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1. INTRODUCTION
Even though parallel computing and parallel pro-

gramming models are now being used in all areas of
human activity, the adoption of a particular model is
not realized as a technological shift that changes the
architecture of computer systems and, as a result,
affects the parallel programming model. The architec-
ture of a system determines the possibility of parallel
use of computer resources, while the programming
model determines the possibility of effective mapping
of a program to hardware resources.

This paper considers the genesis of parallel pro-
gramming models and substantiates the need for a
transition to a programming model with shared mem-
ory and synchronization based on FE-bits of shared
memory words.

2. UNIVERSAL HOMOGENEOUS HIGH-
PERFORMANCE COMPUTER SYSTEMS

Parallel data processing, as a means of performance
boost unattainable for a single computer, arose from
solving challenging computationally hard problems on
specialized computer systems. In the early 1960s, at
the Sobolev Institute for Mathematics of the Siberian
Branch of the Russian Academy of Sciences (former
IM SB AS USSR), a research has begun on the archi-
tecture of computer systems and computational envi-
ronments, parallel algorithms and parallel program-
ming tools, as well as computer graphics and pattern
recognition, which is now part of artificial intelli-
gence. The initial stage of the research into the design
and use of high-performance computer systems
resulted in the publication (in 1966) of the monograph
[1]. Let us consider the results that were summarized
in the monograph into a unified concept based on a

model of a collective of computers; these results are of
fundamental importance for the emergence and devel-
opment of parallel programming.

For the first time, based on the analysis of physical
constraints imposed on the development of micro-
electronics, some approaches to improve the perfor-
mance of computer systems were formulated, which
included

• higher clock frequency;
• increased number of processing devices that

operate simultaneously (in parallel);
• programmability of structure as a software-based

setting of connections among processing devices.
In this case, programmability of structure was con-

sidered as a means of attaining universality, which
makes it possible to achieve high performance in exe-
cuting different algorithms owing to the software
implementation of specialized computer systems for
their execution.

For a computer to operate at a clock frequency ν,
the maximum length of conductors between devices
should not exceed d = c/2ξν, where c is the speed of
light, ν is the clock frequency of a unified clock tree of
the computer, c/ν is the wavelength corresponding to
ν, and ξ is the coefficient that determines the excess of
the wavelength over the conductor’s length (the con-
stant ranging from 10 to 100). Suppose that ρ is the
maximum permissible number of devices per unit vol-
ume, which is determined by a hardware manufactur-
ing technology and limits set by heat and energy
exchange conditions. Then, the number of devices
that can be placed in a ball with a diameter of 2d does
not exceed n = 2πρc3/3ξ3ν3. The performance of a
computer is directly proportional to the product of the
number of devices by their clock frequency. Thus, the
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maximum performance of computing devices with a
unified clock tree has a fundamental limit.

The performance model considered above implies
that, to achieve arbitrarily high performance, it is
required to abandon the unified clock tree and rede-
sign the system as a collective of synchronous comput-
ers interconnected by asynchronous channels. In that
case, the constraint on the maximum number of
devices holds only for each individual computer,
whereas the number of computers in the system is not
limited. This makes it possible to achieve desired per-
formance, which happened in the 21st century. Cur-
rently, computer systems are designed based on archi-
tectures of the GALS (globally asynchronous, locally
synchronous) class, which implement global asyn-
chrony among synchronous computers.

However, the proven possibility of building com-
puter systems with an arbitrarily large number of com-
puters (elementary computers (ECs) in terms of [1])
did not mean the possibility of executing programs
with a performance proportional to the number of
ECs. To investigate the limit on the performance
increase achievable by using parallel computing, the
following reasoning (later known as Amdahl’s law)
was used: if a program has a non-parallelizable part σ
and an ideally parallelizable part (1 – σ), then the
speedup due to parallelization when running this pro-
gram on m processors is S = 1/(σ + (1 – σ)/m). In the
limiting case, as m tends to infinity, the speedup is S =
1/σ.

Thus, on the one hand, there are no algorithmic
approaches to the design of parallel computer systems
and to the development of parallel programs with
proven execution efficiency. On the other hand, there
are precedents of building specialized parallel systems
based on parallel algorithms to execute computation-
ally hard problems. Hence, it was decided to create an
experimental parallel computer system Minsk-222
and use it as a basis for investigating parallel programs
for some important computational tasks and their
most common parts that implement computational
methods, e.g., for solving systems of linear equations.
In the framework of that project, it was supposed to
create efficient algorithms for program parallelization,
including automatic parallelization.

The Minsk-222 computer system was built on the
basis of a Minsk-22 shelf serial computer by equipping
each computer with a system engine (SE). The SE had
two control links and two information links for con-
nection to the corresponding links of two neighbor
elementary computers. Minsk-222 could consist of up
to 16 ECs, each having its own number i, 0  i  N – 1,
where N is the number of ECs in the system. EC with
number i was connected via bidirectional control and
information links to ECs with numbers k and j, k =
(i – 1)modN and j = (i + 1)modN. Thus, the structure
of computer-to-computer connections with the ring
topology was formed.

≤ ≤
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Each SE had a configuration register, which con-
sisted of triggers TR, TQ, TΩ, as well as a block of sys-
tem operations, which extended the instruction set of
the base computer with the so-called system instruc-
tions. These system instructions were divided into four
categories:

• configuration instructions, which set configura-
tion registers and registers of EC features;

• generalized unconditional jump (GUJ) instruc-
tions, which were used for the initial load of programs
and data to the ECs with the TQ trigger set to “1” and
for the forced control of the computational process in
these computers (the state “1” or “0” of the TQ trigger
determines, respectively, the execution or skipping of
an instruction that comes from the EC executing the
GUJ instruction);

• generalized conditional jump (GCJ) instruc-
tions, which execute jumps to specified addresses if

where E is a subset of index numbers for the machines
with the TΩ triggers preset to “1” and selected feature
ωk, k ∈ {1, 2, 3} which is used to generate a generalized
feature Ωk, while ωki is a feature (the result is less than
zero, overflow, the result is zero) generated by the i-th
EC;

• instruction T(z, A) used to transmit z memory
words, beginning with the address A specified in the
instruction, and instruction R(w, B) used to receive w
memory words with their allocation in internal mem-
ory, beginning with the address B specified in the
instruction. The R(w,B) process continues until all w
words are received; only then the instruction following
the R instruction is executed.

