
ISSN 0361-7688, Programming and Computer Software, 2022, Vol. 48, No. 8, pp. 632–645. © Pleiades Publishing, Ltd., 2022.
A Microservice Deployment Guide
V. M. Niño-Martíneza,*, J. O. Ocharán-Hernándeza,**, X. Limóna,***,

and J. C. Pérez-Arriagaa,****
aSchool of Statistics and Informatics, Universidad Veracruzana, Av. Xalapa,

Obrero Campesino, Xalapa-Enríquez, Ver., 91020 Mexico
*e-mail: ninomtz.victor@gmail.com

**e-mail: jocharan@uv.mx
***e-mail: hlimon@uv.mx

****e-mail: juaperez@uv.mx
Received June 14, 2022; revised July 12, 2022; accepted August 2, 2022

Abstract—Modern software development requires agile methods to deploy and scale increasingly demanded
distributed systems. Practitioners have adopted the microservices architecture to cope with the challenges
posed by modern software demands. However, the adoption and deployment of this architecture also creates
technical and organizational challenges, potentially slowing down the development and operation teams,
which require more time and effort to implement a quality deployment process that allows them to constantly
release new features to production. The adoption of a DevOps culture, along with its practices and tools, alle-
viates some of these new challenges. In this paper we propose a guide for the deployment of systems with a
microservices architecture, considering the practices of a DevOps culture, providing practitioners with a base
path to start implementing the necessary platform for this architecture. We conducted this work following the
Design Science Research Methodology for Information Systems (DSRM). In this way, we identified the
problem, and also defined the solution objectives through the execution of a Systematic Literature Mapping
and a Gray Literature Review, having as a result the proposed guide. This work can be summarized as follows:
(I) Identification of practices and technologies that support the deployment of microservices. (II) Identifica-
tion of recommendations, challenges, and best practices for the deployment process. (III) Modeling of the
microservices deployment process using SPEM. (IV) Integration of the knowledge in a guide to deploying
microservices by adopting DevOps practices.

DOI: 10.1134/S0361768822080151

1. INTRODUCTION

In the 1990s, the popularization of the World Wide
Web (WWW) and the subsequent dot-com gold rush
introduced the world to software as a service (SaaS),
leading to entire industries built on this SaaS model.
This motivated the development of applications that
required more resources, making them more complex
to develop, maintain and deploy. Nowadays, enter-
prise systems need to transfer information with other
systems, internal or external to the organization, even
at a global scale. Companies such as Amazon, Netflix
[1], Uber [2], LinkedIn [3] and, SoundCloud [4],
among others, found the need to migrate to a software
architecture that allows them to undertake the com-
plexity and constant need of evolution of their systems.
To this end, they chose to adopt a Microservices
Architecture (MSA). Not only have these large com-
panies migrated to an MSA, but small and medium-
sized companies have also done so, all of them seeking
the benefits that this architecture brings, such as scal-
ability, heterogeneity, and extensibility, among others.

A MSA is an approach to developing a distributed
system as a set of small services. Each of these services
runs in its process and communicates using light-
weight mechanisms, like an HTTP resource API [5].
One of the characteristics that make this architecture
different is the granularity of the services, which must
be small and highly cohesive. Microservices adopt the
single responsibility principle approach, which states
“Gather together the things that change for the same
reasons, separate those things that change for different
reasons” [6], focusing the service boundaries on the
business boundaries, in this way, preventing services
from growing too large as well as the difficulties that
this may introduce. The key benefits that microser-
vices architecture offers over conventional architec-
tural patterns are: the heterogeneity of technologies,
fault tolerance, agile deployment, scalability, align-
ment with organizational structure, replaceability, and
agile development of business functionality [7], [8].

Software deployment is a stage of the software
development life cycle in which a system is put into
operation and transition issues are resolved [9].
632

A MICROSERVICE DEPLOYMENT GUIDE 633
Deployment combines two closely related concepts,
the first one is the deployment process, which consists
of a series of steps that must be executed by the devel-
opers or those in charge of managing the system infra-
structure to put the software into a production envi-
ronment, and the second is the deployment architec-
ture, which defines the structure of the software
execution environment [10]. An application is only
useful when deployed to users. Mature deployment
practices are crucial to building reliable and stable
microservices.

Unlike a monolithic system, optimized for a single-
use case, microservices deployment practices need to
scale to multiple services; it is possible to have tens or
hundreds of microservices, written in different pro-
gramming languages and frameworks. Each microser-
vice is a small application with a specific process and
architecture, which operators and developers need to
deploy in production. If operators and developers are
not able to quickly and reliably deploy microservices,
then the added development speed gained from
microservices would be useless. Therefore, a mature
deployment process and automated deployments are
essential for developing microservices at scale.

When migrating from a monolithic approach to
deploy microservices, the main challenges are the
familiarization with the variety of technologies and
tools, the automation of the process, and the imple-
mentation of a pipeline to continuously deploy [11].
In addition, among the most important challenges
related to the deployment of this type of architecture
are: 1) maintaining stability for a large volume of
releases and component changes; 2) avoiding coupling
between components, leading to dependencies in the
build or release times; 3) managing changes in the ser-
vice API, as changes could negatively affect the cli-
ents; and 4) removing and updating production ser-
vices [12]. The practices found in DevOps aid to alle-
viate the mentioned challenges, these practices
include: Continuous Integration (CI), Continuous
Delivery (CD), Configuration Management (CM),
and monitoring, among others. The implementation
of these practices generates new challenges regarding:
communication and coordination between teams; lack
of investment in costs; lack of experience and skills;
conflict management; design and code dependencies
between components; implementation and release of
software to customers [13].

To help developers and people in charge of creating
a stable infrastructure to deploy microservices, we
decided to elaborate a guide for the deployment of
microservices-based systems, considering DevOps
culture practices. The goal of the guide is to reduce the
effort associated with creating an ecosystem for the
microservices architecture. The guide integrates dif-
ferent organizational technical decisions, technolo-
gies, and tools successfully used by organizations, as
well as the associated DevOps practices. The guide
PROGRAMMING AND COMPUTER SOFTWARE Vol.
helps all related parties in the process of adopting a
microservices architecture.

