ent was varied within 10–15% of the dynamic range.

2. The contours of the large characteristics with
well-defined boundaries were deformed by no more
than 5% of their linear size.

3. The region of the firing pin impression itself in
the new images was randomly shifted within 5–7% of
the linear frame size (500 × 500 px).
ND COMPUTER SOFTWARE  Vol. 50  No. 1  2024
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4. All images with modified characteristics were
rotated with a step of 7–9 deg at angles from 0 to
±35 deg. For each source image, one image with mod-
ified individual characteristics and its eight rotations
by ±7–9°, ±15–17°, ±23–25°, and ±32–35° were
obtained (see Figs. 10c and 10d). Technically, it was
possible to rotate the images within ±180º, thus elim-
inating the need to ensure their identical orientation;
however, in that case, it would take more images with
modified features and, therefore, more training time.

Upon creating the images with modified features
and rotating them, each class can be represented as
several sets of similar images (branches). The number
of branches depends on the number of source images
(Fig. 11a). If necessary, from each source image, two
or three images with differently modified individual
characteristics can be obtained. To train the FCNN,
all images were reduced to 75 × 75 px. This reduction
in resolution was done to reduce the training time and
the amount of computational resources required at the
stage of estimating the effectiveness of the proposed
method. In the future, when developing an applied
model to solve real-world problems, it will be neces-
sary to use larger images. The two-dimensional source
images of firing pin impressions for the training and
test datasets were obtained using the POISC (Russia)
and IBIS (Canada) ballistic scanners. All images were
brought to the same size and resolution.

7. GENERATION OF THE TRAINING 
AND TEST DATASETS

The datasets were generated in accordance with the
following rule. If the ith class contained three
branches, then two of them formed class i in the train-
ing dataset and the third branch formed the same class
in the test dataset (Figs. 11a and 11b). Thus, the images
or their modifications included in the test dataset to
estimate model performance were never used to train
the model itself. Each branch contained a source
image, at least one source image with individual char-
acteristics modified within certain limits, and eight
images with individual characteristics modified within
certain limits that were rotated by different angles in
the range of ±35 deg. In addition, the test dataset con-
tained classes that were not included in the training
dataset.

For better description of the structure of the data-
sets, additional definitions of class groups were intro-
duced. The classes of the test dataset that are also pres-
ent in the training set are called matched classes. The
other classes of the test dataset are called non-
matched. Two versions of the training and test datasets
were generated, which allowed us to estimate the accu-
racy of classification of matched classes and the accu-
racy of detecting non-matched classes. In the first
variant (see Fig. 11b), the training and test datasets
each contained 30 matched classes (approximately 700
images in the training set and 350 images in the test
PROGRAMMING AND COMPUTER SOFTWARE  Vol. 
dataset), and 78 non-matched classes were included in
the test dataset (approximately 900 images). In the
second variant (Fig. 11c), the training and test datasets
also contained 30 paired classes each (700 and 350
images, respectively) plus one combined class. The
combined classes were formed as follows: 78 non-
matched classes from the test set of version 1 (Fig. 11b)
were divided into two groups. The first group included
in the training dataset contained classes with the most
pronounced individual characteristics. The second
group included all other non-matched classes. It can
be seen from Fig. 11c that the non-matched classes
included in the combined class of the training dataset
do not coincide with the non-matched classes
included in the combined class of the test dataset.
Including the combined class in both datasets makes it
possible to train the FCNN to extract features of non-
matched classes and estimate the accuracy of their
prediction by using a confusion matrix.

To avoid using the objects of the test dataset to form
the combined class, the images of firing pin impres-
sions with similar dimensional and geometric charac-
teristics (diameter of approximately 1.5 mm, hemi-
spherical profile, etc.) from other firearm models can
be used. For instance, for the FCNN trained to classify
firing pin impressions of a Makarov pistol (9 × 18 mm
caliber), the combined classes can be formed using fir-
ing pin impressions of pistols with similar characteris-
tics, e.g., Tauras, Beretta-92, etc. (9 × 19 mm caliber).

8. TRAINING A FULLY CONNECTED 

NEURAL NETWORK

To estimate the effectiveness of using the aug-

mented training dataset, formed by the modification

of individual characteristics of firing pin impressions,

the FCNN [13] with two hidden layers was con-

structed. The FCNN had the following structure: the

input layer consisted of 5625 input neurons (in accor-

dance with the number of image pixels), the first hid-

den layer had 625 neurons, the second layer had 156

neurons, and the number of neurons in the output

layer depended on the number of classes in the train-

ing set (Fig. 12). As a result, the FCNN had approxi-

mately 3.5 million adjustable weight coefficients.

