
ISSN 0361-7688, Programming and Computer Software, 2023, Vol. 49, No. 4, pp. 268–285. © Pleiades Publishing, Ltd., 2023.
Russian Text © The Author(s), 2022, published in Programmnaya Ingeneri, 2022, Vol. 13, No. 8.
Experimental Study of Algorithms for Minimization of Binary
Decision Diagrams Using Algebraic Representations of Cofactors

P. N. Bibiloa,* and V. I. Romanova,**
a United Institute of Informatics Problems, National Academy of Sciences of Belarus,

Minsk, 220012 Belarus
*e-mail: bibilo@newman.bas-net.by
**e-mail: rom@newman.bas-net.by

Received January 9, 2023; revised February 16, 2023; accepted March 21, 2023

Abstract—Binary decision diagram (BDD) is used for technology-independent optimization, performed as
the first stage in the synthesis of logic circuits in the design of application-specific integrated circuits (ASICs).
BDD is an acyclic graph defining a Boolean function or a system of Boolean functions. Each vertex of this
graph is associated with the complete or reduced Shannon expansion formula. Binary decision diagrams with
mutually inverse subfunctions (cofactors) are considered. We have developed algorithms for finding algebraic
representations of cofactors of the same BDD level in the form of a disjunction or conjunction of other inverse
or non-inverse cofactors of the same BDD level. The algorithms allow reducing the number of literals by
replacing the Shannon expansion formulas of a system of Boolean functions. It is proposed to use the devel-
oped algorithms for an additional logic optimization of the constructed BDD representations of systems of
Boolean functions. The experimental results of application of the corresponding programs in synthesizing the
logic circuits in the design library of custom VLSI CMOS circuits are presented.

Keywords: system of Boolean functions, disjunctive normal form, binary decision diagram, Shannon expan-
sion, digital logic synthesis, VHDL, VLSI
DOI: 10.1134/S0361768823040035

1. INTRODUCTION

Automation of logic design of functional units of
combination logic entering the custom digital VLSIs
(very large-scale integrated circuits) still is a topical
scientific problem, because the dimensions of the
solved problems increase, there appear more rigorous
requirements to the energy consumption of logic cir-
cuits, and the libraries of logic elements change. Logic
design of combination circuits in design libraries of
custom VLSIs is traditionally divided into two stages:
logic optimization and technological mapping, at
which the optimized logic functional descriptions of
the designed logic circuits are covered by functional
descriptions of logic elements. Logic optimization,
often called technology-independent optimization,
usually does not involve the used basis (library) of
logic elements, but tends to decrease the number of lit-
erals and the number of two-operand operations of
disjunction and conjunction in the minimized alge-
braic representations of systems of completely speci-
fied Boolean functions. In the design practice it was
noticed long ago [1, p. 44] that a reduction in the
number of literals and logic operations in functional
descriptions positively impacts the reduction in the
number of elements of the technological library (basis

of synthesis) in the circuit, that is, positively impacts
the reduction in the total number of transistors enter-
ing all elements of the circuit. Decreasing the number
of transistors allows lowering the energy consumption
of circuits.

Today, logic minimization is made by means of the
methods of optimization of multilevel Boolean func-
tions on the basis of Shannon expansion; graphical
forms of such representations, frequently used as data
structures, are called binary decision diagrams [2–7].
In work [8] we proposed a method for additional min-
imization of BDD representations of systems of Bool-
ean functions based on search of disjunctive, conjunc-
tive, and modular expansions of subfunctions entering
the optimized BDD representations. The method
allows replacing the formulas of Shannon expansion
by two-operand formulas of disjunction g3 = g1 g2,
conjunction g3 = g1 & g2, or modular formulas of type
g3 = g1 g2 (where g1, g2, and g3 are cofactors of the
same BDDI level). Such replacement reduces the
number of literals and logic operations in the resulting
logic formulas, which are used to perform technologi-
cal mapping, that is, the final stage of circuit synthesis.
In the current work the method from [8] is elaborated
to algorithms and programs whose efficiency is stud-

∨

⊕

268

EXPERIMENTAL STUDY OF ALGORITHMS FOR MINIMIZATION 269

Table 1. Cofactors of second BDD level (Fig. 1)

x1 x2 g1 g2 g3 g4 g5 g6

0 0

0 1

1 0

1 1

0

1

1

0

0

1

0

0

0

0

1

0

1

0

0

0

0

0

0

1

1

0

0

1

1

0

0

1

1

0

1

1

1

1

0

1

0

1

1

1

1

1

1

0

0

1

1

0

1g 2g 3g 4g 5g 6g
ied on f lows of examples entering the well-known
example library used to check and compare the pro-
grams of logic optimization and synthesis of logic cir-
cuits. For the expansions of cofactors we use only dis-
junctive and conjunctive expansions, and the cofac-
tors in such expansions may be in both inverse and
non-inverse form.

2. BINARY DECISION DIAGRAMS
AND ALGEBRAIC EXPANSIONS

OF COFACTORS

The Shannon expansion of a completely specified
Boolean function f = f(x), x = (x1, x2, …, xn), in vari-
able xi is the representation

(1)

The functions f0 = f(x1, …, xi – 1, 0, xi + 1, …, xn) and
f1 = f(x1, …, xi – 1, 1, xi + 1, …, xn) in the right-hand side
of Eq. (1) are referred to as cofactors of expansion in
variable xi. They are obtained from the function f by
substitution of the constants 0 and 1, respectively,
instead of the variable xi. Each of the cofactors f0 and
f1 can be expanded in one variable from the set {x1, …,
xi – 1, xi + 1, …, xn}. The process of expansion of cofac-
tors terminates either when all n variables are used for
expansion or when all cofactors degenerate to con-
stants 0, 1. At each step of expansion we perform com-
parison by equality of the obtained cofactors.

Let f(x) be an ordered system of completely speci-
fied component Boolean functions fi(x), i = 1, …, m,
(the vector Boolean function f = (f1, …, fm)): f(x) =
(f1(x), …, fm(x)), x = (x1, x2, …, xn). Under the BDD
representation of a vector Boolean function f(x) we
understand the oriented acyclic graph prescribing
sequential Shannon expansions of all component
functions fi(x), i = 1, …m, in all its variables x1, …, xn
for the same given order (permutation) of variables in
which we perform expansions. The BDDs considered
in this paper correspond to shared reduced ordered
BDDs (ROBDDs) [5, p. 18]. In joint ROBDDs the
functional vertices of BDDs correspond to the cofac-
tors common to the functions of the system; here, the
functional vertices are just implied (identified with
vertices-variables). Description of OBDDs (ordered
BDDs) is given in [2, p. 90; 5, p. 16], whereas descrip-

− +

− +

= =
∨

1 1 1

1 1 1

() (,..., ,0, ,...,)
(,..., ,1, ,...,).

i i i n

i i i n

f f x f x x x x
x f x x x x
x

PROGRAMMING AND COMPUTER SOFTWARE Vol.
tion of ROBDDs is given in [3, p. 243]. Below, BDDs
will be understood as joint ROBDDs for the systems of
functions (vector functions).

The BDD representation corresponds to the for-
mulas of Shannon expansion, and each functional ver-
tex of BDD [6, p. 18] corresponds to its own formula
in which both cofactors take part in non-inverse form.
Using the BDD representation, we can find specifica-
tion of each of the component functions fi(x) in form
of two orthogonalized disjunctive normal forms
(DNFs): one of such DNFs prescribes the region
of unit values of the function fi(x), whereas the other

DNF prescribes the region of zero values. Simi-
larly, we can find the representations in form of DNF
for each of the cofactors. These transitions are thor-
oughly described in [6, p. 37]. Figure 1a shows a BDD
which corresponds to the following coupled equations
of Shannon expansions:

The cofactors g1, …, g6 are determined at the sec-
ond BDD level and depend on two variables x1, x2; the
cofactors at the first level depend on the variable x2:
s1 = x2, s2 = (see Fig. 1a). At the bottom BDD level
there always are constants 0, 1 that can be doubled for
simplifying the depiction of the BDD graph in the fig-
ure. Figure 1b shows the graph of the same BDD in the
notation accepted in the foreign literature: dashed
curves in Fig. 1 correspond to labels 0, whereas solid
ones correspond to labels 1.