In order to create the guide, we followed the Design
Science Research Methodology (DSRM) methodol-
ogy [14], consisting of six phases. We have already
completed the following phases: identification of
practices, technologies, tools, activities, and recom-
mendations for the deployment of microservices,
through a previous work [15] consisting of a systematic
mapping of the literature and a review of gray litera-
ture; classification and grouping of the information
found; MSA process adoption modeling; and the
selection and integration of related activities according
to the adoption process. With these phases covered, it
is possible to have a first version of the microservices
deployment guide, leaving the demonstration and
evaluation as future work.

This paper is organized as follows. Section 2 gives
an overview of some studies focused on the deploy-
ment of microservices and the adoption of DevOps
practices. Section 3 presents the followed method to
develop our microservices deployment guide, based
on the DSRM methodology [14]. Section 4 describes
the proposed deployment guide and its structure.
Finally, Section 5 features the conclusion and future
work.

2. RELATED WORK
We found in the literature numerous studies about

microservices, however, few of them focus on micros-
ervice deployment. In the reviewed literature, we
found practices adopted by practitioners, technolo-
gies, tools experiences, and recommendations for the
deployment of microservices.

We found a series of works including case studies
[16]– [24], regarding the implementation of a micros-
ervices architecture in conjunction with practices of
DevOps, such as CI/CD Continuous Integration and
Delivery. As a result of these studies, we obtained the
tools and technologies used for microservices deploy-
ment, as well as their rationale. We also identified
studies concerning the migration to MSA applying
DevOps practices [25]– [29], these studies include
mistakes made by organizations, tools, adoption pro-
cesses, and recommendations by practitioners. In
addition to experiences and case studies, we identified
some methods, guidelines, or classifications for con-
tinuous deployment, monitoring, and DevOps tactics
at an architectural level [30]– [33]. Two aspects that
stand out in these studies are the lack of depth in the
implementation process to adopt DevOps practices,
and the lack of details for tasks related to each activity.

In [34] authors identify the different principles and
patterns of a microservices architectural style, map-
ping the existing tools and techniques in the context of
DevOps. This study focuses on the advantages and
disadvantages of the microservices architecture and its
48 No. 8 2022

634 NIÑO-MARTÍNEZ et al.
patterns, however, the study only partially covers the
implementation of a DevOps workflow. On the other
hand, in [13], through a systematic review focused on
continuous practices, the authors made a classifica-
tion of tools, identified challenges and some other
related practices, showing some gaps for further
research.

Bolscher and Daneva [35] performed a systematic
mapping of the literature, to provide a summary of the
issues and requirements for the design of an architec-
ture that supports continuous integration and DevOps
practices. This study does not mention in-depth infor-
mation on DevOps practices, nor mentions an imple-
mentation of these practices in a real environment.
However, the study provides an explanation of the
importance of implementing a DevOps culture in the
adoption of a microservices architecture. Finally, in
the context of microservices and DevOps, [36] pres-
ents a classification of the problems reported by prac-
titioners, including some related solutions, giving also
a summary of the tools and challenges.

In summary, each of the resources and papers
found present valuable information regarding the pro-
cess of deploying a microservices architecture, how-
ever, we found few papers that made an intersection of
knowledge on how to implement DevOps practices in
the context of a microservices architecture. The few
studies that did so, only focus on a single topic, lacking
a broader scope. For this reason, the proposed guide
develops and compiles all the information identified,
seeking to deepen the architectural and deployment
topics related to achieve a mature process, supporting
the needs of distributed systems and a microservices
architecture in particular.
PROGRAMMING A

Fig. 1. Cause-effect diagram o

Human factor

People with specialized
expertise

Large number of people
involved

Few or no experience in
microservices deploying

Distributed systems
challenges Implem

deploym
a lot of t

Effective,
multidiscipl
are needed

Practices th
organization
be impleme

Large number of
technologies and tools to be
implemented

Extra complexity with
every incorporated
technology

Technical
3. RESEARCH METHOD
We followed the Design Science Research Meth-

odology (DSRM) [14], establishing the recognition
and legitimization of aims, processes, and investigation
outputs, and helping researchers to present their work
according to a common framework. The methodology
incorporates principles, practices, and procedures
required to carry out such research, meeting three objec-
tives: consistency with prior literature, providing a nomi-
nal process model for doing Design Science (DS)
research, and providing a mental model for presenting
and evaluating DS research. Several studies have used
this methodology to develop artifacts and validate its pro-
cess, for example [37], [38]. DSRM includes six steps:
problem identification and motivation, the definition of
the objectives, design, and development, demonstration,
evaluation, and communication. We detail these phases
in the following subsections.

3.1. Problem Identification and Motivation
For the identification of the problem related to

microservices deployment and its importance, we per-
formed a preliminary literature review. The concepts
and topics analyzed were the microservice architec-
ture style; advantages and drawbacks of its use; pro-
cesses to deploy microservices; aspects that affect the
deployment; and DevOps culture and its practices.

One of the main challenges we found, is the famil-
iarization with the variety of technologies and tools, as
well as the automation and implementation of a pipe-
line to deploy continuously [11]. Moreover, the imple-
mentation of practices such as Continuous Integration
(CI), Continuous Delivery (CD), Configuration
Management (CM), and monitoring; bring new chal-
ND COMPUTER SOFTWARE Vol. 48 No. 8 2022

f a microservice deployment.

enting a mature
ent process takes
ime

inary teams

at involve
al change need to

nted

Without a mature

deployment process, the

benefits of an MSA cannot

be achieved.

Organizational

Time

Challenging
MSA

A MICROSERVICE DEPLOYMENT GUIDE 635
lenges, such as communication and coordination
between teams; lack of investment in costs; lack of
experience and skills; conflict management; design
and code dependencies between components; chal-
lenges in the implementation and release of software
to customers [13], [39].

With our literature review, we developed a cause-
effect diagram to reflect the factors that impact the
deployment of microservices and convert it into a
challenging process. Figure 1 shows the cause-effect
diagram.

3.2. Design the Objectives for a Solution

Once we identified the problems, we concluded
that a guide to deploy a microservice architecture
could help to solve the problems. To know the state of
the art, and the possible solutions, we performed a
Systematic Mapping Study and A Gray Literature
Review, both with the aim to identify practices, pro-
cesses, technologies, recommendations, and lessons
learned and reported by practitioners.