Setting to “1” the TR triggers in the ECs with num-
bers i and i + n(modN), as well as setting to “0” the
TR triggers in the ECs with numbers i + 1(modN), …,
i + n – 1(modN), is used to form a subsystem of n ECs
with numbers i, i + 1(modN), …, i + n – 1(modN).
Thus, the system could be divided into a set of subsys-
tems operating as independent systems.

The architecture of Minsk-222 defined a parallel
programming model based on message passing and
distributed memory. Through the efforts of specialists
in algorithms and programmers from the IM SB AS
USSR, parallel programs tunable to a given number of
ECs (as to a certain parameter) were developed. It became
possible to create such programs for practically import-
ant computational tasks, as well as to achieve their
speedup that was directly proportional to the number
of computers with a certain multiplying factor. The
doubled memory capacity of the Minsk-222 system, as
compared to the Minsk-22 individual computer with
slow external magnetic-tape data storage, as well as the
speed of its communication links (comparable to that
of memory), ensured its performance that signifi-
cantly exceeded the “mechanical” sum of the perfor-
mances of the constituting computers.

∈
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A parallel program was represented as a set of
branches with data and control operators for their
interaction. A fundamental result from the creation of
these parallel programs was the development of typical
schemes for data exchange between program
branches. These schemes are reduced to exchanges of
five types: broadcast, broadcast-cyclic, pipeline-par-
allel, gathering, and differentiated exchanges. In the
case of the broadcast exchange, the same data block is
transmitted from one (any) branch simultaneously to
all other branches of a program. The broadcast-cyclic
exchange transmits a data block from each branch to
all others. The pipeline-parallel exchange passes a
data block from each branch i, executed on the i-th
EC, to a neighbor branch k, k = (i + 1)modB, where B
is the number of branches in a parallel program. The
gathering exchange implements collection of data
blocks from some branches of a program into one
branch. Finally, the differentiated exchange passes
data blocks between specified pairs of branches or
from one branch to several branches.

In the mid-1990s, the programming model based
on message passing became generally accepted. It was
represented as a message passing interface (MPI), a
library of functions for creating and executing parallel
programs. There is a following correspondence
between the Minsk-222 parallel programming system
and the MPI:

• broadcast exchange (MPI_Bcast);
• broadcast-cyclic exchange (MPI_Alltoall or

MPI_Allscatter);
• gathering exchange (MPI_Gather);
• generalized conditional jump (MPI_Barrier);
• differentiated exchange (MPI_Send, MPI_Recv).
Thus, it can be stated that the monograph [1] pro-

posed the promising (eventually fundamental) archi-
tectural concept for parallel computer systems with
distributed memory and the parallel programming
model based on message passing.

Since the 1970s, attempts were made to create par-
allel systems based on this concept. For instance, there
was a project to interconnect high performance com-
puters of Unified System, manufactured in the USSR;
however, even in a large organization, there was only one
computer, and interconnection of computers within the
country was not just a technical problem. In addition,
available electronic components made it possible to cre-
ate more efficient computers with a unified synchroni-
zation tree and increased clock frequency, since the
number of elements in them was far from the limit set
by the packing density of elements and clock fre-
quency.

The situation changed with the advent of micro-
processors. A computer system MVS-1000M [2] was
created, with a performance at a level of 1012 f lops.
It was the first domestically developed system
included in the top 50 of the TOP500 list of the world’s
PROGRAMMING A
highest-performance computer systems. The architec-
ture of MVS-1000M provides only system operations
for transmitting and receiving data blocks. As an appli-
cation programming interface, users can call programs
from the MPI library. To some extent, this is due to the
impossibility to add system instructions, as it is done
in Minsk-222, to the microprocessor. However, the
software implementation of barrier synchronization in
the MPI, in contrast to the GCJ system instruction in
Minsk-222, is rather time-consuming and is one of the
main causes of performance loss in parallel comput-
ing. That is why a special communication network was
introduced, e.g., in IBM Blue Gene\L to implement
an analogue of the GCJ in Minsk-222.

3. COMPUTER SYSTEMS WITH 
PROGRAMMABLE STRUCTURE

In the early 1970s, some theoretical questions arose
concerning the fundamental contradiction between
the implementation of the Minsk-222 architecture
and the model of parallel systems from [1]. One of the
questions was that the implementation implied “long”
conductors, e.g., when executing the GCJ instruction,
which, with increasing number of computers in the
system, should have lead to a decrease in clock fre-
quency. Moreover, the T and R instructions implied
the existence of connections between any ECs in the
system, no matter how large-scale it was, i.e., the con-
ductors should be long. However, the architectures of
the GALS class should not have long conductors.
Each EC must have connections only with a limited
number of neighbor ECs; to pass data to a non-neigh-
bor EC, a sequence of data passes between neighbor
ECs must be carried out. Hence, it was necessary to
understand how to build computer systems that only
have short local conductors between ECs, as well as
understand how to program and efficiently run paral-
lel programs with the performance directly propor-
tional to the number of ECs used. The results of inves-
tigating these and related questions were considered in
a monograph published in 1985 [3]. Below, we discuss
the proposed architecture and approach to parallel
programming with local connections.