Using the BDD graph, we can easily find the
cofactors appearing at the same BDD level, and from
the prescription of cofactor (or the function of the
original system) in form of DNF we can proceed to its
prescription in the form of completed DNF (PDNF)
or truth table. We consider the cofactors g1, g2, g3, g4,
g5, g6 of the second BDD level (Fig. 1a), eliminate the
intermediate variables, and obtain the completed
DNFs:

We prescribe the CDNF of cofactors and their inver-
sions by the truth table (Table 1).

1
ifM

0
ifM

= ∨ = ∨
= ∨

1 3 1 3 1 2 3 2 3 4

3 3 5 3 3

; ;
;

f x g x x f x g x g
f x g x g

= ∨ = ∨
= = =

4 3 3 6 1 1 1 1 2

2 1 1 3 1 2 4 1 2

; ;
; ; ;

f x x g g x s x s
g x s g x s g x s

= = ∨ = =5 1 1 6 1 2 1 1 1 2 2 2; ; ; .g x s g x s x s s x s x

2x

= ∨ = ∨
= = = =

1 1 1 1 2 1 2 1 2

2 1 1 1 2 3 1 2 1 2

;
; ;

g x s x s x x x x
g x s x x g x s x x

= = = =
= ∨ = ∨

4 1 2 1 2 5 1 1 1 2

6 1 2 1 1 1 2 1 2

; ;
.

g x s x x g x s x x
g x s x s x x x x
49 No. 4 2023

270 BIBILO, ROMANOV

Fig. 1. (a) BDD with labeled cofactors and (b) BDD in traditional image.

x3

1

(a)
f4

0 1

1
1 1

1 1 1 1
x1

s1 s2

x1

x2

x1

x1 g2 g4 g5 g3g1g6

0 1

x3

f1

0

0 0
0 0 0 0 0

1

0 1

x2

x2 x2

1 0
0 1

1 0

0 1

x1 x1

x3

f2

0 1

x1 x1

x1 x1 x1 x1 x1 x1 x1

x3

f3

0 1
x3

(b)
f4

x3

f1

x3

f2

x3

f3
Using the truth tables, we can easily check the rep-
resentations of cofactors of the same BDD level in
form of algebraic expansions: disjunctive,

(2)

or conjunctive,

(3)

expansion. We can also use inversions , of cofac-
tors gi, gj in expansions of form (2), (3). For the cofac-
tors that have four literals in their notation (these are
the cofactors g1, g6), we write the equations of their
algebraic expansions via other cofactors:

= ∨ ,p i jg g g

= &r i jg g g

ig jg
PROGRAMMING A

Fig. 2. Prescription of equations in form of orgraph.

g6

g6
g6

g1

g5
g4

g3

g2

g1

g1
and represented the obtained equations in form of
orgraph (Fig. 2).

We can easily see (Fig. 3) that the cofactors g1 =
 and g6 = can be expressed by the

formulas of algebraic expansions through two cofac-
tors g2, g3: g1 = g2 g3; g6 = . Replacement of the
formulas g1 = , g6 = by simpler ones
allows reducing the number of literals and logic opera-
tions in the functional description of BDD (Fig. 1a).

Note that the cofactors g1 and g6 are mutually
inverse; therefore, below, as original formulas, we use
the formulas of Shannon expansions corresponding to
BDDIs. Binary decision diagram with inverse cofac-
tors (BDDI) is below understood as oriented acyclic
graph prescribing sequential Shannon expansions of a
Boolean function f(x1, …, xn) in all its variables x1, …,

= = ∨
= = ∨

1 4 5 1 2 3

6 2 3 6 4 5

& ; ;
& ;

g g g g g g
g g g g g g

∨1 1 1 2x s x s ∨1 2 1 1x s x s

∨ 2 3&g g
∨1 1 1 2x s x s ∨1 2 1 1x s x s
ND COMPUTER SOFTWARE Vol. 49 No. 4 2023

Fig. 3. Reduced acyclic orgraph.

g6

g3

g1

g2

EXPERIMENTAL STUDY OF ALGORITHMS FOR MINIMIZATION 271

Table 2. Correspondence of graphic BDDI elements and
logic formulas

Graphical element Formula

si = α xβ

si = α xβ
sj =

si

� �

x
0 1

x ∨

� �

x
0 1

si

si sj = si

x ∨

is
xn for a given order (permutation) of variables by which
we perform expansions, under the condition of finding
the pairs of mutually inverse cofactors [9]. The BDDI
graphs contain four types of vertices: root vertices cor-
responding to the functions; functional vertices corre-
sponding to the pairs of expanded mutually inverse
cofactors (one of the elements of the pair can be absent
if there is no such cofactor among the cofactors at the
given BDDI level); vertices-variables; and leaf vertices
corresponding to constants 0, 1. A functional vertex of
BDDI (Table 2) implements one cofactor si or two cofac-
tors: si and its inversion . The formula si = in
the right column in Table 2 is formula (1) of Shannon
expansion of the cofactor si in the variable x: α = f0,
β = f1.

Note that in the BDD the functional vertex imple-
ments a single cofactor; mutually inverse cofactors are
represented by a pair of vertices. The BDDIs corre-
spond to joint ROBDDs in which the pair of mutually
inverse vertices-cofactors is given by a single func-
tional vertex. In the equations of Shannon expansions
corresponding to BDDIs, the cofactors may be either
with the inverse sign or in the

In what follows, we propose the algorithms of find-
ing the maximal sets of algebraic expansions of form
(2), (3) of the cofactors appearing at the same BDDI
level. The main issue is as follows: at prescription of
the algebraic equations in form of orgraph there may
arise cycles, which is unacceptable in circuit imple-
mentation of the combination logic. In the considered
simple example of orgraph (Fig. 2) illustrating pre-
scription of equations, there are no cycles. Transition
to the resulting acyclic orgraph (Fig. 3), in which each
cofactor is represented by a single algebraic expansion,
is a complex combinatorial problem for graphs con-

is α ∨ βx x
PROGRAMMING AND COMPUTER SOFTWARE Vol.
taining hundreds and thousands of vertices and in
which there may be a vast number of cycles that must
be eliminated. Preliminary determining the pairs of
mutually inverse cofactors (using BDDIs instead of
BDDs) reduces the combinatorial exhaustive search in
finding the variants of algebraic expansions of cofac-
tors; we will explain it further.

3. ALGORITHM 1 FOR FINDING
ALGEBRAIC EXPANSIONS
OF COFACTORS IN BDDI

Initial data for the proposed algorithm 1 for finding
algebraic representations of cofactors are the BDDI
graph, representing an original vector completely
specified Boolean function, and logic equations (the
formulas of Shannon expansion), corresponding to
the functional vertices of the BDDI and prescribing
the multilevel description of the component functions.
These equations can be easily written using a BDDI
graph.

The proposed algorithm includes the stages exe-
cuted for the cofactors of each BDDI level, except for
the root, leaf, and first one. At the first BDDI levels,
there are the cofactors obtained as a result of expan-
sion in the last variable in a given permutation of vari-
ables in which we perform the Shannon expansion.
The cofactors of the first BDDI level depend on one
variable; the cofactors of the second level depend on at
most two variables; etc. In our algorithm, the BDDI
levels are considered from top to bottom, that is, from
the cofactors obtained at expansion in the first variable
to the cofactors of the second BDD level. The algo-
rithm is focused on replacing the largest number of
formulas of Shannon expansion by the formulas of
either disjunction or conjunction, which allows reduc-
ing the total number of literals in the multilevel pre-
scription of a system of Boolean functions. For the
considered BDDI level we solve the problem of deter-
mining the largest number of cofactors that are repre-
sentable in form of disjunction or conjunction of other
cofactors of the given level (earlier, such representa-
tions were called algebraic expansions).

Stage 1. Divide the set of equations into the BDDI
levels.

Stage 2. For each BDDI level (except for the root,
leaf, and first one), find the maximal set of imple-
mentable equations (implementable cofactors).