3.2.1. Systematic Mapping Study. We conducted
the study following the guidelines of Kitchenham,
Budgen, and Brereton [40], the guidelines describe a
process to perform the mapping in Software Engineer-
ing. The objective of a mapping study is to survey the
available knowledge about a topic. It is possible to syn-
thesize information by categorization, identify “clus-
ters” of studies that could form the basis of a fuller
review, and also identify “gaps”, indicating the need
for more primary studies. We executed the mapping
study in three main phases: planning, conduction, and
results report. Some activities carried out within these
phases were: a preliminary literature review; definition
of the research questions and search keywords; data-
base selection; inclusion, and exclusion criteria;
methods for the data extraction and analysis.

3.2.1.1. Planning. Research questions. Derived
from the objective of the work, we formulated four
research questions (RQ). The questions compiled the
state of the art, showing us the techniques and tech-
nologies that researches, and practitioners use to
deploy microservices, along with the related DevOps
practices. The RQs and their motivation are shown in
Table 1.

Research process. We performed a preliminary lit-
erature review, identifying a series of articles that
helped us to define a set of keywords representing the
main concepts around the research questions and,
some of their related concepts. In the end, we decided
to run an automated search for selecting primary stud-
ies. We constructed a base string with the search terms
identified, refined, and validated using the Recall and
Precision techniques. The generated string is the fol-
lowing:

(microservices OR “microservice architecture”
OR micro-services OR “architecting microservices”)
PROGRAMMING AND COMPUTER SOFTWARE Vol.
AND (DevOps OR development OR operations OR
“continuous integration” OR CI OR “continuous
deployment” OR “continuous delivery” OR CD OR
migration OR automation OR tools OR adoption OR
monitoring OR cloud).

Table 2 shows the selected databases that to con-
duct the search. We chose these databases because
they compile the most significant number of works
related to Software Engineering. In addition, in a pre-
vious manual review, we found results in the men-
tioned sources. ACM Digital Library and Elsevier Sci-
ence Direct repositories have some considerations in
their search engines, so we adjusted the search string.
Due to the large number of results obtained in ACM,
we decided to search only using the title as the indexer.
In the Wiley repository, we used the exact string as in
Science Direct, because, in the first tests, we observed
that it performed better. We present the search string
of each database in Table 3. We only covered the last
five years in the study, in these years the topics of
DevOps and Microservices had more relevance in
research articles. We have also observed in these years
an increase in popularity of the topics of interest, and
therefore it is of relevance for the study. We defined a
list of inclusion and exclusion criteria for the studies,
presented in Table 4.

Data extraction. We defined a template to extract
the necessary information from each article to answer
the research questions. Data D1-D10 contains the
general information of each study, and data D11-D16
helped to extract qualitative data that answers the
research questions. We used a spreadsheet to collect
the information.

Data synthesis. For information synthesis, we used
the meta-aggregation method [41]. The synthesis
brings together the study findings, communicated as
themes, metaphors, categories, or concepts; and
grouped by further aggregation based on similarity of
meaning [41]. This method helped us to identify les-
sons learned, common mistakes and understand why
the literature reports certain technologies a higher
number of times. Moreover, with the information clas-
sified and grouped, its analysis becomes a more
straightforward process.

3.2.1.2. Conduction. We conducted the selection
process in three stages, implementing the inclusion
and exclusion of the strings in the different sources,
and using the filters provided by each of them, the CI-
1 and CI-2 criteria corresponding to the years of pub-
lication and their language were applied. In addition,
in databases such as Science Direct, Springer Link,
and ACM Digital Library, we used filters to only
include research articles and not book chapters or lec-
ture notes, thus applying the execution criteria CI-3 as
well as the exclusion criteria CE-1 and CE-2. In the
third stage, we read the full text, and the inclusion and
exclusion criteria CI-4, and CE-3 were applied. Fig-
ure 2 shows the results after applying the inclusion ad
48 No. 8 2022

636 NIÑO-MARTÍNEZ et al.

Table 1. Research Questions and Motivation

Questions Motivation

RQ-1: What DevOps prac-
tices and approaches support
the deployment of Microser-
vices?

Identify the practices and
approaches used in the
DevOps culture and classify
the technologies needed for
each practice

RQ-2: What technologies do
DevOps practices use to
deploy Microservices?

It is important to identify the
technologies that are used in
each DevOps practice, to
understand which are the
most suitable for a given sit-
uation

RQ-3: What challenges does
the literature report regard-
ing the adoption of DevOps
practices in the deployment
of microservices?

Many problems can emerge
in the implementation of the
practices and this question
aims to know what they are
and how often they are
reported.

RQ-4: What lessons does the
literature report for success-
ful microservices deploy-
ment?

This question aims to iden-
tify the processes, best prac-
tices, and recommendations
that practitioners imple-
mented in the deployment of
their systems and serve as a
guide for those in the same
situation.

Table 2. Selected Electronic Databases

Database Link

IEEE Xplore Digital Library https://ieeexplore.ieee.org
Elsevier Science Direct https://www.sciencedi-

rect.com
Springer Link https://link.springer.com
Wiley Online Library https://onlineli-

brary.wiley.com
ACM Digital Library https://dl.acm.org
exclusion criteria by stage and database. At the end of the
third stage, we obtained a total of 21 primary studies.

Data extraction and analysis. Once we selected the
primary studies, we created a spreadsheet in which
each column presents the to be extracted data. We per-
formed a complete reading of each article, highlighting
the information that answered the research questions
and capturing this information in the spreadsheet; we
performed this process for each of the primary studies
selected. With the extracted information, we pro-
ceeded to apply the meta-aggregation method. This
method has three main steps: (I) Identify and assem-
ble findings from all included studies; (II) Aggregate
well-founded and explicit findings; (III) Synthesis of
findings implications. We also captured the findings in
a spreadsheet, and with all the findings identified, we
iteratively created categories and grouped findings on
them .

3.2.1.3. Results. Meta-aggregation results. After the
application of the method, we extracted classified 43
findings into seven categories. These categories were
grouped into three synthesized findings Consider-
ations for Deployment Microservices, Precautions
when Deploying Microservices, and Deployment
Technologies. Figure 3 shows the associations
between categories.
PROGRAMMING A
Microservices deployment requirements: In this
category, we identified requirements that practi-
tioners, from their experience in the area, considered
necessary for a successful microservices deployment.
We found that architectural support is crucial for the
adoption of DevOps practices, as well as having a
mature operations team, to allow continuous deploy-
ment of numerous microservices. Furthermore, devel-
opers need to consider microservices' backward com-
patibility, and microservices upgrading with minimum
effort and application downtime. Flexible and main-
tainable delivery systems support these needs.