A potentially unlimited number of ECs intercon-
nected into a system can only be achieved by using a
spatially distributed switch of computer-to-computer
connections with decentralized distributed control.
In any other case, the structure of the system can be
represented as a set of computers connected by con-
ductors to one switch, which contradicts the poten-
tially unlimited number of computers at a constant
clock frequency.

A spatial NхN switch (N inputs and N outputs)
with decentralized control is built of N non-ordinary
switches with v + 1 inputs ini and outputs outi (i = 0, 1,
…, v). An example of such a switch with eight inputs
and outputs, which is build on switches with v = 3, is
ND COMPUTER SOFTWARE  Vol. 49  No. 4  2023
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Fig. 1. Spatial 8х8 switch.
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Fig. 2. First three layers of infinite planar graph L(4, 5).
shown in Fig. 1. In this case, in0 and out0 of each of the
N non-ordinary switches j (j = 1, …, N) serve as Inj and
Outj of the spatial switch.

When creating a computer system of N computers
and switches with v + 1 inputs ini and outputs outi (i =
0, 1, …, v), it is required to choose a graph of com-
puter-to-computer connections. Since there are vari-
ous non-isomorphic homogeneous graphs with the
number of nodes N and degree of nodes v, it is neces-
sary to choose an optimal graph in terms of computer-
to-computer connections. A hypothesis was put for-
ward and confirmed by statistical experiments [3],
that, among the graphs with the number of nodes N
and degree of nodes v, the optimal graph has the min-
imum diameter and minimum average distance
between nodes.

As computer interconnection graphs, a parametric
family of homogeneous graphs L(N, v, g) was pro-
posed, where N is the number of nodes, v is the degree
of nodes, g is the girth, and each node is included in v
cycles of length g.

Graph L(N, v, g) is constructed based on an N-node
subgraph of infinite planar graph L(v, g) by selecting the
corresponding subgraph from all existing ones and by
drawing edges to construct L(N, v, g). In this case, the
N-node subgraph includes

• all nodes of d layers of L(v, g) if  = N,
where Ni is the number of nodes at layer i (i = 0, …, d),
N0 = 1, N1 = v, and d is the diameter of L(N, v, g);

• all nodes of d – 1 layers of L(v, g) if  < N

and N–  nodes of layer d.
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The algorithm [3] searches through the possible
variants and either finds a suitable graph or reports the
impossibility of its construction. Figure 2 shows three
layers of infinite planar graph L(4, 5).

Graphs L(N, v, g) exist not for all value combina-
tions of parameters N, v, and g. For instance, the
exhaustive search algorithm made it possible to con-
struct graphs L(N, 4, 5) for N = 19, …, 45.

Figure 3 shows graphs L(10, 3, 5) and L(24, 4, 5).
Graph L(10, 3, 5) has diameter 2 and includes all

nodes of layers 0, 1, and 2 of graph L(3, 5). Graph
L(24, 4, 5) has diameter 3 and includes all nodes of
layers 0, 1, and 2 of graph L(4, 5), as well as sever
nodes of layer 3 of this graph.

Graphs L(N, 4, 4) are group-graphs of finite abe-
lian groups of order N with two generators. They exist
for all values of N.

Graph L(N, v, g) has the minimum diameter d and
minimum average distance between nodes davg if g =
2d + 1 or g = 2d among all graphs with N nodes and
node degrees v.

A possible statement of the problem of finding the
optimal interconnection graph is to impose a con-
straint on the diameter (the number of hops, interme-
diate transmissions of packets). In this case, switches
with v  64 are used. In [4], some algorithms for syn-
thesizing graphs similar to L(N, v, 5) and L(N, v, 7)
with diameters 2 and 3, respectively, were considered.

In [5], results of statistical modeling were presented
that proved the optimality of L(N, v, g) with minimum
d and davg, including the efficiency of implementing
MPI library functions on computer systems with inter-
connection graphs Dragonfly and L(N, v, 7) with the
same number of nodes and node degrees. Using an
original exhaustive search algorithm [5], graphs L(20,

≥

49  No. 4  2023



314 KORNEEV

Fig. 3. Graphs L(10, 3, 5) and L(24, 4, 5).
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Fig. 4. EC structure of a computer system with graph L(N,
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4, 7), L(30, 5, 7), L(36, 5, 7), L(252, 11, 7), and L(264,
11, 7) with diameter 3 were synthesized.

Below are some important practical aspects of
using L(N, v, g) with minimum d and davg as an inter-
connection graph [3]:

• the maximization of the probability that there is
a connected subgraph of all non-failed computers, for
given probabilities of computer and communication
link failures, among all graphs with the number of
nodes N and degree of nodes v (structural robustness);

• the maximization of the probability of simulta-
neously established connections between individual
computers and/or groups of computers (structural
switchability).

The architecture with local connections makes it
possible to directly pass a data block only between
neighbor computers connected by a communication
link. The EC structure of a computer system with
graph L(N, 4, 4) is shown in Fig. 4.

In the transmitter computer, the data block is
placed in the output queue of the communication link.
If there is a place in the input queue of this communi-
cation link to receive a data block, then it is added to
the input queue. If there is no place in the input queue,
then the transmission is delayed until the input queue
is freed.

The transmission of a data block between comput-
ers not connected by a communication link and the
execution of the GCJ, as well as the GUJ, is carried
out via neighbor computers. The creation of subsys-
tems (programming the structure of the system) is car-
ried out using system software. From a programmer’s
perspective, the structure for which a parallel program
is created is selected among structures presented in
Fig. 5, or some other structure is selected. It is import-
ant that this structure have a parametric description
and can be selected with any required number of com-
puters. It should be noted that a root tree can be cre-
ated on a connected subgraph for any interconnection
PROGRAMMING A
graph L(N, v, g). In this case, the line and ring struc-
tures have certain constraints on their construction,
while the lattice is constructed without the use of tran-
sit computers only on L(N, v, 4).