Execution of stage 2 reduces to the execution of the
following steps.

Step 2.1. Eliminate the intermediate variables and
construct the truth table of cofactors of the given (con-
sidered) BDDI level.

Step 2.2. Add the inversions of cofactors to the
truth table.
49 No. 4 2023

272 BIBILO, ROMANOV

Table 3. Equations for BDDI (Fig. 4)

Number of
BDDI level Equations

5 ; ; ; ; ;
4 ; ; h3 = ; ; h5 = ; h6 = ;

;
3 g1 = ; g2 = ; g3 = ; g4 = ; g5 = ; g6 = ;

g7 = ; g8 = ; g9 = ; g10 = ;
2 s0 = x3; s1 = x5 ; s2 = ; s3 = x5x3; s4 = x5x3.
1 Literals x3,
0 Constants 0, 1

= ∨1 1 1 1 2f x h x h = ∨2 1 2 1 3f x h x h = ∨3 1 4 1 5f x h x h = ∨4 1 4 1 6f x h x h = ∨5 1 6 1 7f x h x h

= ∨1 2 1 2 3h x g x g = ∨2 2 2 2 8h x g x g ∨4 5 2 5x g x g = ∨4 2 6 2 7h x g x g ∨2 6 2 10x g x g ∨2 4 2 9x g x g
= ∨7 2 8 2 10h x g x g

∨4 2 4 3x s x s ∨4 5 4 1x x x s ∨4 0 4 1x s x s ∨4 5 4 2x x x s ∨4 0 4 5x s x x ∨4 0 4 4x s x s
∨4 5 4 5x x x x ∨4 3 4 1x s x s ∨4 2 4 5x s x x ∨4 3 4 5x x x x

5x 3x 5 3x x ∨5 3x x

3x
Step 2.3. Find all variants of algebraic representa-
tions of non-inverse cofactors in form of two-operand
disjunctions or conjunctions of other cofactors (or
their inversions) of the considered BDDI level. As a
result, a single cofactor, we call it representable, can be
represented by different equations.

Step 2.4. Find the set of implementable cofactors.
From the set of representable cofactors we separate

the subset of implementable cofactors with maximum
cardinality; for this purpose, from the set of equations
of the algebraic representation of one cofactor we
choose one equation or choose no equation. This
choice is determined by solution to problem 1 that is
formulated in terms of the graph theory.

Stage 3. Correct the original multilevel BDDI rep-
resentation of the system of Boolean functions.

The original set of formulas of Shannon expansions
varies: the formulas of Shannon expansion of the
implementable cofactors are replaced by the given dis-
junction or conjunction formulas.

Let us estimate the number of searched-through
variants at step 2.3. Suppose that k is the number of
non-inverse cofactors g1, …, gk. Then we need to con-

sider 12 × (is the number of combinations of k
cofactors by triples, k 3) variants of testing the dis-
junctive expansions: the number of all distinct unor-

dered triples of cofactors gp, gi, and gj is , and for
each triple {gp, gi, gj} we need to test 12 disjunctive
expansions,

3
kC 3

kC
≥

3
kC

= ∨ = ∨
= ∨ = ∨

; ;
; ;

p i j p i j

p i j p i j

g g g g g g
g g g g g g

= ∨ = ∨
= ∨ = ∨

; ;
; ;

i p j i p j

i p j i p j

g g g g g g
g g g g g g

= ∨ = ∨
= ∨ = ∨

; ;
; .

j i p j i p

j i p j i p

g g g g g g
g g g g g g
PROGRAMMING A
Similarly, for each of triples of cofactors we
need to search through 12 variants for constructing the
conjunctive expansions.

Now, we can easily explain that using the BDDI
instead of BDD reduces the combinatorial exhaustive
search of variants in determining the formulas of dis-
junctive and conjunctive expansions. For instance, if it
is not preliminary established that cofactors gp and gs
are mutually inverse, then, in finding the expansions
and determining the formula gp = gi gj, for the inver-
sion = gs we always can find the dual formula
gs = . Thus, for each formula of the algebraic
expansion of the non-inverse cofactor, we will find the
dual formula for the inverse cofactor and the search
through the triples of cofactors appears to be more
labor-intensive.

4. DETERMINATION OF THE SET
OF IMPLEMENTABLE COFACTORS

Let us construct an orgraph G specifying the for-
mulas of algebraic representations of cofactors (we call
them logic equations or simply equations). The verti-
ces of the orgraph G correspond to the cofactors in the
direct form that are mentioned in equations. Let us
denote this set of cofactors by KY and the set of cofac-
tors for which we have not constructed the equations
by KZ. The edges (oriented edges) corresponding to the
operands of algebraically represented cofactor (result
of logic operation) are labeled by the same number,
the number of equation. Each equation is given by a
subgraph with three vertices and two labeled edges: the
vertex corresponding to a representable cofactor has
two input edges (with one and the same label, number
of equation). The edges arising from the vertex of a
representable cofactor (Fig. 3) can correspond to the
direct form of cofactor (filled circle) or to the inverse
form of cofactor (unfilled circle).

3
kC

∨
pg
&i jg g
ND COMPUTER SOFTWARE Vol. 49 No. 4 2023

EXPERIMENTAL STUDY OF ALGORITHMS FOR MINIMIZATION 273

Fig. 4. BDDI graph.

x1

f1

0 1

0
0

0
0 0 0 0 0

0
0

1 1 1
1

1 1 1
1

1
1

0 1

f2

x1

x2

g1
g2 g4 g6

x4

h1 h2 h3

x2 x2

0 1

0 1

0
0 0 0 0 0

1
1 1 1 1

1

x1

f3

0 1 1 0

0000000

0 1

11111
1

1

f4

x1

f5

x1

x2

h4 h5 h6

x2 x2

h7

x2

s1

x5

s0

x5 x5 x5 x5

x5
s4 s3

x3

s2

x5

x3

x3

x4

g3

x4

g5

x4

g7

x4

g8

x4x4 x4

g9

x4

g10

x4
Let us introduce the notion of cluster (subset of the
vertices of the graph G): the cluster includes the verti-
ces corresponding to the equations with the same
cofactor in the left-hand side. A cluster is labeled by
the name of the same cofactors.

Using the orgraph G, we can reduce the problem of
determining the set of implementable cofactors to the
following problem.

Problem 1. In the orgraph G we need to leave just a
single vertex in each cluster (condition А) and remove
such subset of pairs of equally labeled edges from the
graph G that the orgraph G becomes acyclic (condition
B) and contains the largest number of nonisolated ver-
tices with just a pair of incoming equally labeled edges
(condition С).
PROGRAMMING AND COMPUTER SOFTWARE Vol.
The meaning of leaving a single vertex in the cluster
(condition А) is clear: it suffices to represent the cofac-
tor by a single equation in the circuit implementation.
We demonstrate the requirement of the absence of
cycles (condition В) on example of two equations
g6 = g1 g4 and g1 = g6 & g7 from the below considered
example. These equations create a cycle in the orgraph
G, that is, the following logic contradiction in the
requirement of algebraic (and circuit) representation
of cofactors. To express g6 as a conjunction g6 = g1 g4,
we need a circuit implementing the cofactor g1. How-
ever, in order to obtain g1 in form of g1 = g6 & g7, we
need a circuit implementing g6. Condition С requires
that the largest possible number of cofactors are repre-
sented in form of conjunction or disjunction.