Characteristics of DevOps practices: We grouped in
this category, requirements, tips, and lessons learned
by practitioners when implementing DevOps practices
as well as deployment pipelines. The practitioners
agree that pipelines are one of the key parts in the
deployment of microservices because without good
construction of pipelines, long wait times for releases
and builds occur. To prevent it, it is necessary to apply
DevOps principles in building CI/CD pipelines, auto-
mation is paramount to successful deployment.

Microservices deployment challenges: The findings
related to this category are challenges those practi-
tioners identified when adopting a microservices-
based architecture. One of the challenges identified is
the release of a new version of a microservice, because
one or more microservices may depend on it. In addi-
tion, when adopting this architecture, there is a great
effort in the context of new tools and frameworks.
Microservices configuration is essential to achieve the
expected results.

Challenges of DevOps practices: In this category,
we grouped a set of challenges related to practices and
technologies related to DevOps practices. The con-
stant updating of tools and libraries makes develop-
ment difficult, as well as the lack of tools for specific
tasks that developers need to automate. For example,
monitoring has several challenges such as lack of com-
mercial options, lack of standardization, and lack of
faster learning curves.

Characteristics of building technologies: Technolo-
gies are an important part of software deployment and
construction; therefore, it is an aspect that practi-
tioners pay particular attention to. In this category, we
ND COMPUTER SOFTWARE Vol. 48 No. 8 2022

A MICROSERVICE DEPLOYMENT GUIDE 637

Table 3. String Adjusted to each database

Source String

ACM Digital Library [microservice* OR “microservice
architecture” OR “architecting
microservices”] AND [DevOps
OR development OR operations
OR “continuous integration” OR
CI OR “continuous deployment”
OR “continuous delivery” OR
CD OR migration]

Elsevier Science Direct (microservice OR “microservice
architecture”) AND (devops OR
development OR operations OR
“continuous integration” OR
“continuous deployment” OR
“continuous delivery” OR migra-
tion)

Springer Link (devops OR development OR
operations OR “continuous inte-
gration” OR “continuous deploy-
ment” OR “continuous delivery”
OR migration)

Wiley Online Library (devops OR development OR
operations OR “continuous inte-
gration” OR “continuous deploy-
ment” OR “continuous delivery”
OR migration)

Table 4. Inclusion and Exclusion Criteria

Database Link

IC-1: Studies published
between 2015 and 2020.

EC-1: It is an abstract,
workshop, opinion article,
presentations, book chap-
ters, or conference notes.

CI-2: Articles written in
English

EC-2: The study does not
focus on Microservices and
DevOps process deployment

IC-3: The title and abstract
contain information indicat-
ing that the full text could
answer at least one research
question.

EC-3: The study is an earlier
version of more recent work

IC-4: The full text answers at
least one research question
gathered characteristics mentioned by practitioners
for these technologies. Some examples are integration
servers such as Jenkins, GitLab CI, and Travis CI.
Also, as part of the findings of the category, we made
a comparison and characteristics of usage of each
technology.
PROGRAMMING AND COMPUTER SOFTWARE Vol.
Characteristics of containerization technologies:
The use of containerization technologies, such as
Docker, is one of the characteristics that popularized
the microservices architecture. Many studies recom-
mend the use of this technology, contrasting the
advantages with respect to virtual machines. Deploy-
ing microservices using containers takes significantly
less time than using virtual machines. The use of con-
tainers makes deployment a simple, fast, and plat-
form-independent process. The mentioned benefits
come from the fact that developers can automate the
construction and provisioning of containers using
scripts.

Characteristics of orchestration technologies: As a
result of the wide adoption of containerization tech-
nologies, solutions for their orchestration have
emerged. Technologies such as Kubernetes, Docker
Swarm, and Docker-compose, among others, provide
practitioners with various deployment benefits. This
category presents a comparison in terms effectiveness
of these technologies, and also compiles the experi-
ences that developers had with their adoption. Kuber-
netes for container orchestration is the most suitable
method for deploying microservices when the applica-
tion demands high availability and scalability, however
when it comes to security Kubernetes and Docker
Swarm do not provide complete isolation between
deployed containers, which introduces security issues.

Answer to research questions. What DevOps prac-
tices and approaches support the deployment of Micros-
ervices? The studies mentioned the DevOps practices
of Continuous Integration (CI), Continuous Delivery
(CD), Continuous Deployment and Monitoring.
However, some studies did not directly mention the
use of DevOps practices but used the processes and
activities of these practices. Fig 4 shows the practices
reported and related articles. It is worth noting that
some studies mentioned more than one practice.

What technologies do DevOps practices use to deploy
Microservices? We found several technologies for the
construction and deployment of microservices. Figure
5 presents the ten most frequently reported technolo-
gies.

Studies mentioned Docker, a containerization
technology, 16 times. The literature compares con-
tainers with other similar technologies such as Virtual
Machines (VM), and in each comparison, the studies
concluded that the former provided more significant
benefits. The literature also highlights DockerHub as
a repository for container images.

Another important technology is Jenkins, a build-
ing technology used in CI/CD practices, mentioned
in the literature eight times. In contrast, the literature
only mentions once Circle CI and Travis-CI, which
are similar to Jenkins.

Among deployment and orchestration technolo-
gies, the literature mentions Kubernetes, Docker-
compose, and Docker Swarm. Kubernetes was the
48 No. 8 2022

638 NIÑO-MARTÍNEZ et al.

Fig. 2. Selection process.

Identification of new studies via databases and registers

Records identified from:
Databases (n = 5)

Registers (n = 2.839)

Records removed before screening:
Records marked as ineligible by

automation tools (n = 1.136)

Records screened
(n = 1.703)

Records sought for
retrieval

(n = NA)

Records assessed for
eligibility
(n = 203)

Records excluded
(n = 1.500)

Records not retrieved
(n = NA)

Records excluded
EC1 (n = 4)

EC2 (n = 178)

New studies included in
review

(n = 21)

Fig. 3. Meta-aggregation classification.