The FCNN was trained in several steps. At the first

step, the training set included only source images. Ini-

tially, the FCNNs were trained on the images with

well-defined; then, the images with less pronounced

characteristics were used. At the second step, the

training dataset was extended to include images with

modified individual characteristics without rotation.

At the third step, the training dataset included images

with modified individual characteristics randomly

rotated relative to their initial positions by angles

within ±35 deg.
50  No. 1  2024
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Fig. 11. Generation of the training and test sets: (a) typical structure of an augmentation class, (b) formation of the training and
test sets in accordance with variant 1, and (c) formation of the training and test sets in accordance with variant 2.
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The preliminary analysis of the FCNN showed that

the inclusion of the images with modified individual

characteristics into the training dataset improves the

classification accuracy by several percent; the inclu-

sion of the images with different rotations additionally

improves the accuracy by 8–10%. Therefore, the

results of training the FCNN on the dataset that
PROGRAMMING A
included rotated images with modified individual

characteristics are discussed below. In total, more than

50 FCNNs were trained with different initial weights,

which were set randomly.

For matched classes, a success was interpreted as

the appearance of a signal higher than the classifica-
ND COMPUTER SOFTWARE  Vol. 50  No. 1  2024
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Fig. 12. Architecture of the fully connected neural network used in this research.
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tion threshold on the corresponding output neuron or,

with an unfixed classification threshold, the appear-

ance of the maximum signal on the corresponding

output neuron. A failure was interpreted as the appear-

ance of a signal below the classification threshold on

the corresponding output neuron or, with an unfixed

classification threshold, the appearance of the maxi-

mum signal on the non-corresponding output neuron.

For non-matched classes (variant 1), the success

was the appearance of maximum signals below the

classification threshold on all output neurons, while

the failure was the appearance of a signal above the

classification threshold on at least one output neuron.

In the absence of a fixed classification threshold, it is

impossible to estimate the accuracy of prediction of

non-matched classes. That is why, in variant 2, the

combined class was introduced, the training on which

made it possible to estimate the accuracy of prediction

of non-matched classes.

9. ESTIMATION OF CLASSIFICATION 

ACCURACY

The accuracy of predicting the classes of the test

dataset was estimated using the Accuracy, Recall, Pre-

cision, and F1 metrics.

Accuracy = (TP + TN)/(TP + TN + FP + FN) is

the ratio of the correct predictions to the total number

of predictions, where TP is the true positive predic-

tion, TN is the true negative prediction, FP is the false

positive prediction, and FN is the false negative pre-

diction.

Recall = TP/(TP + FN) shows the number of false

negative predictions (misclassifications), which is a

very important parameter when conducting a search

through a database of firing pin impressions.
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Precision = TP/(TP + FP) shows the number of

false positive predictions and characterizes the ability

of the classifier to distinguish one class from the other

similar classes.

The F1 metric combines two previous metrics:

F1 = 2  Precision  Recall/(Precision + Recall).

To estimate the classification accuracy, several

FCNNs were trained on 30 classes of images of firing

pin impressions. For one of the best-trained FCNNs,

using the confusion matrix, the metrics were calcu-

lated for matched classes, depending on the threshold

level of the signal on one of the output neurons (see

Fig. 13). The graph shows that, for this FCNN, the

optimal threshold is 0.7, at which all metrics have

fairly high values on the order of 78–82%.

Then, the trained FCNNs were tested both with

the fixed classification threshold and with the maxi-

mum signal on output neurons without the classifica-

tion threshold (see Table 1). The FCNNs were trained

in two ways. In the first case, several FCNNs with dif-

ferent initial sets of weight coefficients were trained in

parallel, the best FCNN was selected, and its classifi-

cation accuracy was estimated. In the second case, a

collection of FCNNs (at least 10) with different initial

sets of weight coefficients were trained, three FCNNs

with the best performance were selected, and a new

FCNN with weight coefficients averaged over the

selected FCNNs was constructed and then retrained

on the same dataset. In Table 1, the first method is

denoted by “1 FCNN;” the second method, by

“3 FCNN optimization.”

The table shows that the classification accuracy at

the given threshold value of the signal on output neu-

rons for matched classes ranges from 63% to 84%; for

non-matched classes, it ranges from 80% to 95%.