∨

∨

49 No. 4 2023

274 BIBILO, ROMANOV

Table 4. Cofactors and their inversions of third BDDI level (Fig. 4)

x3 x4 x5 g1 g2 g3 g4 g5 g6 g7 g8 g9 g10

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

1

0

0

0

0

0

0

1

1

0

0

1

1

0

0

0

0

0

0

1

1

0

0

0

0

1

1

0

0

1

0

0

0

0

0

1

1

0

0

1

1

1

1

0

0

1

0

1

1

0

0

1

1

0

0

1

0

0

1

0

0

1

1

1

1

0

1

0

0

0

1

0

0

0

0

1

1

1

0

1

0

1

1

1

1

1

1

0

0

1

1

0

0

1

1

1

1

1

1

0

0

1

1

1

1

0

0

1

1

0

1

1

1

1

1

0

0

1

1

0

0

0

0

1

1

0

1

0

0

1

1

0

0

1

1

0

1

1

0

1

1

0

0

0

0

1

0

1

1

1

0

1

1

1

1

0

0

0

1

0

1g 2g 3g 4g 5g 6g 7g 8g 9g 10g
After solving problem 1, we divide the set KY of ver-
tices of the orgraph G into three mutually noninter-
secting subsets. The vertices with no incoming edges,
but with an emerging edge correspond to the unimple-
mentable cofactors. The vertices with one pair of
incoming edges (with the same label) correspond to
the implementable cofactors. The vertices appeared to
be isolated, for instance, at removing the edges to sat-
isfy condition B, will not participate in the equations
are included in the set KZ of also unimplementable
cofactors. An implementable cofactor will be written
as an equation to the resulting multilevel representa-
tion of the system of Boolean functions.

Algorithm for Solving Problem 1
Stage А1. Selection of one equation in each cluster.
Step А1.1. Arrange the clusters in ascending (non-

descending) order by the number of vertices in them
and consider the clusters in this order.

Step А1.2. Leave just a single vertex in each cluster.
Put the current set T of vertices empty: T = .

Each remaining vertex gr in the cluster that have the
incoming equally labeled edges incident to the vertices
gi and gj fulfills the set T by the elements gi, gj, and gr.

To choose the vertex left in the first cluster, we use
heuristic 1.

Heuristic 1. Each vertex gr of the cluster with
incoming edges from the vertices gi and gj is evaluated
by the total number of edges arising from the ver-
tices gi and gj. In the cluster we leave the vertex gs cor-
responding to the maximal number .

The vertices that have not remained in the cluster
are removed from the graph together with the edges
incoming in them. We introduce three vertices into the
set T: the vertex gs and the two vertices incident to the
edges incoming to the vertex gs.

For the following clusters at consideration we use
heuristic 2.

Heuristic 2. In a cluster we leave the vertex that has
two incoming edges from the vertices of the set T; if

∅

rqW

rqW
PROGRAMMING A
there are no such vertices, then we leave the vertex that
has one incoming edge from the vertices of the set T. If
there are no such vertices for which heuristic 2 is ful-
filled, then we use heuristic 1 to leave a vertex in a clus-
ter. The vertices not remaining in the cluster are
removed from the graph together with the edges
incoming to them.

Step А1.2 and stage А1 are accomplished when a
single vertex remains in each cluster.

Stage А2. Reduce the orgraph G to acyclic graph.

We iteratively execute steps А2.1–А2.3 until the
orgraph becomes acyclic.

Step А2.1. Test the orgraph at consideration for the
absence of cycles.

At this step we perform construction of the set of
simple cycles of the graph. For this purpose, we exe-
cute exhaustive search over all the vertices of the
graph. For the next chosen vertex we carry out depth-
first search to construct all possible paths in the graph
starting from this vertex. Such procedure is a modifi-
cation of the software implementation [10] in the C#
language of the well-known Johnson algorithm [11].

If cycles are revealed as a result of testing, then we
execute step А2.2. If the orgraph has no cycles, then
we proceed to step А2.4.

Step А2.2. Find the equation removed from the
graph, that is, the pair of edges with the same labels
corresponding to the equation and incoming to the
same vertex of the graph.

Each pair of edges with the same label (number of
equation) p is evaluated by the number Cp of cycles that
can be broken when this pair of edges is removed from
the graph.

Step А2.3. Remove the pair of edges (equation)
with label p that corresponds to the maximal value of
Cp. Proceed to step А2.1.

Step А2.4. End.
ND COMPUTER SOFTWARE Vol. 49 No. 4 2023

PROGRAMMING AND COMPUTER SOFTWARE Vol. 49 No. 4 2023

EXPERIMENTAL STUDY OF ALGORITHMS FOR MINIMIZATION 275

Table 5. Equations of algebraic expansions of cofactors of third BDDI level

Number of equation Equation Cluster Weight of cluster

1 g1 = g1 3

2 g1 = g6 & g7

3 g1 = g7 &

4 g2 = & g2 2

5 g2 = g7 &

6 g3 = & g3 14

7 g3 = &

8 g3 = g10 & g6

9 g3 = g10 &

10 g3 = g2 &

11 g3 = g2 &

12 g3 = g2 &

13 g3 = g2 & g10

14 g3 = g2 & g10

15 g3 = g5 &

16 g3 = g5 &

17 g3 = g5 &

18 g3 = g7 &

19 g3 = g7 &

20 g4 = g6 & g4 2

21 g4 = g6 &

22 g5 = & g5 4

23 g5 = g10 &

24 g5 = g7 &

25 g5 = g7 & g10

26 g6 = g1 g4 g6 1

27 g7 = g1 g2 g7 4

28 g7 = g1 g3

29 g7 = g1 g5

30 g7 = g2 g5

6 4&g g

3g

4g 8g

8g

6g 8g

6g 9g

8g

1g

6g

9g

1g

6g

8g

1g

6g

1g

7g

4g 9g

4g

9g

∨

∨

∨

∨

∨

276 BIBILO, ROMANOV

Fig. 5. Orgraph G after cluster elimination.

g6

26

26

23

23

30
30

4
4

19

19

2020

1

1

g1

g4

g5 g2

g7

g8

g3 g10

Table 6. Equations implemented in graph G after reducing
the cofactors

Number of
equation Equation Cluster

1 g1

4 g2 = & g2

19 g3 = g7 & g3

20 g4 = g6 & g4

23 g5 = g10 & g5

26 g6 = g1 g4 g6

30 g7 = g2 g5 g7

=1 6 4&g g g

4g 8g

6g

1g

4g

∨

∨

Fig. 6. Step 1 of converting a graph to acyclic one (dashed
edges corresponding to equation 1 are removed).

g6

26

26

23

23

30
30

4
4

19

19

2020

1

1

g1

g4

g5 g2

g7

g8

g3 g10
5. EXAMPLE OF EXECUTION
OF ALGORITHM 1

Let us illustrate the proposed algorithm 1 on exam-
ple of the BDDI depicted in Fig. 4. We consider the
third BDDI level whose cofactors depend on the vari-
ables x3, x4, and x5.

Stage 1. Partition the set of equations into the
BDDI levels.

The equation for each of the BDDI levels are given
in Table 3.

Stage 2. Find the set of implementable cofactors.
Steps 2.1–2.3. Using program [12] of elimination

of intermediate variables, construct the truth table of
the cofactors of the third BDDI level and find the
inversions of the cofactors (Table 4). After that, per-
form the complete combinatorial exhaustive search
over the variants of determining the disjunctive and
conjunctive expansions of non-inverse cofactors from
Table 4. Write the obtained algebraic formulas in Table 5.

Step 2.4.
Stage А1 of solving problem 1. Choose equations in

clusters (cluster reduction).
Step А1.1. The order of cluster consideration fol-

lows increasing (nondecreasing) cluster weights: g6,
g2, g4, g1, g5, g7, g3.

Step А1.2.
1. Consider the cluster g6; leave the equation g6 =

g1 g4; the set T = {g1, g4, g6}.
2. Consider the cluster g2; leave the equation g2 =
& ; implement heuristic 1; the set T is fulfilled by

the vertices from the preserved equation: T = {g1, g2, g4,
g6, g8}.

3. Consider the cluster g4; the maximum weight
= 18 is for the vertex g4 for the equation g4 = g6 & ;

∨

4g 8g

4qW 1g
PROGRAMMING A
keep the equation g4 = g6 & ; implement heuristic 1;
the set T = {g1, g2, g4, g6, g8} is left unchanged.

Similarly, we preserve the equations in the other
clusters g1, g5, g7, and g3. The result of execution of
stage А1 is the orgraph (Fig. 5) and the corresponding
equations (Table 6).

Stage А2 of solving problem 1. Reduce the orgraph
G to an acyclic graph.

As an original, we consider the orgraph (Fig. 5).
Iteration 1 (there will be iterations 2 and 3 below).
At step А2.1 we find all simple cycles: {g1, g6, g1}, {g1,

g4, g1}, {g1, g4, g6, g1}, {g1, g6, g4, g1}, and {g4, g6, g4}.