Microservices
deployment and

DevOps

Microservices
deployment

requirements

Microservices
deployment
challenges

Characteristics of
DevOps practices

Characteristics of
building

technologies

Characteristics of
containerization

technologies

Characteristics of
orchestration
technologies

Challenges of
DevOps practices

Considerations
for Deploying
Microservices

Precautions when
deploying

microservices

Deployment
technologies
most used because it provides significant benefits in
systems with many microservices. Finally, the litera-
ture also mentions GitHub and Gitlab four and three
times, respectively.

What challenges does the literature report regard-
ing the adoption of DevOps practices in the deploy-
ment of microservices?

Publishing and upgrading microservices: Updating
and publishing a new microservice version is a signifi-
cant challenge, developers have to be careful since a
microservice may depend on many others [21].
In addition, service discovery is a challenging aspect
affected by upgrading a new version of a microservice
and deploying it [24].

Technologies and tools required for building and
deploying microservices: Developers make a great
effort to adopt new tools and frameworks for each
practice that they implement [27]. It is crucial to
choose the right tools to protect the DevOps
approach; otherwise, the rollback or tool change is
very costly in time and effort [28]. Developers must
perform careful initial configuration of the tools as this
will allow correct automation [18]. Constant updates
of libraries and tools make development and mainte-
nance difficult.

Monitoring of a microservices architecture: The
challenges that practitioners must face are the lack of
commercial monitoring options, lack of standardiza-
tion, and lack of faster learning curves [42].

What lessons does the literature report for successful
microservices deployment? We grouped the lessons
PROGRAMMING A
learned into two main topics: Solid architectural foun-
dations and Attention to DevOps principles.

Solid architectural baseline: A long and scalable
system requires a good architectural foundation that
supports DevOps [31]. Every change in the architec-
ture imposes new requirements on the delivery system
and the implementation of new components and tech-
nologies [33]. Backward compatibility between micro-
services, separation of domains, and responsibilities
for each service helps to prevent cross-configuration
and keep services running smoothly.

Attention to DevOps principles: Applying DevOps
principles in building CI/CD pipelines makes them
leaner and more robust. Principles such as automation
in all processes (integration, testing, deployment,
analysis, and monitoring) are key to ensuring system
reliability [26]. Good design and implementation of
deployment pipelines allow rapid error detection [28].
Maintenance and updating of pipelines should take
priority over code development. When problems arise,
it is important to centralize error handling, in order to
reduce the work of developers and operators. System
monitoring should be f lexible and scalable.

3.2.2. Gray literature review. We conducted a gray
literature review to complement the mapping findings.
For the review, we considered books, and electronic
resources focused on the topics of DevOps, microser-
vices deployment, and associated technologies.
We searched the resources using the search engines
Google Scholar, Google Books, and Google. We used
these three since we aimed to have as much informa-
tion as possible. In addition, we applied the snowball-
ND COMPUTER SOFTWARE Vol. 48 No. 8 2022

A MICROSERVICE DEPLOYMENT GUIDE 639

Fig. 4. Practices mentioned by study.

Monitoring
[S1, S7, S11, S18, S19, S21]

Continuous Deployment
[S1, S7, S11, S18, S19, S21]

Implicitly mentioned
[S1, S7, S11, S18, S19, S21]

Continuous Integration and
Delivery Cl/CD

[S2, S3, S4, S6, S8, S9, S12,
S13, S15, S16, S17, S20]

2 4 6 8 10 12 140

Practices by study

Fig. 5. Technologies reported by the studies.

Grafana

Kibana

Logstash

AWS

Docker-compose

GitHub

Docker Hub

Docker

Kubernetes

Jenkins

2 4 6 8 10 12 14 16 180

Technologies reported
ing method [43], which consists of searching for the
material cited or referenced in the mapping articles.
The steps carried out for the selection of the resources
were as follows: For the selection of books, the process
consisted of reading the table of contents, and the
chapters that corresponded to the deployment of
microservices or some DevOps practice related to
microservices. For the selection of electronic
resources such as company blogs, standards, and tech-
nical documentation, we read the content to deter-
mine if it would be useful. We investigated each of the
resources to answer the research questions formulated
in the MSL, or at least to find information that con-
tributes to the findings.

Once we identified the resources, we continued
with the reading of the most relevant aspects. Follow-
ing a process similar to the meta-aggregation method
used in the mapping, we identified important ideas or
findings, and classify them according to their type.
Among the types identified are deployment patterns,
principles, practices, advantages, and disadvantages of
technologies and resources.

3.3. Design and Development

In the design and development phase, we per-
formed a series of activities, these activities consisted
of grouping and classifying the information obtained
from the white and gray literature reviews. We focus on
the implementation modeling process of a microser-
vices architecture, aiming to provide an order to the set
of tasks and activities that we identified in previous
phases. Finally, using the modeling and the informa-
tion obtained, we integrated the microservices deploy-
PROGRAMMING AND COMPUTER SOFTWARE Vol.
ment guide, which we structured according to the
modeling phases, having as content the related activi-
ties in each phase.

3.4. Demonstration and Evaluation

The demonstration aims to use the artifact to solve
one or more instances of the problem. To achieve it,
the authors propose certain approaches such as exper-
imentation, simulation, case study, or other appropri-
ate activity. Once performed the demonstration is
needed to observe and measure how well the artifact
supports a solution to the problem. However, given the
complexity, the amount of time, personnel, and
resources involved in building a microservices archi-
tecture large enough to be applied as a case study, as
well as the number of case studies that would be
needed to have deterministic results, it was decided
not to include this phase in the scope of this work. For
the evaluation of the guide, we decided to use another
approach and analyze the evaluation method that best
suits our problem, so far, we are considering using the
work of Garousi et al. [44] and focusing on the evalu-
ation of quality for technical software documents, thus
the application of the evaluation is planned as future
work.

3.5. Communication

As a part of the communication phase, we commu-
nicated the importance of the problem through the
48 No. 8 2022

640 NIÑO-MARTÍNEZ et al.

Fig. 6. Microservice architecture adoption process.

SPEM Microservice Architecture Adoption Process

Microservice
architecture

adoption process

Architecture
design

Deployment and
construction

preparation for
services

Services
construction

<<includes>>
paper publication Microservice Deployment: A Sys-
tematic Mapping Study [15]. For the artifact commu-
nication, its utility, and effectiveness we present the
current paper, and we are developing a website to pub-
lish the guide so it could be accessible for the practi-
tioners.