When the threshold is not fixed, the prediction accu-

racy ranges from 72% to 96% for matched classes when

∗ ∗
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Fig. 13. Effectiveness of FCNN predictions in terms of different metrics depending on the threshold value on output neurons.
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Recal
the classification is carried out by the maximum signal

on one output neuron, and it ranges from 95% to 98%

when the success is interpreted as the appearance of

the signal on the corresponding neuron among three

output neurons with the highest signal values.

Analysis of the data presented in Table 1 allows us

to draw the following conclusions.

1. Using several FCNNs to construct one FCNN

with averaged weight coefficients makes it possible to

improve the classification accuracy, which is probably

due to reducing the effect of overfitting.
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Table 1. Classification accuracy

Variants 

of samples

Threshold 

value

Matched classes,

1 output 

neuron

2 output

neurons

Variant 1:

1 FCNN no threshold

(Recall)
0.88 0.9

threshold 0.75

(Accuracy)
0.8 0.8

3 FCNN 

optimization

no threshold

(Recall)
0.96 0.97

threshold 0.70

(Accuracy)
0.84 0.84

Variant 2: no threshold

(Accuracy)
0.72 0.97

3 FCNN 

optimization

threshold 0.50

(Accuracy)
0.63 0.66
2. The classification by the maximum signal on the

output neuron (on one out of three output neurons

with the maximum signals) without the fixed thresh-

old makes it possible to improve the accuracy of clas-

sifying objects of matched classes.

3. Training the FCNN on the combined class

formed from non-matched classes makes it possible to

improve the accuracy of predicting non-matched

classes up to 95% for the fixed threshold and up to 99%

for the unfixed threshold.
ND COMPUTER SOFTWARE  Vol. 50  No. 1  2024

 accuracy Non-matched classes, accuracy

 3 output 

neurons

1 output 

neuron

2 output 

neurons

3 output 

neurons

0.95

0.8 0.8 0.8 0.8

0.98

0.84 0.84 0.84 0.84

0.98 0.96 0.98 0.99

0.66 0.95 0.95 0.95
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Fig. 14. Images of firing pin impressions for two firearms

with a similar topology of individual characteristics: (a)
and (b) images of firing pin impressions on the cartridge
cases discharged from one specimen of the Makarov pistol
and (c) image of a firing pin impression on the cartridge
case discharged from another specimen of the Makarov

pistol.

(a) (b) (c)
It should be noted that the trained FCNN exhibits

quite high precision. Figure 14 shows the images of fir-

ing pin impressions for two Makarov pistols with serial

numbers 1784 and 1699 that have topologically similar

individual characteristics. The FCNN confidently

attributed these images to correct classes.

10. DISCUSSION

Obviously, to improve the classification accuracy,

it is necessary to increase the size of the images,

because, when the source images are reduced to 75 ×

75 px, the inhomogeneities are smoothed out with a

loss of information about small details of individual

characteristics. However, to analyze images of size

250 × 250 px or larger, it is required to switch to a con-

volutional neural network developed for image analysis.

It is also required to increase the number of classes

in the training and test datasets.

11. CONCLUSIONS

The research showed the following:

– the fundamental possibility of developing a

FCNN-based system for toolmark classification,

which has characteristics that allow it to be used for

forensic examination;

– the use of the augmented images of firing pin

impressions that have individual characteristics modi-

fied within certain limits, in the case of a small number

of initial objects in each class, allows the FCNN to be

trained and used for the classification of firearms

marks;

– the images of firing pin impressions can be clas-

sified by the FCNN on matched classes with the accu-

racy of about 84% for a fixed classification criterion,

about 96% when the classification is carried out by the

maximum (unfixed) signal on one output neuron, and
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about 98% in the case of classification by three maxi-

mum signals on output neurons;

– the non-matched classes can be detected with

the accuracy of about 95% in the case of the fixed clas-

sification criterion and 99% when the detection is car-

ried out by three maximum signals on output neurons;

– the use of several FCNNs to form one FCNN

with averaged weight coefficients and its subsequent

retraining, while taking into account the maximum

signals not only on one output neuron but also on two

or three output neurons, makes it possible to improve

the accuracy of classification.

Overall, the research showed that the augmenta-

tion of the samples of firing pin impressions images by

purposefully modifying their individual characteristics

can provide more favorable conditions for effective

training of neural networks and their subsequent use in

conducting searches through databases of digital

images of firing pin impressions.
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