At step А2.2, for each of the equations (pairs of
identically labeled edges) 1, 20, 26 we count the num-
ber of broken cycles if we can remove this pair of edges

1g
ND COMPUTER SOFTWARE Vol. 49 No. 4 2023

EXPERIMENTAL STUDY OF ALGORITHMS FOR MINIMIZATION 277

Fig. 7. Resulting acyclic orgraph prescribing the imple-
mentable cofactors.

g6
26

26

23

23

30
30

4 4

19

19

g1

g4

g5 g2

g7

g8

g3 g10
from the graph. It is easy to see that removal of each of
the pairs of edges lead to breakage of four contours.

At step А2.3 we choose the pair of edges with label 1
(Fig. 6) that are removed from the graph.

Iteration 2. At step А2.1 we find one simple cycle
{g4, g6, g4} that forms two edges with labels 20, 26.

At step А2.2 we find out that removal of any of the
pairs of edges with labels 20, 26 breaks the only simple
cycle {g4, g6, g4}.

At step А2.3 we remove the pair of edges with label
20 and obtain the graph (Fig. 7).

Iteration 3 is not executed until the end, because at
step А2.1 we find out that the graph (Fig. 7) is acyclic.

The result of execution of stage А2 is the equations
for the found implementable cofactors (Table 7). In
Fig. 8 we show the logic circuit corresponding to the
found set of implementable cofactors; it has no feed-
back, because it corresponds to the oriented acyclic
graph.
PROGRAMMING AND COMPUTER SOFTWARE Vol.

Table 7. Equations corresponding to the implementable
cofactors

Number of
equation Equation Cluster

4 g2 = & g2

19 g3 = g7 & g3

23 g5 = g10 & g5

26 g6 = g1 g4 g6

30 g7 = g2 g5 g7

4g 8g

6g

4g

∨

∨

Stage 3. Correct the original multilevel BDDI rep-
resentation of Boolean function.

At Stage 3 of algorithm 1, in the functional descrip-
tion (Table 3) the equations of Shannon expansion for
the cofactors g2, g3, g5, g6, and g7 are replaced by the
formulas of algebraic expansions from Table 7, and we
obtain the functional description

(4)

After formulas replacement it turns out that the
equations

are unused (redundant) and absent in the set of cou-
pled formulas (4). As a result of applying the proposed
method of logic optimization, in the functional BDDI
description the number of literals reduces and we have
obtained the results of logic synthesis best in terms of
area (Table 8). Information about the used library of
logic elements will be given below in description of the
computational experiment.

6. ALGORITHMS 2–4 FOR FINDING
ALGEBRAIC EXPANSIONS
OF COFACTORS IN BDDI

To describe the differences of algorithms 2–4 from
the described algorithm 1, we note that in algorithm 1
all cofactors are represented as algebraic expansions,
that is, the cofactors with two, three, or four literals in
their notation.

We call the formulas of Shannon expansion includ-
ing just two literals short and the formulas consisting of
three or four literals long. The equations of type (2), (3)
that replace the formulas of Shannon expansion are
referred to as the substituted equations, or substitu-
tions.

Algorithm 2 differs from algorithm 1 in that, at stage
3 of the correction of the original multilevel BDDI
representation, the original short equations are not

= ∨ = ∨ = ∨
= ∨ = ∨

= ∨ = ∨

1 1 1 1 2 2 1 2 1 3 3 1 4 1 5

4 1 4 1 6 5 1 6 1 7

1 2 1 2 3 2 2 2 2 8

; ; ;
; ;
; ;

f x h x h f x h x h f x h x h
f x h x h f x h x h

h x g x g h x g x g

= ∨ = ∨
= ∨ = ∨
= ∨ = ∨

= = = ∨

3 2 5 2 6 4 2 6 2 7

5 2 6 2 10 6 2 4 2 9

7 2 8 2 10 1 4 2 4 3

2 4 8 3 7 6 4 4 5 4 2

; ;
; ;
; ;

& ; & ; ;

h x g x g h x g x g
h x g x g h x g x g
h x g x g g x s x s

g g g g g g g x x x s

= = ∨ = ∨
= ∨ = ∨

= ∨ =
= =

5 10 4 6 1 4 7 2 5

8 4 3 4 1 9 4 2 4 5

10 4 3 4 5 1 5 3

2 5 3 3 5 3

& ; ; ;
; ;

; ;
; .

g g g g g g g g g
g x s x s g x s x x

g x x x x s x x
s x x s x x

= = ∨0 5 3 4 5 3 5 3;s x x s x x x x
49 No. 4 2023

278 BIBILO, ROMANOV

Fig. 8. Logic circuit corresponding to resulting acyclic orgraph.

g1

g6

g5

g2

g7

g3

g4

g10

g8

1

1

1

&

&

&

replaced by the found disjunctive or conjunctive
expansions.

Algorithm 3 differs from algorithm 1 in that the
algebraic disjunctive and conjunctive expansions are
sought only for the cofactors represented only by long
equations, whereas for the sought expansions we use
the cofactors represented in the original notation by
both long and short equations.

Algorithm 4 differs from algorithm 3 by an auxiliary
step: if in the found resulting formulas of algebraic
expansions

we use the two inverse cofactors, then, by the axioms
of Boolean algebra (de Morgan formulas), we write
equivalent substitutions in the solution, that is, we
write the formulas

containing a single inversion operator.

7. PROGRAM IMPLEMENTATION
The software implementation of the above pre-

sented algorithms was carried out in the C++ lan-
guage within the cross-platform Qt environment [13];
here, we intensely applied the previously developed
libraries for operations with Boolean objects [14] and
for processing the descriptions written in the SF lan-
guage [15, p. 51]. For purposes of practical use, the

= ∨ =; & ;p i j r i jg g g g g g

= ¬ = ¬ ∨(&); (),p i j r i jg g g g g g
PROGRAMMING A

Table 8. Results of logic synthesis

Functional description Number
of literals nu

Original (formulas, Table 2) 100
Result (formulas (4)) 84
general organization of the program is performed
according to the rules for developing the design proce-
dures in the FLC-2 system [16].

The program is parametrically adjustable. Its
parameters are as follows:

-i <src> is the path to the original file of circuit
description represented in form of BDD file, the sys-
tem of logic equations written in the SF language.

-o <tar> is the path to the resulting file opti-
mized by the number of literals.

-r <config> is the path to the configuration
file, the file of INI format of the Windows system con-
taining the sections with the collection of key parame-
ters establishing the modes of program operation:

[BDD_OPT]

. . .

inversion=2

donothandleshort=2

. . .

[DATA]

RPT_Name=e:/FLC2/workDir/protokol.txt

Here, the parameter inversion can take on the
values from the set {0,1,2}: 0 means that we do not use
the inverse functions for selection of optimizing sub-
stitutions; 1 is the equivalent use of both direct and
inverse functions; 2 stands for that, in addition to use
of inverse functions, we transit to the inverse represen-
tation for substitutions:

= ∨ → = ¬; (&);p i j p i jg g g g g g
ND COMPUTER SOFTWARE Vol. 49 No. 4 2023

Logic circuit

mber of logic
elements

area SASIC delay τ, ns

45 16031 2.89
37 13855 3.36

EXPERIMENTAL STUDY OF ALGORITHMS FOR MINIMIZATION 279
Table 9. Parameters of original systems of functions and BDDI