To ensure programmability, the computers must be
enumerated. We assume that, when creating the sub-
system, a root computer is selected and assigned num-
ber 0. The enumeration of computers for the line and
ring subsystems is obvious; for the lattice subsystem,
there are options for rows and columns. We assume
that the computers of the root tree subsystem are enu-
merated by the depth-first search algorithm taking into
account the same order of pole numbers for all switches
ND COMPUTER SOFTWARE  Vol. 49  No. 4  2023
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Fig. 5. Structures of the line, ring, root tree, and lattice subsystems.
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Fig. 6. Subsystems of six computers with specified numbers (tree roots are encircled).
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that constitute the spatial switch of the system. Examples
of this enumeration are shown in Fig. 6.

A parallel program must define a data f low between
locally interacting computers, which locally execute
their parallel branches. Each data exchange between
branches of a parallel program is carried out according
to one of the schemes considered above (broadcast,
broadcast-cyclic, pipeline-parallel, gathering, or dif-
ferentiated). That is why a parallel program must con-
sist of two interacting components: calculation proce-
dure and path procedure.

Let us consider these procedures in detail. Suppose
that it is required to use the broadcast-cyclic exchange
scheme. Figure 7 shows a subsystem of six computers
with the root tree structure, including the bottom-up
and top-down networks of the subsystems that are
formed to implement this exchange scheme. For the
subsystem in Fig. 7, by τi we denote the weight of node
PROGRAMMING AND COMPUTER SOFTWARE  Vol. 
i, which is equal to the number of nodes in the subtree
the root of which is this node.

The path procedure that implements the broad-
cast-cyclic exchange determines the operation of the
bottom-up and top-down networks of the subsystem
on the n + 1 computers of which the parallel program
is executed.

In the bottom-up network, each ECi (i = 1, …, n)
loads (in accordance with the cyclic discipline
described below) the queue Oute(j) of link (i, j), which
transmits a data unit to the ECj that is its successor in
the bottom-up network; here, e(j) is the number of a
switch pole of link (i, j), e(j)  {1,…, v}. The first data
unit to be transmitted is the one extracted from the
beginning of queue Out0, which is generated in ECi
itself (i = 1, …, n). Then, τi1 data units are added to
Oute(j), each of which being extracted from the begin-
ning of the queue Ini1 containing the data units passed

∈
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Fig. 7. Subsystem of six computers with the root tree structure.
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to ECi from ECi1. ECi1 is a predecessor of ECi and has
the lowest number i1 among all computers ECi1,…,
ECip, which are predecessors of ECi in the bottom-up
network (i1<…<ip). Upon adding τ i1 data units from
queue Ini1, τi2 data units from queue Ini2 are added to
Oute(j) and so on until τip from queue Inip are added.
Then, this sequence of actions is repeated, starting
with the transmission of a data unit extracted from the
beginning of Out0.

Root computer EC0 loads queue In0 by cyclically
extracting (based on the scheme described above) data
units from queues In01, In02, …, In0s, which are passed
to EC0 by its predecessors EC01,…, EC0s.

The operation of the top-down network is initiated
by EC0. From the beginning of queue Out0, a data unit
generated by a calculation procedure in EC0 is
extracted and loaded to the end of Out01, Out02, …,
Out0s for transmission via the top-down network from
EC0 to its successors EC01,…, EC0s. Each ECi in the
top-down network adds the data unit extracted from
the beginning of Ine(j), which arrived from predecessor
PROGRAMMING A
ECj, to its queue In0 and output queues, which pass
the data unit to successor computers.

The calculation procedure executed by each com-
puter takes data units from In0 and, after their process-
ing by executing the calculation algorithm, puts the
result in Out0. If some EC has not completed the cal-
culation procedure by the time it can load the data
unit, then the transmission is delayed; it is also delayed
if there is no place in some queue to receive the data
unit.

The joint operation of the bottom-up and top-
down networks results in loading sequence , , …,

, , …, , , … to In0 in each of n + 1 computers
of the subsystem.

Using the scheme of broadcast-cyclic exchange
described above, it is possible, by slightly modifying it
and implementing the corresponding calculation pro-
cedure, to build parallel programs that use other
exchange schemes. Differentiated exchanges can be
implemented using modified bottom-up and top-
down networks, as in the broadcast-cyclic scheme.
The modification of the bottom-up network consists

0
1x 0

2x
0
nx 1

1x 1
nx 2

1x
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Fig. 8. Subsystem of 15 computers with D(2, 3)-addressing.
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in cyclical polling of all queues that supply data units
(while skipping empty ones). The data units are pro-
vided with tags, which consist of the number of an EC
that generated them and the numbers of receiver ECs.

Another implementation of inter-computer exchanges
is based on addressing the computers of a subsystem
that executes branches of a parallel program.

The implementation of differentiated exchanges
can use the assignment of computer addresses and the
transmission of data units to receivers along the short-
est paths. There is coordinate addressing, which is
used in computer systems with L(N, v, 4) or multidi-
mensional cubic structures as interconnection graphs
(in which an EC address is given by coordinates in
each direction). When passing a data unit, it is
required to compare the coordinates of a destination
address and the coordinates of an EC in which this
comparison is performed. If the coordinates match,
then the destination is reached. Among the transmis-
sion directions with mismatched coordinates, the
direction with the minimum mismatch is selected.
This is efficient addressing. It is used in some super-
computers, e.g., those built by Cray Inc.