4. PROPOSED DEPLOYMENT GUIDE
The guide works as a path where practitioners can

identify their starting point and gradually adopt prac-
tices and strategies for microservices deployment. The
guide includes practices, patterns [45], technologies,
and tips found in the literature. The guide organizes
possible decisions according to the phases of the
microservices deployment process. Organizations
interested in adopting the MSA can follow the guide,
in this way, the person in charge of design or deploy-
ment can consult the practices and strategies recom-
mended for each specific phase. The intention of
showing the decisions in a modular way is that the
managers can consult the parts they need, without the
need to read the whole guide, or if practitioners have
already managed to adopt some practices, they can
find additional information that allows them to
improve their current process.

We used SPEM 2.0 (Software & Systems Process
Engineering Metamodel) for the modeling of the
guide, it is a standard for defining software processes.
SPEM uses the UML (Unified Modeling Language)
notation, which provides components that allow the
standardized representation of methods, life cycles,
roles, activities, tasks, and work products used in Soft-
ware Engineering. The main process consists of three
phases. Each phase can have different iterations, an
iteration is a set of activities performed iteratively, and
each activity has one or many tasks needed to com-
plete the activity. Due to the time involved in having a
platform that supports the microservices architecture,
practitioners can perform all these activities iteratively
PROGRAMMING A
and incrementally as the project develops, thus adding
value to the deployment process as the project and its
needs grow.

The first phase corresponds to the architectural
design, separating the problem domain, identifying
the required microservices, the communication style
between them, and the deployment method for
orchestrating the microservices. The second phase
presents the preparation of the development environ-
ment for each microservice; the related activities in the
construction; integration and delivery of each service;
and finally, the strategies for delivery and observability
of the microservices in the production environment.
The third and last phase, covers microservice con-
struction, following the design and platform created in
the previous phases. Figure 6 describes the relations
between these phases. The following is a description of
the sections that make up the guide as well as the
related activities and tasks.

4.1. Deployment Design

This section of the guide covers the design and
deployment planning iteration, which has four main
activities for those responsible for the design and
implementation of the system. Each activity has an
output that serves as input for the next task, the first
activity is the selection of the deployment strategy, fol-
lowed by the selection of technologies, and finally, the
last two activities, possibly executed in parallel, corre-
sponding to the design of configurable services, and
the design of observable services can.

The activities described in this section contain the
following information: Name, Roles in charge,
Description, List of identified methods or patterns,
and Recommendations. Each identified pattern has
the following properties: Characteristics, Advantages,
Disadvantages, and Technology. These activities are
described in figure 7.

4.2. Configuration Management and Development
Environment

This section encompasses the Iteration Delivery
Environment Preparation activity for the preparation
of the deployment pipeline. This activity is very
important since it is the basis that will allow the imple-
mentation of a deployment pipeline, the person in
charge of the deployment has the task of implementing
a set of practices and technologies that allow the con-
trol of the changes made in the service’s code, as well
as the automation of the processes for the construction
of services. Figure 8 shows the activities implemented,
among these are the Implementation of version con-
trol, Establishment of development guidelines, Imple-
mentation of patterns for source code branch manage-
ND COMPUTER SOFTWARE Vol. 48 No. 8 2022

A MICROSERVICE DEPLOYMENT GUIDE 641

Fig. 7. Design iteration and deployment planning.

SPEM Design iteration and deployment planning

Deployment design and
planning

Selection of the
deployment

strategy

Selection of
infrastructure
technologies

Design of
configurable

services

Design of
observable

services

Responsible for
system design

and
implementation

Microservice
deployment

guide

Deployment
pattern

decision

Specification of
technologies to be

used

Selection
strategy of

configuration

Selection strategy
for obervability

<<performs>><<includes>>
ment, implementation of unit tests, and automation of
the build and test processes.

4.3. Deployment Pipeline

This section of the guide presents DevOps activities
related to Continuous Integration and Continuous
Delivery practices. The section incorporates two
activities from the iteration phase of the deployment
pipeline: the preparation of the built environment, and
the preparation of the delivery environment. These
activities are fundamental to constantly building and
releasing microservices, a key aspect of successfully
implementing MSA. The section features recommen-
PROGRAMMING AND COMPUTER SOFTWARE Vol.

Fig. 8. Developmen

SPEM Development environment setup

Development
environment
preparation

Implementation of
version control

Implementation of
pattern for managing
source code branches

Development
guidelines

establishment

Microservices
Deployment

Guide

System
Deployment

Manager

Version control
repository

configuration

Version control
repository

Development
environment

<<performs>>

<<implements>>
dations, technologies, and features for each task. The
first activity corresponds to the practice of Continuous
Integration, this activity concerns the implementation
of a continuous integration system; automation of the
compilation process; implementation of unit and
acceptance tenting; implementation of code analysis
and generation of binaries; and packaging artifacts.
Figure 9 presents the relations between the tasks. The
second activity, focused on the Continuous Delivery
practice, concerns the tasks of environment configura-
tion; implementation of smoke tests; implementation
of manual tests; acceptance or performance tests; and
deployment and release to a production environment.
These tasks are shown in Fig. 10.
48 No. 8 2022

t environment setup.

Automation of the
construction and

testing process

Implementation
of unit tests

Guidelines for
branch

management

Guidelines for the
development of

services

Unit test
suite

Source code for each
service

Automation
scripts

642 NIÑO-MARTÍNEZ et al.

Fig. 9. Construction environment setup.

SPEM Construction environment setup

Construction
environment

setup

Implement
automated

compilation
process

Generation of binaries
and packaged artifacts

Implementation
of unit and

acceptance tests

Implementation
of CI system

Implementation
of code analysis

System
Deployment

Manager

Microservice
deployment

guide

Compiled or
packaged code

binaries

CI server

Continuous
integration

server
configuration

Test reports

Code
analysis
report

Packaging of
ready-to-deploy

binaries

<<performs>>
<<implements>>
4.3. Infrastructure Management

and System Observability

This section presents the tasks that correspond to
DevOps culture practices, such as Infrastructure as
Code and GitOps. Here we present the description of
these practices, the description of the existing technol-
ogies, as well as good practices found in the literature
for their correct implementation. In addition, the last
section presents the practices we found in the litera-
ture to achieve adequate observability of the services
deployed in a production environment. Figure 11
introduced the tasks of the section.
PROGRAMMING A

Fig. 10. Delivery e

SPEM Delivery environment setup

Delivery
environment

setup

Environment
configuration

System
Deployment

Manager

Microservice
deployment

guide

Test
environment
configuration

Production
environment
configuration

Successful
smoke test

report

<<performs>>
<<implements>>
5. CONCLUSION AND FUTURE WORK
This paper presented the current results of a project

to build a deployment guide for applications with a
microservices architectural style. To this end, we con-
ducted a systematic mapping study to identify the
practices, tools, technologies, activities, and recom-
mendations used in microservices deployment, we
also complemented the information found with a gray
literature review. We integrated into the guide all the
elements and models found.