Circuit

DNF system BDDI

n m k
number SBDDI

of equations

number of pairs
of mutually

inverse cofactors

total number
of literals P

ADD6 12 7 1 092 27 10 91

ADDM4 9 8 512 66 41 590

ADR4 8 5 256 17 6 57

ALU1 12 8 19 16 0 50

B12 15 9 431 66 3 209

B9 16 5 123 73 14 253

BR1 12 8 34 119 4 319

BR2 12 8 35 85 2 216

DC2 8 7 58 58 9 179

DIST 8 5 256 115 32 424

EX7 16 5 123 73 14 253

F51M 8 8 256 37 13 124

GARY 15 11 214 317 17 964

IN0 15 11 138 317 17 964

IN1 16 17 110 756 20 2552

IN2 19 10 137 261 25 861

INTB 15 7 664 681 105 2465

LIFE 9 1 512 36 5 133

LOG8MOD 8 5 47 62 10 215

M1 6 12 32 48 7 134

M181 15 9 430 67 3 212

M2 8 16 96 116 28 362

M3 8 16 128 130 30 413

M4 8 16 256 175 46 604

MAX1024 10 6 1 024 333 118 1242

MAX46 9 1 46 72 0 248

MAX512 9 6 512 186 56 686

MLP4 8 8 256 147 37 528

MP2D 14 14 123 78 2 219

NEWAPLA 12 10 17 44 4 112

NEWAPLA1 12 7 10 24 0 55

NEWCPLA1 9 16 38 80 8 212

NEWILL 8 1 8 15 0 47

NEWTAG 8 1 8 8 0 23

NEWTPLA 15 5 23 56 4 147

P82 5 14 24 53 5 162
PROGRAMMING AND COMPUTER SOFTWARE Vol. 49 No. 4 2023

280 BIBILO, ROMANOV
RADD 8 5 120 17 6 57

RD53 5 3 32 15 5 53

RD73 7 3 147 29 9 107

ROOT 8 5 256 56 15 175

SEX 9 14 23 51 0 142

SQN 7 3 96 46 5 161

SQR6 6 12 64 62 11 199

T3 12 8 152 87 5 248

TIAL 14 8 640 582 126 2 099

VTX1 27 6 110 100 2 298

X9DN 27 7 120 102 2 305

Z4 7 4 128 15 5 51

Z5XP1 7 10 128 40 11 131

Circuit

DNF system BDDI

n m k
number SBDDI

of equations

number of pairs
of mutually

inverse cofactors

total number
of literals P

Table 9. (Contd.)
The parameter donothandleshort adjusts the
rules of consideration of the equation from the aspect
of searching the substitution of cofactors and can also
take on the values from the set {0, 1, 2}: 0 means that
all equations of the considered system will undergo
testing on replacement, 1 stands for dropout the possi-
ble substitutions capable of reducing the number of lit-
erals in the equation, which will be performed at the
stage of generation of the resulting file; 2 is for dropout
at the stage of searching the substitutions.

The parameter RPT_Name from the DATA section
determines the path to the file of session protocol con-
taining information about errors in the accepted initial
data.

The considered program has several limitations.
The fixed ones among them are the following: the
number n of arguments of the implemented system of
Boolean functions n 27; the number of possible rep-
resentations of an individual cofactor (no more than
96 variants); and the number of edges of the graph G
(no more than 30000). However, achieving these val-
ues was not observed in practice because of the
required amount of performed calculations. We had
the cases of normal operation of the program for
dimensions of the adjacency list of graph description
of more than 15000 elements (edges of the graph) and

= ∨ → = ¬; (&).r i j r i jg g g g g g

≤

PROGRAMMING A
approximately 90 steps of execution of the algorithm
for transforming the orgraph to the acyclic form.

8. COMPUTATIONAL EXPERIMENT
We conducted the experiment on testing the effi-

ciency of the programs implementing the proposed
algorithms 1–4 for reduction in the area and increase
in the performance of the combination logic units
implemented as part of custom digital VLSIs (ASIC).

The initial descriptions of the first collection of
examples of combination logic were the DNF systems
of Boolean functions written in the SF language [15,
p. 53] borrowed from library [17] of circuit examples
presented in the PLA format; here, the descriptions
were converted from the PLA format to the SF format
of the FLC-2 system of logic optimization [16].

The second collection of examples was the systems
of Boolean functions prescribing the SF descriptions
of truth tables of modular adders [18].

For each of examples of the systems of completely
specified Boolean functions, we carried out BDDI
minimization using the BDD_Builder program [9],
also included in the FLC-2. The obtained circuit
implementations were called reference for the experi-
ment. The BDDI descriptions and the additionally
minimized BDDI descriptions (additional optimiza-
tion was carried out by means of programs implement-
ing algorithms 1–4 of algebraic expansion of cofactors
ND COMPUTER SOFTWARE Vol. 49 No. 4 2023

EXPERIMENTAL STUDY OF ALGORITHMS FOR MINIMIZATION 281
Table 10. Results of experiment for the first collection of examples

Circuit

Original BDDIs
(reference
solutions)

Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4

SASIC τ, ns SASIC τ, ns SASIC τ, ns SASIC τ , ns SASIC τ, ns

ADD6 12806 8.03 *11952 *7.72 12806 8.03 12583 9.05 12583 9.05

ADDM4 80782 7.84 79643 8.01 *73974 8.17 78672 11.35 81602 *7.03

ADR4 8074 4.90 *7589 *4.82 8074 4.90 *7851 5.60 *7851 5.06

ALU1 7109 1.12 7109 1.12 7109 1.12 7109 1.12 7109 1.12

B12 18358 3.59 21327 3.77 21293 *3.46 21293 *3.46 18492 *3.40

B9 26081 4.91 26204 *3.89 26081 4.91 *25701 4.65 25701 4.65

BR1 23843 6.36 27867 *5.65 24530 *5.06 26193 *5.46 28547 *5.26

BR2 21371 6.34 21790 *5.57 *20032 *4.43 *20032 *4.43 21371 6.34

DC2 23302 4.28 22845 5.34 20780 4.88 *19976 4.30 *19067 4.73

DIST 60085 6.08 55627 8.34 *54159 6.74 56062 7.14 54807 *6.01

EX7 26081 4.91 26204 *3.89 26081 4.91 *25701 *4.65 *25701 *4.65

F51M 18353 7.67 17622 *5.39 *16824 *5.45 17298 *3.21 *16037 *3.54

GARY 94648 6.74 107264 7.14 96032 6.81 101299 *6.68 *93978 6.43

IN0 94648 6.74 107264 7.14 96032 6.81 98409 *6.50 *93978 6.43

IN1 192655 8.26 235638 14.12 216493 10.05 227262 13.16 221805 11.62

IN2 75414 6.73 71619 11.23 *69471 9.13 70102 10.01 *73851 10.75

INTB 272555 8.67 *241168 13.90 *237758 13.26 *248561 13.50 *248316 15.73

LIFE 18146 4.60 *15256 7.44 *16450 7.26 *15150 7.36 *17359 7.37

LOG8MOD 24022 4.26 25160 *4.05 24440 4.89 24161 4.48 24457 4.76

M1 15312 3.46 17605 *2.63 16121 *2.63 16857 *2.47 16037 *2.77

M181 18849 3.48 20356 3.73 20914 *3.42 20914 *3.42 *18576 3.75

M2 45086 5.20 *45058 *4.87 *43362 5.39 *42776 *5.19 *42787 *5.07

M3 52580 4.49 54656 6.62 *52435 4.92 *51754 5.81 *49947 5.33

M4 78181 5.87 78405 *5.27 78879 6.19 *77473 6.18 *76502 *4.84

MAX1024 146888 7.18 153606 11.02 150777 10.30 148567 10.50 *144076 9.79

MAX46 36125 4.89 *34892 5.61 *32035 4.93 *35344 4.89 *35344 4.89

MAX512 84643 5.98 *84537 7.29 *79827 7.72 *81228 6.29 *79582 6.46

MLP4 68439 5.60 70224 6.28 *66586 6.70 68628 9.17 *68210 6.98

MP2D 17471 3.56 20239 6.15 19351 3.48 18771 4.37 17767 3.61

NEWAPLA 11087 3.84 *10184 3.90 11087 3.84 *10184 3.90 11087 3.84

NEWAPLA1 6869 3.35 *6702 3.63 6869 3.35 6869 3.35 6869 3.35

NEWCPLA1 20585 3.87 22158 4.53 20596 4.58 *19206 4.02 22951 5.14

NEWILL 5122 3.22 5736 4.76 5736 4.76 5736 4.76 5122 3.22

NEWTAG 2126 1.90 2126 1.90 2126 1.90 2126 1.90 2126 1.90

NEWTPLA 11316 3.30 13515 3.85 11316 3.30 13264 4.04 11316 3.30

P82 19988 2.93 22292 3.23 *19965 *2.75 19982 *2.76 *19982 *2.76
PROGRAMMING AND COMPUTER SOFTWARE Vol. 49 No. 4 2023

282 BIBILO, ROMANOV
RADD 8074 4.90 *7589 *4.82 8074 4.90 7851 5.60 *7851 5.60

RD53 7321 3.38 7779 *3.22 7321 3.38 7321 3.38 7321 3.38

RD73 18090 4.55 *14212 *4.49 15222 5.30 15669 4.61 *15669 4.61

ROOT 26109 4.78 26455 *4.68 *24580 *4.23 *22532 *4.08 *23581 5.30

SEX 12566 3.69 15524 *3.56 12605 *2.08 12605 *2.08 12605 *2.08

SQN 22303 3.33 *20077 4.87 *19642 5.04 *19245 *3.10 *18922 5.57

SQR6 28737 5.72 *28157 *4.55 *28023 *4.33 *27827 *3.77 *27035 *3.72

T3 17276 3.59 19268 5.85 17454 6.03 17454 6.03 17917 4.16

TIAL 255 531 8.75 *221509 15.25 *212286 12.65 *209217 12.15 *211633 14.72

VTX1 26996 5.96 *25930 6.40 *24223 *5.94 *24223 *5.94 *24552 6.16

X9DN 26996 6.00 25701 *5.81 *25155 *5.84 *25155 *5.84 *26812 6.65

Z4 6640 4.25 *6339 4.32 6640 4.25 6417 4.71 *6417 4.71

Z5XP1 18442 4.64 *18252 4.30 18442 4.53 *16400 *3.61 *16400 *3.61

Number of the
best solutions
(bold face)

16 22 9 12 14 11 15 14 18 16

Number of improvements of refer-
ence solutions (number of asterisks) 17 18 19 12 21 18 28 13

Circuit

Original BDDIs
(reference
solutions)

Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4

SASIC τ, ns SASIC τ, ns SASIC τ, ns SASIC τ , ns SASIC τ, ns

Table 10. (Contd.)
proposed in this work) were converted to VHDL
descriptions and fed to the input of the Leonardo-
Spectrum synthesizer [19, p. 241]. For each of the
examples, the logic circuit synthesis was conducted
with the same options of synthesis control and for the
same target synthesis library. The target library was the
library of designing custom digital CMOS VLSIs; the
content of the library is presented in [20].

The parameters of the systems of functions and
BDDI descriptions for the first collection of examples
are given in Table 9. We established that the GARY
and IN0 examples prescribe the same system of func-
tions in form of different DNF systems, that is, DNFs
with different sets of elementary conjunctions. For the
second collection of examples, the label of example
Mod_i corresponds to the adder modulo i.

Below, in tables presenting the results of our exper-
iments, we use the following denotations for the
parameters of the systems of functions f(x) = (f1(x), …,
fm(x)), x = (x1, …, xn): n is the number of variables x1,
…, xn; m is the number of functions; k is the number of
common elementary conjunctions entering the DNFs
of all component functions fj(x), j = 1, …, m.
PROGRAMMING A
The resulting logic circuits were evaluated by two
parameters: SASIC is the total area of all elements of the
logic circuit and τ is the circuit delay (in ns). The
results of our experiment are listed in Tables 10–12.
The best solutions (the circuits of smaller area or the
circuits with shorter delay) are labeled by bold face,
and asterisk is used to denote the solutions that
improve the initial reference solutions, which, as we
have already said, are the logic circuits constructed by
the initial BDDIs. For each of algorithms 1–4, Table 11
presents the numbers of eliminated (redundant) equa-
tions after execution of the corresponding algorithm.
The LeonardoSpectrum synthesizer outputs this
information if at synthesis there are unused signals
revealed in the functional descriptions by which we
perform circuit synthesis. If, for any example for each
of algorithms 1–4, the number of eliminated equa-
tions is zero, then information on such example is
absent. For instance, we do not provide the informa-
tion for the first example Add6 in Table 11, because
there are no redundant equations for any of the algo-
rithms.
ND COMPUTER SOFTWARE Vol. 49 No. 4 2023

EXPERIMENTAL STUDY OF ALGORITHMS FOR MINIMIZATION 283

Table 11. Results of experiment for the first collection of
examples

Circuit

Number of eliminated equations

Algorithm 1 Algorithm 2 Algorithms
3, 4

ADDM4 1 1 1

B12 1 0 0

BR1 4 3 2

BR2 6 2 2

DC2 4 2 1

DIST 5 3 3

GARY 14 6 6

IN0 14 6 6

IN1 73 60 57

IN2 22 20 20

INTB 90 93 96

LIFE 4 4 4

M1 5 2 2

M181 1 0 0

M3 2 0 0

M4 2 2 2

MAX1024 3 3 5

MAX512 1 1 2

MLP4 1 1 1

MP2D 2 2 2

NEWAPLA 2 0 0

NEWCPLA1 2 3 0

P82 2 0 0

RD73 1 0 0

SEX 3 1 3

SQN 1 1 1

T3 11 7 7

TIAL 59 75 75

VTX1 2 2 2

X9DN 2 2 2

Z5XP1 1 0 0
Let us analyze the experimental results. The first
collection of examples consisted of 59 functional
descriptions of circuits. For 10 examples of low-
dimensional circuits—the circuits CLPL, CO14,
NEWAPLA2, NEWBYTE, NEWCOND , NEWTP-
LA1, NEWTPLA2, RYY6, SYM10, and Z9SYM—
application of algorithms 1–4 did not vary the refer-
PROGRAMMING AND COMPUTER SOFTWARE Vol.
ence solution; therefore, the initial data and the results
of computational experiment for these examples are
not provided in Tables 9–11.

For the three examples B12, LOG8MOD, and
MP2D, application of any of algorithms 1–4 for
changing the functional reference BDDI descriptions
led to an insignificant increase in the area of the cor-
responding logic circuit. This is related with the fact
that the LeonardoSpectrum synthesizer has its own
built-in tools of logic optimization and technological
mapping. Technological mapping consists in covering
the optimized logic equations by functional descrip-
tions of logic elements entering the design library.
Variation in the functional description led to other
results of technological mapping. For 33 examples of
circuits, application of the proposed algorithms
allowed improving their area. Reduction in the area
for high-dimensional circuits can be of practical sig-
nificance: for the INTB circuit the area reduction is
13%, for the Tial circuit it is 18%. In general, algo-
rithms 3 and 4 are more efficient compared to algo-
rithms 1 and 2. Algorithm 4 allows improving the ref-
erence solutions (by area) for 27 circuits, and algo-
rithm 3 allows increasing the performance for 18 circuits.
Algorithms 3 and 4 can be recommended for practical
use in the first wave. It is also not excluded that appli-
cation of algorithms 1 and 2 can also improve the ref-
erence solution.

For the second collection of examples (modular
adders), application of algorithms allowed reducing
the areas for nine circuits and decreasing the delays for
five circuits of 14 ones. The area of the Mod_61 circuit
reduced by 28%, and the area of the Mod_37 circuit
decreased by 23% (Table 12).

The program experiment also showed that, for
reduction in the circuit area, always more efficient are
disjunctive and conjunctive expansions of cofactors
with the use of their inversions, compared to similar
expansions without inversions of cofactors.

9. CONCLUSIONS
Our experiments [9] showed that determination of

pairs of mutually inverse cofactors at BDDI optimiza-
tion considerably improves the results of subsequent
synthesis, compared to the BDD optimization exe-
cuted without finding the inverse cofactors.