For computer systems with interconnection graph
L(N, v, g), D(z, m)-addressing is proposed. In this
case, the address of ECi, i ∈ {0, …, n-1}, is also given by
vector Ai = Ai 0, …, Ai m-1. Each Aij (j = 0, …, m – 1) takes
a value from set {0, 1, …, 2z-1}, z ∈ {1, 2, …}, n is the
PROGRAMMING AND COMPUTER SOFTWARE  Vol. 
number of computers in a subsystem, mz  ,
and  is the minimum integer such that   x. ECi
and ECk, i and k ∈ {0, 1, …, n-1}, belong to subsystem
Rr(Ai 0, …, Ai r–1) of layer r if Ai r ≠ Ak r and Ai j= Ak j for
all j < r (r = 1, 2, …, m). R0() is a zero-layer subsystem
(the entire subsystem of n computers) and Rm(Ai 0, …,
Ai m–1) is an m-layer subsystem (which consists of one
ECi). Computer addressing must satisfy the following
properties:

• computers of each subsystem Rr(Ai 0, …, Ai r-1) of
layer r (r = 1, 2, …, m), together with communication
links between them, must form a connected subgraph
of the interconnection graph;

• R0  R1(Ai 0)  R2(Ai 0, Ai 1)   Rm (Ai 0, …, Ai m-1);

• Rr(Ai, 0, Ai, 1, …, Ai, r – 1) = (Ai, 0, Ai, 1, ...,

Ai, r – 1, j), d = 2z – 1;
• Rr+1(Ai 0, …, Ai r–1,j)  Rr+1(Ai 0, …, Ai r–1,k) = ,

j  k.
A subsystem of 15 computers with D(2, 3)-address-

ing is shown in Fig. 8.
In the case of D(z, m)-addressing, each computer

ECi, i ∈ {0, 1, …, n–1}, must store only m2z numbers
p1(0), p1(1), …, p1(2z–1), p2(0), p2(1), …, p2(2z–1), …,
pm(0), pm(1), …, pm(2z–1) of output poles of ECi that
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Fig. 9. Computer system MICROS with programmable structure (1986).
belong to the shortest paths from ECi to (respectively)
subsystems R1(0), R1(1), …, R1(2z–1), R2(Ai 0, 0), …,
R2(Ai 0, 2z–1),…, Rm(Ai 0, …, Ai m-2, 2z–1). The short-
est path to a subsystem is a path to the nearest com-
puter of this subsystem.

With D(z, m)-addressing, the determination of a
receiver reach and the selection of a direction for fur-
ther transmission are performed by the same algo-
rithm as with coordinate addressing, except that the
selection of the transmission direction takes into
account the mismatch of the coordinate with the min-
imum number. Transmissions are performed along
paths close to the shortest ones, since directions to
subsystems rather than to a specified receiver are
stored.

Based on D(z, m)-addressing, path procedures for
the efficient implementation of the broadcast, broad-
cast-cyclic, pipeline-parallel, and gathering schemes
can be constructed.

Using the path and calculation procedures consid-
ered above, parallel programs for a number of compu-
tational methods were created with the acceleration of
computations being proportional to the number of
computers used in the computer system with local
connections. This result was achieved by program-
ming the structure required to implement the
exchange schemes of an executable parallel algorithm.
Hence, it is reasonable to refer to computer systems
that have architecture with local connections as com-
puter systems with programmable structure.
PROGRAMMING A
To test the whole complex of ideas on creating soft-
ware and hardware for combining computers into sys-
tems, decentralized distributed operating system,
structure programming tools, parallel programs, and a
computer system with programmable structure
MICROS was implemented. The system was built on
the basis of Electronics-60 shelf serial microcomput-
ers. The system is shown in Fig. 9. Experimental stud-
ies carried out on the MICROS system demonstrated
the implementability of the basic aspects of the con-
cept of computer systems with programmable struc-
ture, which was confirmed by an act of the commis-
sion of the SB AS USSR approved by the chairman of
the Presidium of the SB AS USSR.

Presently, parallel computations with local con-
nections between computers, which are also known as
systolic and wave computations, are implemented
mostly in specialized computers with fixed structure.
Modern supercomputers built on VLSIs with a small
number (within hundreds) of processing elements are
generally programmed using the MPI. However, it
appears that, when using VLSIs with 103 or more pro-
cessing elements, programmability of structure
becomes practically useful as a means of achieving the
universality of parallel programming. It is possible that
programmability of structure will be implemented in
the MPI, and the application programmer will use a
common interface.
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4. DATAFLOW COMPUTER SYSTEMS 
WITH SHARED MEMORY

According to the modern trends in the develop-
ment of electronic components and architectures, a
supercomputer with exascale performance must exe-
cute approximately 109 and more processes with sin-
gle-process performance being approximately 109

flops. However, the practice of using modern com-
puter systems from the TOP500 list shows that, already
for computer systems with millions of processes, there
are obstacles to their efficient use and further increase
in their performance because of processor downtime
due to waiting for the completion of data read/write
operations (the so-called memory wall).

Conceptually, the gap between the time of instruc-
tion execution in the processor and the memory access
time can be alleviated when creating programs that use
all parallelism inherent in the algorithm up to the
smallest granules. In this case, while waiting for one
process to complete its memory access, it becomes
possible to execute other processes parallel to it [6],
i.e., to work with memory at the temp of servicing the
request f low. To reduce performance losses when the
processor switches from the execution of one process
to the selection and initiation of execution of another,
lightweight threads (q-threads) [6], which have mini-
mal context, were proposed. With this approach, a
program for an exascale supercomputer must be a
description of generation of billions of threads, as well
as interthread communication and synchronization.
The compiler (statically) and libraries (dynamically at
runtime) transform this program into a set of threads,
while determining the resources on which these
threads are executed or the mapping of threads to
resources in the runtime system.