As for future work, we plan to perform the evalua-
tion phase of the DSRM methodology. This phase is
for analyzing the guide and related artifacts, to know if
they meet the intended objectives. To perform the
ND COMPUTER SOFTWARE Vol. 48 No. 8 2022

nvironment setup.

Implementation
of smoke testing
in environments

Implementation
of manual,

acceptance or
performance

tests.

Deployment
and release to

production
environment

Packaged
source code

Successful
test report

System
deployed in
production

environment

A MICROSERVICE DEPLOYMENT GUIDE 643

Fig. 11. Infrastructure management.

SPEM Iteration infrastructure management

Iteration
infrastructure
management

Implementation
of the

infrastructure as
code

Infrastructure
versioning with

GitOps

Microservice
deployment

guide

System
Deployment

Manager

Infrastructure
automation

scripts

Infrastructure
versioning

Deployment
pipeline for system

infrastructure

<<implements>> <<performs>>
evaluation of the guide we intend to use the work of
Garousi et al. [44] for the evaluation of the use and
quality of software technical documentation.

The present version of the artifact does not cover
organizational aspects of the DevOps culture. To
obtain the benefits of a DevOps culture, organizations
not only have to adopt technologies and practices, but
they also have to adopt an organizational and cultural
base, driven by the highest levels of the organization.
Therefore, as future work, the guide will incorporate
the organization of effective teams for microservices
deployment. In this way, the work would bring addi-
tional value to organizations and to all those who seek
to adopt a DevOps culture.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES
1. Mauro, T., Adopting microservices at Netflix: lessons

for architectural design, nginx blog, 2015.
https://www.nginx.com/blog/microservices-at-net-
flix-architectural-best-practices/. Accessed May 10,
2021.

2. Rewriting Uber Engineering: the opportunities micros-
ervices provide Uber Engineering Blog.
https://eng.uber.com/building-tincup-microservice-
implementation/. Accessed May 10, 2021.

3. Ihde, S., From a monolith to microservices + REST:
the evolution of LinkedIn’s service architecture, Mar.
2015. https://www.infoq.com/presentations/linkedin-
microservices-urn/. Accessed Mar. 22, 2022.

4. Calcado, P., Building products at SoundCloud – part I:
dealing with the monolith SoundCloud backstage blog,
June 11, 2014. https://developers.sound-
PROGRAMMING AND COMPUTER SOFTWARE Vol.
cloud.com/blog/building-products-at-soundcloud-
part-1-dealing-with-the-monolith. Accessed Mar. 22,
2022.

5. Lewis, J. and Fowler, M., Microservices, Mar. 25,
2014. https://martinfowler.com/articles/microser-
vices.html. Accessed Nov. 16, 2021.

6. Martin, R.C., Clean coder blog, May 8, 2014.
https://blog.cleancoder.com/uncle-
bob/2014/05/08/SingleReponsibilityPrinciple.html.
Accessed Jan. 26, 2022.

7. Newman, S., Building Microservices, O’Reilly Media,
2015.

8. Indrasiri, K. and Siriwardena, P., Microservices for the
Enterprise, Apress, 2018.

9. Olszewska, J.I., IEEE Standard for DevOps: Building
Reliable and Secure Systems Including Application Build,
Package, and Deployment: IEEE Standard 2675-2021,
2021.

10. Richardson, C., Microservices Patterns: with Examples
in Java, Simon and Schuster, 2018.

11. Fritzsch, J., Bogner, J., Wagner, S., and Zimmermann, A.,
Microservices migration in industry: intentions, strate-
gies, and challenges, Proc. IEEE Int. Conf. Software
Maintenance and Evolution ICSME 2019, Cleveland,
2019, pp. 481–490.
https://doi.org/10.1109/ICSME.2019.00081

12. Bruce, M. and Pereira, P.A., Microservices in Action,
Manning Publications Co., 2018.

13. Shahin, M., Ali Babar, M., and Zhu, L., Continuous
integration, delivery and deployment: a systematic re-
view on approaches, tools, challenges and practices,
IEEE Access, 2017, vol. 5, pp. 3909–3943.
https://doi.org/10.1109/ACCESS.2017.2685629

14. Peffers, K., Tuunanen, T., Rothenberger, M.A., and
Chatterjee, S., A design science research methodology
for information systems research, Manag, J. Inf. Syst.,
2007, vol. 24, no. 3, pp. 45–77.
https://doi.org/10.2753/MIS0742-1222240302
48 No. 8 2022

644 NIÑO-MARTÍNEZ et al.
15. Niño-Martínez, V.M., Ocharán-Hernández, J.O.,
Limón, X., and Pérez-Arriaga, J.C., Microservices de-
ployment: a systematic mapping study, Proc. 9th Int.
Conf. in Software Engineering Research and Innovation
(CONISOFT), 2021, pp. 24–33.

16. Debroy,V., Miller, S., and Brimble, L., Building lean
continuous integration and delivery pipelines by apply-
ing devops principles: a case study at varidesk, Proc.
26th ACM Joint Meeting on European Software Engineer-
ing Conf. and Symp. on the Foundations of Software Engi-
neering ESEC/FSE 2018, Lake Buena Vista, FL, 2018,
pp. 851–856.
https://doi.org/10.1145/3236024.3275528

17. Eismann, S., Kistowski, J.V., Grohmann, J., Bauer, A.,
Schmitt, N., and Kounev, S., TeaStore – a micro-ser-
vice reference application, Proc. 4th IEEE Int. Work-
shops on Foundations and Applications of Self* Systems
(FAS*W) 2019, Umea, 2019, pp. 263–264.
https://doi.org/10.1109/FAS-W.2019.00073

18. Fan, C.Y. and Ma, S.P., Migrating monolithic mobile
application to microservice architecture: an experiment
report, Proc. 6th IEEE Int. Conf. on AI & Mobile Services
(AIMS), Honolulu, 2017, pp. 109–112.
https://doi.org/10.1109/AIMS.2017.23