In the paper we described software-implemented
algorithms of additional minimization of algebraic
multilevel BDDI representations of systems of com-
pletely specified functions on the basis of disjunctive
and conjunctive representations of subfunctions
appearing at one BDDI level. Such additional logic
optimization by the number of literals in the resulting
logic equations prescribing the BDDIs leads to sim-
49 No. 4 2023

284 BIBILO, ROMANOV

Table 12. Results of experiment for the second collection of examples

Name

Original BDDIs
(reference solutions) Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4

SASIC τ, ns SASIC τ, ns SASIC τ, ns SASIC τ, ns SASIC τ, ns

Mod_5 13520 2.68 *12923 2.86 13520 2.68 13593 3.88 13520 2.68

Mod_7 16946 3.51 20696 4.50 16946 3.51 19469 *3.39 18777 4.00

Mod_9 32358 6.21 *30640 *5.64 32358 6.21 *30082 6.44 *30679 *5.01

Mod_15 41080 5.83 44768 7.00 41080 5.83 44205 6.93 44428 7.34

Mod_17 54137 6.02 57697 7.62 54137 6.02 *52703 *5.98 *48462 8.15

Mod_19 49483 6.93 58311 9.00 49483 9.93 51593 7.80 *48752 *5.95

Mod_23 58746 6.75 *58171 *6.17 58746 6.75 60822 7.81 62624 8.75

Mod_25 68043 6.60 75492 9.00 68043 6.60 75570 8.53 73913 8.35

Mod_27 78600 6.77 92 422 10.28 78600 6.77 85240 8.96 87059 9.24

Mod_29 77902 6.51 *77149 10.02 77902 6.51 *72919 10.39 *71469 11.68

Mod_31 73003 7.68 *72652 8.96 73003 7.68 *72864 8.08 *69795 8.77

Mod_37 113352 6.60 *94296 9.04 113352 6.60 *87483 9.89 *91395 11.18

Mod_59 149628 9.35 159030 16.62 149628 9.35 150264 15.73 151542 13.57

Mod_61 129863 8.54 *102466 13.36 129863 8.54 *100261 13.83 *93549 18.04

Number
of the best
solutions
(bold face)

5 10 2 1 4 8 2 2 5 3

Number of improvements of ref-
erence solutions (number of
asterisks)

7 2 0 0 6 2 7 2
pler functional descriptions by which logic circuit syn-
thesis is carried out. Decrease in the circuit area,
reduced to the decrease in the number of transistors in
circuits, allows also reducing the energy consumption
of circuits. However, reduction in the number of liter-
als at algebraic expansions that allow frequently
decreasing the area of circuits made of library CMOS
elements can lead to both reduction and increase in
the time delays of circuits.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES
1. Brayton, R.K., Hachtel, G.D., and Sangiovanni-Vin-

centelli, A.L., Synthesis of multi-level combinational
logic circuits, Tr. Inst. Inzh. Elektron. Radiotehn., 1990,
vol. 78, no. 2, pp. 38–83.

2. Meinel, C. and Theobald, T., Algorithms and Data
Structures in VLSI Design: OBDD – Foundations and
Applications, Berlin, Heidelberg: Springer-Verlag, 1998.

3. Knuth, D.E., Combinatorial algorithms, in The Art of
Computer Programming, Pearson Education, Inc., 2011,
vol. 4A.

4. Yang, S. and Ciesielski, M., BDS: a BDD-based logic
optimization system, IEEE Trans. Comput.-Aided De-
sign Integr. Circuits Syst., 2002, vol. 21, no. 7, pp. 866–
876.

5. Ebendt, R., Fey, G., and Drechsler, R., Advanced BDD
Optimization, Springer, 2005.

6. Bibilo, P.N., Primenenie diagramm dvoichnogo vybora
pri sinteze logicheskikh skhem (Binary Decision Dia-
grams for Synthesizing Logic Circuits), Minsk: Be-
laruskaya navuka, 2014.

7. Kubica, M. and Kania, D., SMTBDD: new form of
BDD for logic synthesis, Int. J. Electron. Telecommun.,
2016, vol. 62, no. 1, pp. 33–41.

8. Bibilo, P.N. and Romanov, V.I., Minimization of bina-
ry decision diagrams for systems of completely defined
Boolean functions by using Shannon expansions and
algebraic representations of cofactors, Informatika,
2021, vol. 18, no. 2, pp. 7–32.

9. Bibilo, P.N. and Lankevich, Yu.Yu., Zhegalkin polyno-
mials for minimizing multilevel representations of
Boolean functions systems based on the Shannon ex-
pansion, Programm. Inzheneriya, 2017, vol. 8, no. 8,
pp. 369–384.

10. Search for elementary cycles in a graph.
https://vscode.ru/prog-lessons/poisk-elementarnyih-
tsiklov-v-grafe.html. Accessed 05.082021.
PROGRAMMING AND COMPUTER SOFTWARE Vol. 49 No. 4 2023

EXPERIMENTAL STUDY OF ALGORITHMS FOR MINIMIZATION 285
11. Johnson, D.B., Finding all the elementary circuits of a
directed graph, SIAM J. Comput., 1975, vol. 4, no. 1,
pp. 77–84.

12. Toropov, N.R., Multi-level combinational network
transformation into a two-level one, in Logicheskoe
proektirovanie (Logic Design), Minsk: United Institute
of Informatics Problems of the National Academy of
Sciences of Belarus, 2000, issue 5, pp. 4–14.

13. Shlee, M., Qt 5.10. Professional Programming in C++,
St. Petersburg: BKhV-Peterburg, 2018.

14. Romanov, V.I., Software tools for solving logic-combina-
torial problems, Informatika, 2005, no. 4, pp. 114–123.

15. Bibilo, P.N. and Romanov, V.I., Logicheskoe proektiro-
vanie diskretnykh ustroistv s ispol’zovaniem produktsion-
no-freimovoi modeli predstavleniya znanii (Logical De-
sign of Discrete Devices by Using a Production-Frame
Knowledge Representation Model), Minsk: Belaruska-
ya navuka, 2011.

16. Bibilo, P.N. and Romanov, V.I., The system of logical
optimization of functional and structural descriptions
for digital devices based on production-frame knowl-
edge representation model, in Problemy razrabotki per-
spektivnyh mikro- i nanoelektronnyh sistem. – 2020. sb.
trudov (Promising Micro- and Nano-Electronic Sys-
PROGRAMMING AND COMPUTER SOFTWARE Vol.
tems: Design Problems. Collection of Scientific Papers
2020), Stempkovskii, A.L., Ed., Moscow: Institute for
Design Problems in Microelectronics RAS, 2020, no. 4.

17. The Tests in the Monograph «Logic Minimization Al-
gorithms for VLSI Synthesis». http://www1.cs.colum-
bia.edu/~cs6861/sis/espresso-examples/ex. Accessed
20.11.2020.

18. Balaka, E.S., Tel’pukhov, D.V., Osinin, I.P., and
Gorodetskii, D.A., Comparative study and analysis of
hardware implementation methods for adders in abso-
lute values, 7Universum: Tekh. Nauki: Elektron. Nauch.
Zh., 2016, no. 1 (23).
http://7universum.com/ru/tech/archive/item/2887.

19. Bibilo, P.N., Sistemy proektirovaniya integral’nykh
skhem na osnove yazyka VHDL. StateCAD, ModelSim,
LeonardoSpectrum (Integrated Circuit Design Systems
Based on the VHDL Language: StateCAD, ModelSim,
LeonardoSpectrum), Moscow: SOLON-Press, 2005.

20. Avdeev, N.A. and Bibilo, P.N., Automated Design for
Digital Operational Units with Low Power Consump-
tion, Programm. Inzheneriya, 2021, no. 2, pp. 63–73.

Translated by E. Oborin
49 No. 4 2023

	1. INTRODUCTION
	2. BINARY DECISION DIAGRAMS AND ALGEBRAIC EXPANSIONS OF COFACTORS
	3. ALGORITHM 1 FOR FINDING ALGEBRAIC EXPANSIONS OF COFACTORS IN BDDI
	4. DETERMINATION OF THE SET OF IMPLEMENTABLE COFACTORS
	Algorithm for Solving Problem 1

	5. EXAMPLE OF EXECUTION OF ALGORITHM 1
	6. ALGORITHMS 2–4 FOR FINDING ALGEBRAIC EXPANSIONS OF COFACTORS IN BDDI
	7. PROGRAM IMPLEMENTATION
	8. COMPUTATIONAL EXPERIMENT
	9. CONCLUSIONS
	REFERENCES

		2023-07-20T22:00:06+0300
	Preflight Ticket Signature