Mappings can be used for asynchronous threads
that run in universal processors and have their own
individual instruction counter, as well as for synchro-
nous threads executed on one instruction counter in
different ALUs. For instance, NVIDIA Fermi
GPGPU can synchronously run up to 512 threads in
each clock cycle. Synchronous threads are a hardware-
efficient alternative to asynchronous threads; how-
ever, they are more difficult to program [7]. Thus, the
program is executed on heterogeneous resources. It is
necessary to ensure the optimal allocation of the het-
erogeneous resources available to a task to the task’s
threads. The ultimate goal is automatic allocation;
however, one should begin with creating an API of a
library for generating a required collection of resources
and allocating these resources to threads. It is neces-
sary to be able to identify heterogeneous resources,
e.g., devices for executing bundles of synchronous
threads, as well as to select threads in a program that
should be executed in synchronous mode on these
devices. When mapping threads to resources, inter-
thread communication must be organized using the
most suitable communication resource and resource
PROGRAMMING AND COMPUTER SOFTWARE  Vol. 
utilization modes (generation of message f lows, syn-
thesis of messages of specified lengths by combining
several messages, etc.).

The existing programming model based on mes-
sage passing does not allow one to efficiently use
potential parallelism of calculation algorithms. The
creation of other exascale programming models is
necessary to

— efficiently use the significantly increased paral-
lelism of processing (109 and more processors);

— facilitate the development of parallel programs
while ensuring high degree of parallelism, i.e., avoid
reducing the productivity of their development.

Moreover, new models should multiply this pro-
ductivity as compared to its current level. This should
be promoted by the use of globally addressable mem-
ory, as well as by a raise in the level and non-procedur-
ality of parallel programming tools, which are charac-
teristic of new models.

As a basis for an exascale programming model that
satisfies the above requirements, the parallel random
access model (PRAM) [8] can be used. This model is
based on a multiprocessor architecture with shared
memory. Processors Pi (i = 1, …, n) have access to dis-
tributed shared memory (DSM) or partitioned global
address space (PGAS), which is physically distributed
over computer modules (processor + memory block)
but has a common address space and is logically acces-
sible to all processors. When creating a program, the
user assumes that f low instructions in each processor
are executed synchronously (the execution time of all
instructions is the same), while interprocess commu-
nication and synchronization are carried out through
shared memory cells.

There are various approaches to resolving conflicts
between different processors when accessing the same
shared memory cell [8]. In the context of this discus-
sion, we consider the exclusive-read exclusive-write
(EREW) approach (whereby only one processor can
read from any one memory location at one time, and
only one processor can write to any one memory loca-
tion at one time). In this case, simultaneous read
accesses precede write accesses.

In this parallel programming model, the user needs
to specify which computations can be carried out in
parallel taking into account only the chosen algorithm.
This helps to identify all parallelism inherent in the
algorithm and improves programming productivity
[8].

The mechanism of resolving conflicts in accessing
one EREW cell is implemented by memory access
control hardware. Historically, it was the lack of an
effective scalable hardware solution for resolving
memory access conflicts that led to the abandonment
of PRAM and the adoption of the message passing
model. However, it seems that this solution presently
exists.
49  No. 4  2023



320 KORNEEV
Let us separately consider the linguistic means of
generating and terminating threads and the means of
interthread communication and synchronization in
the framework of the proposed PRAM extension [8].

As a parallel programming language to implement
the PRAM model, the extension [8] of the C language
can be used. It has three additional functions for gen-
erating and terminating asynchronous threads: spawn
(a, n), join, and fetch_and_add (e, x). These functions
make it possible (respectively) to

• generate threads (the number of which is speci-
fied by parameter n) sequentially enumerated begin-
ning with number a;

• terminate a thread that executes join and jump to
the next statement if all threads generated by the cor-
responding spawn are terminated;

• execute an atomic operation of assigning the
value of parameter x to a variable (e.g., thread number)
and increment the value of x by adding value e to x.

An example of parallel programming for the prob-
lem of generating an array B that consists of non-zero
elements of another array A is presented below [8].
Symbol $ denotes the number of the current thread.

int x;

x=0;

spawn(1, n) {

int e;

e=1;

if (A[$]!=0) {

a= fetch_and_add(e, x)

B[a]=A[$];

}

}

The implementation of PRAM implies that the EC
should be a “standard” multithreaded processor run-
ning under an operating system (OS) of the Unix fam-
ily.

The EC under Minix3 OS can natively implement
algorithms for program parallelization into multiple
threads, thread mapping, core load control, etc. With
native parallelization, code fragments of a program are
assigned with very low overhead to many execution
cores [9]. In this case, the cores receive a pointer to a
code fragment passed to them for execution. The
results are stored in shared memory. In relatively con-
ventional terms, this is called an approach based on
lightweight threads. This approach is implemented,
e.g., in the Qthreads library [6] created by Sandia
National Laboraroties. Its main idea is to provide a
mechanism for generating parallel executable threads
at the program level rather than at the OS level. Ide-
ally, the overhead of calling such a thread is compara-
ble to the overhead of calling a regular function. In the
framework of the Qthread formalism, the generation
of a thread is described by a call of the form

void start_thread(int(*)(int), int, …)
PROGRAMMING A
The call can be made from any core. The initial
function needs to be passed a pointer to the executable
function, the number of its arguments, and arguments
themselves (if any). Together with atomic non-block-
ing increment operations and some other standard
operations, this call makes it possible to spawn and
join groups of parallel threads, thus creating a serial-
parallel program.

Synchronization based on OS primitives, as in
Unix processes and p-threads [10], causes significant
latency. In the proposed model, the computations car-
ried out by each processor are represented by light-
weight threads. To synchronize threads, a mechanism
of interthread synchronization and communication
based on shared memory is proposed. Its idea is to add
a bit with full/empty value (FE-bit) to each memory
word and use, together with traditional instructions,
synchronization instructions for memory access [11].
Memory access instructions writeef, readfe, readff,
and writeff can only be executed if the value of the FE-
bit of a memory word matches with the first compo-
nent of their suffix; upon executing the memory
access, they set the value of this bit defined by the pro-
grammer in the second component of the suffix.
Instruction execution is delayed if the FE-bit does not
have the required value. For instance, writeff requires
that, before its execution, the FE-bit of the memory
word to be written have value full; after the execution,
it preserves the same value. The value of the FE bit
usually determines whether the memory cell is full or
empty.

Synchronization based on FE-bits requires neither
special shared variables, such as locks, semaphores,
etc., nor synchronization mechanisms, which are very
expensive (in terms of time) to define and execute with
millions of threads [6, 11]. In addition, the use of
shared variables and atomic sequences of instructions
that determine the value of the branch condition and
execute the jump in accordance with a received value
is much more difficult and time-consuming than the
execution of memory access instructions when syn-
chronizing dynamically generated lightweight threads.
Thus, synchronization based on FE-bits makes it pos-
sible to use the maximum possible (in an executable
program) number of memory requests generated by
lightweight threads, as well as to execute these requests
in parallel in interleaved memory.

It should be noted that, in CrayXMT [11], the C
extension that enables synchronization based on FE-
bits implies the introduction of synchronization vari-
ables x$ and generic functions for read and write oper-
ations. Among them, the following ones should be
mentioned:

• purge x$ is the assignment of an empty value to
FE-bit x$;

• writeqr x$, g means the write of value g to x$ if
the value of FE-bit x$ is q or delaying the write until
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the value of the FE-bit is set to q; after writing, the
value of the FE bit becomes r;

• readqr x$, means the read of x$ if the value of
FE-bit x$ is q or delaying the read until the value of the
FE-bit is set to q; after reading, the value of the FE bit
becomes r.

Synchronization variables can be used as sema-
phores to create barriers and critical intervals that
grand one thread from a set of threads an exclusive
access to the variables shared by this set of threads. In
addition, synchronization variables can be used to
define dataflow computations. For instance, F(i, j) =
0.25*(F(i – 1, j) + F(i – 1, j – 1) + F(i, j – 1) + F(i, j))
can be evaluated for region 0 < i < n + 1 and 0 < j < n
+ 1, given values of F(0, 0), F(0, j), F(i, 0), and values
of FE-bits set to full for F(0, 0), F( 0, j), F(i, 0) as fol-
lows (symbol $ denotes the number of the current pro-
cess [8]):

spawn (1, n) {

int i;

i=$;

spawn (1, n) {

int j;

j=$;

purge (&(F[i, j]);//set FE-bits to
empty in region 0<i<n+1, 0<j<n+1

}

}

spawn (1, n) {

int i;

i=$;

spawn (1, n) {

int j;

j=$;

double Left=readff(&(F[i, j-1]);

double BottomLeft=readff(&(F[i-1, j-1]);

double Bottom=readff(&(F[i-1, j]);

double t= readee(&(F[i, j]);

t=0.25*(t+Left+BottomLeft+Bottom);

writeef(&(F[i, j]), t);

}

}

The program generates n threads, each of which
spawns n threads. At the first step, the memory cells
that store F(i, j) in region 0 < i < n + 1, 0 < j < n + 1
have the FE-bit set to empty. Then, as at the previous
step, n x n threads are generated. In each thread, the
corresponding function is evaluated. First, F [1, 1] is
computed because F(0, 0), F(0, 1), and F(1, 0) ini-
tially have FE-bits set to full. Next, F [2, 1] and F [1,
2] can be computed in parallel because value F [1, 1],
which is required for their computation and has the
full FE-bit, becomes available. Then, F [3, 1], F [2, 2],
and F [1, 3] are computed in parallel, and so on.
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It seems that the PRAM-based parallel program-
ming model considered above, which is implemented
by extending C [8] with the functions for spawning and
joining asynchronous lightweight threads, as well as
synchronization based on atomic operations and
memory access using FE-bits, satisfies the require-
ment that the user only needs to specify which compu-
tations can be carried out in parallel taking into
account only a chosen algorithm.

Let us consider the implementation of the memory
request f low mode supported by the considered pro-
gramming model under the constraints imposed by
modern electronic components.

According to the architectural solution shown in
Fig. 10, an exascale computer system is built of com-
puter modules (CMs), each having one or more pro-
cessor chips with connected memory blocks and inter-
faces of a communication fabric that integrates all
computer modules [7, 9, 12, 13].

The processor chip has an on-chip interconnect
fabric for processing elements (PEs), which consist of
computing cores with connected local memory blocks
(including cache memory), special computing
engines, and one or more memory management units
(MMUs). The implementation of memory blocks,
which create an effect of a large percentage of transis-
tors that do not switch in each cycle in the local chip
area occupied by a PE, creates some additional effects.
Short instruction and data conductors among cores
and local memory blocks ensure high power efficiency
and clock speed. The chip can accommodate many
(thousands) of PEs, the operation of which requires
loading and unloading their memory blocks to change
programs and data, as well as to initialize program exe-
cution in them. These architectural solutions are used
in chips with various specializations, e.g., PEZY-SC2
[14], which is focused on numerical methods for solv-
ing differential equations, and Graphcore Colossus
IPU [15], designed for solving artificial intelligence
problems. The specialization of a chip architecture
determines whether a chip serves only as a field of
homogeneous PEs loaded and controlled from a host
computer external to the chip (like Graphcore Colos-
sus) or a hierarchical heterogeneous cluster architec-
ture is implemented in which computing devices have
local memory blocks at each hierarchical level (as in
PEZY-SC2). In this architecture, the communication
between the host computer and the special-purpose
chip is partially shifted to control processors of clus-
ters, which reduces the requirements for the perfor-
mance of the host computer and for the bandwidth of
the communication channel between the host com-
puter and the special-purpose chip or a set of special-
purpose chips.

The computer module also has a number of smart
controllers for memory blocks, memory blocks them-
selves and one or more network interface controllers
49  No. 4  2023
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Fig. 10. Architecture of an exascale supercomputer.
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necessary to provide the required throughput of the
communication fabric of a supercomputer system.

Supercomputer distributed shared memory (DSM)
consists of a set of memory blocks located in each CM.
The number of memory blocks in each CM, on the
one hand, should be as large as possible, which makes
it potentially possible to serve more memory requests.
On the other hand, it should be taken into account that
their number is limited by the complexity of memory
management and implementation.

When the supercomputer is initialized, the global
address space is configured by distributing the address
space over memory blocks. This distribution is fixed in
MMUs.

When the current thread executes a read or write
instruction to access shared memory upon generating
a memory access request, each on-chip core suspends
this thread until it receives a response from memory.
The request from the thread is added to the queue of
memory requests of the MMU selected by the address
in the read or write instruction.

Based on the distribution of the global address
space over memory blocks in the process of initializa-
tion, the MMU determines the destination of the
request: local block or remote block of another CM. In
the latter case, the request is sent to the network inter-
face controller, which must forward it to the corre-
sponding remote memory block of another CM while
putting this request in its queue of requests. After
receiving a response from the remote memory block,
the network interface controller removes the corre-
sponding request from the queue and passes the
received response to the corresponding MMU.

After receiving the response from the remote or
local memory block, the MMU removes the corre-
PROGRAMMING A
sponding request from its queue of memory requests
and sends the memory access result to the core that
generated the request, thus making it possible to
resume the execution of the suspended thread.

Thus, the execution of the memory access instruc-
tion in the core is delayed until the response on mem-
ory access completion from the MMU is received.
Having received a request from the MMU directly or
via the network interface controller, the smart control-
ler of the memory block can operate in standard mode
(read and write requests are executed in the order in
which they are received and do not use additional fea-
tures) or in extended mode, taking into account the
mechanism of the FE-bit of a specified memory cell.

The smart controller of the memory block contains
the FE bits for the memory words of the memory
blocks controlled by this controller.

If the FE bit does not have the required value, then
the memory request is placed in a wait table of the
smart controller. The rows of this table contain mem-
ory access information (read/write instruction, mem-
ory cell address, FE-bit values before and after the
access, service information for extended mode, and
pointer to the corresponding MMU).

If the FE bit has the required value, then the mem-
ory block controller performs the required read or
write and forms the specified FE-bit value. Without
going into detail of memory controller implementa-
tion, it should be noted that, once the access to a
memory cell is completed, the wait table must be
searched through for the rows corresponding to this cell
and a check must be performed on whether the corre-
sponding memory request can be executed. A change in
the state of the FE-bit initiates the processing of the
ND COMPUTER SOFTWARE  Vol. 49  No. 4  2023
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wait table with the application of the accepted approach
to resolving EREW access conflicts.

If it can, then the request is passed for execution,
and the corresponding row is removed from the table.
Obviously, the actions described above require asso-
ciative search through the waiting table.

The distribution of memory requests serves as a
guarantee of high performance proportional to the
number of smart controllers for memory blocks of
computer modules.

The difference between the considered approach
and traditional dataflow architectures [16] should be
noted. The traditional architectures are based on asso-
ciative memory, which is used to store instructions
that wait for available operands. When all operands are
ready, the instruction is extracted from associative
memory and executed. Obviously, the number of
instructions simultaneously extracted from associative
memory determines the performance of a dataflow
computer system. Therefore, the associative memory
must be large. However, the creation of this memory is
hindered by energy costs and drop in performance
with increasing memory capacity.

Attempts made at software implementation of
associative memory based on addressable memory
using hash functions, partitioning shared associative
memory into local blocks, and determining the readi-
ness of only initial instructions from instruction
sequences did not fundamentally change the situation
[17, 18].

However, the approach at the level of memory
block controllers that work with FE-bits seems quite
feasible. First, there can be many memory blocks; sec-
ond, only necessary synchronization is carried out
without any preliminary partitioning of programs into
instruction fragments.

The implementation of out-of-order execution of
instructions in the processor through a reservation sta-
tion and the use of memory block controllers that
work with FE-bits cover the functionality of tradi-
tional dataflow architectures.

5. CONCLUSIONS
The research and development of parallel pro-

gramming languages and tools requires analysis of
existing architectural solutions aimed at improving
performance, creation of experimental supercomput-
ers, and programming of currently challenging tasks
for them the execution of which on modern machines
is unsatisfactory in terms of performance and scalabil-
ity. The solution should be sought for from different
perspectives while changing the representation of par-
allel programs and methods for mapping software
components to resources, including the implementa-
tion of synchronous and asynchronous threads and
software-hardware support of thread synchronization
and interthread communication to determine satisfac-
PROGRAMMING AND COMPUTER SOFTWARE  Vol. 
tory versions of architectures, OSs, runtime systems,
program generation tools, and their compilations. In
other words, it requires joint development of hardware
and software.

The development of parallel programming is possi-
ble only in the framework of a particular model that
takes into account the intrinsic features of an architec-
ture that led to the emergence of this model. For
instance, in the case of the model with message pass-
ing, this feature is the atomicity of message passes with
the possibility of continuing execution only after
receiving the entire message. In the case of the model
with shared memory, the feature is in the implementa-
tion of access control for shared memory cells. That is
why parallel programming for these models is based
on different approaches.

The time has come to change the paradigm of
supercomputing in general and the programming par-
adigm in particular. In this regard, there is a similarity
with the situation in the early 1990s, which led to the
replacement of vector pipeline computing based on
the sequential programming paradigm extended with
vector operations by the massively parallel paradigm
based on message passing.

The new paradigm consists in representing all pos-
sible processing parallelism. The user only needs to
specify which computations can be carried out by par-
allel threads over distributed shared memory taking
into account only the chosen algorithm. When the
same value needs to be read by many threads and then
a new value needs to be written instead of it into the
corresponding shared memory cell, the user assumes
that the conflict resolution mechanism is imple-
mented by hardware means of memory access control.
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