19. Grobmann, M. and Ioannidis, C., Continuous integra-
tion of applications for onos, Proc. IEEE Conf. on Net-
work Softwarization (NetSoft), Paris, 2019, pp. 213–217.
https://doi.org/10.1109/NETSOFT.2019.8806696

20. Kang, H., Le, M., and Tao, S., Container and micros-
ervice driven design for cloud infrastructure DevOps,
Proc. IEEE Int. Conf. Cloud Engineering IC2E 2016 Co-
located with 1st IEEE Int. Conf. Internet-of-Things De-
sign Implementation, IoTDI 2016, Brilin, 2016, pp. 202–
211.
https://doi.org/10.1109/IC2E.2016.26

21. Kargar, M.J. and Hanifizade, A., Automation of re-
gression test in microservice architecture, Proc. 4th Int.
Conf. on Water Research ICWR 2018, Tehran, 2018, pp.
133–137.
https://doi.org/10.1109/ICWR.2018.8387249

22. Rajavaram, H., Rajula, V., and Thangaraju, B., Auto-
mation of microservices application deployment made
easy by rundeck and kubernetes, Proc. IEEE Int. Conf.
Electron. Comput. Commun. Technol. CONECCT 2019,
Bangalore, 2019, pp. 3–5.
https://doi.org/10.1109/CONEC-
CT47791.2019.9012811

23. Sarita, N. and Sunil, S., Transform monolith into mi-
croservices using docker, Proc. Int. Conf. Int. Conf. on
Computing, Communication, Control and Automation
(ICCUBEA) ICCUBEA 2017, Pune, 2017, pp. 1–5.
https://doi.org/10.1109/ICCUBEA.2017.8463820

24. Singh, V. and Peddoju, S.K., Container-based micros-
ervice architecture for cloud applications, Proc. IEEE
Int. Conf. on Computing, Communication and Automa-
tion ICCCA 2017, Greater Noida, 2017, pp. 847–852.
https://doi.org/10.1109/CCAA.2017.8229914

25. Hakli, A., Taibi, D., and Systa, K., Towards cloud na-
tive continuous delivery: an industrial experience re-
port, Proc. 11th IEEE/ACM Int. Conf. on Utility and
Cloud Computing Companion, UCC Companion 2018,
Zurich, 2018, pp. 314–320.
https://doi.org/10.1109/UCC-Companion.2018.00074
PROGRAMMING A
26. Hasselbring, W. and Steinacker, G., Microservice ar-
chitectures for scalability, agility and reliability in e-
commerce, Proc. IEEE Int. Conf. on Software Architec-
ture Workshops ICSAW 2017, Gothenburg, 2017,
pp. 243–246.
https://doi.org/10.1109/ICSAW.2017.11

27. Richter, D., Konrad, M., Utecht, K., and Polze, A.,
Highly-available applications on unreliable infrastruc-
ture: microservice architectures in practice, Proc. IEEE
Int. Conf. Software Quality, Reliability and Security
Companion, QRS-C 2017, Prague, 2017, pp. 130–137.
https://doi.org/10.1109/QRS-C.2017.28

28. Soenen, T., et al., Insights from SONATA: implement-
ing and integrating a microservice-based NFV service
platform with a DevOps methodology, Proc. IEEE/IF-
IP Network Operations and Management Symp. NOMS
2018, Taipei, 2018, pp. 1–6.
https://doi.org/10.1109/NOMS.2018.8406139

29. Yang, D., et al., DevOps in practice for education man-
agement information system at ECNU, Procedia Com-
put. Sci., 2020, vol. 176, pp. 1382–1391.
https://doi.org/10.1016/j.procs.2020.09.148

30. Barna, C., Khazaei, H., Fokaefs, M., and Litoiu, M.,
Delivering elastic containerized cloud applications to
enable DevOps, Proc. 12th IEEE/ACM Int. Symp. on
Software Engineering for Adaptive and Self-Managing
Systems SEAMS 2017, Buenos Aires, 2017, pp. 65–75.
https://doi.org/10.1109/SEAMS.2017.12

31. Chen, H.M., Kazman, R., Haziyev, S., Kropov, V., and
Chtchourov, D., Architectural support for DevOps in a
neo-metropolis BDaaS platform, Proc. 34th IEEE
Symp. on Reliable Distributed Systems Workshop (SRD-
SW), Montreal, 2015, vol. 2016, pp. 25–30.
https://doi.org/10.1109/SRDSW.2015.14

32. Haselbock, S. and Weinreich, R., Decision guidance
models for microservice monitoring, Proc. IEEE Int.
Conf. on Software Architecture Workshops ICSAW 2017,
Gothenburg, 2017, pp. 54–61.
https://doi.org/10.1109/ICSAW.2017.31

33. Steffens, A., Lichter, H., and Döring, J.S., Designing a
next-generation continuous software delivery system:
concepts and architecture, Proc. Int. Conf. on Software
Engineering, Gothenburg, 2018, pp. 1–7.
https://doi.org/10.1145/3194760.3194768

34. Taibi, D., Lenarduzzi, V., and Pahl, C., Continuous ar-
chitecting with microservices and DevOps: a systematic
mapping study, Commun. Comput. Inf. Sci., 2019,
vol. 1073, pp. 126–151.

35. Bolscher, R. and Daneva, M., Designing software ar-
chitecture to support continuous delivery and DevOps:
a systematic literature review, Proc. 14th Int. Conf. on
Software Technologies, Prague, 2019, pp. 27–39.
https://doi.org/10.5220/0007837000270039

36. Waseem, M., Liang, P., and Shahin, M., A systematic
mapping study on microservices architecture in
DevOps, J. Syst. Software, 2020, vol. 170, p. 110798.
https://doi.org/10.1016/j.jss.2020.110798

37. Hyvärinen, H., Risius, M., and Friis, G., A block-
chain-based approach towards overcoming financial
fraud in public sector services, Bus. Inf. Syst. Eng., 2017,
vol. 59, no. 6, pp. 441–456.
https://doi.org/10.1007/s12599-017-0502-4
ND COMPUTER SOFTWARE Vol. 48 No. 8 2022

A MICROSERVICE DEPLOYMENT GUIDE 645
38. Tello-Rodríguez, M., Ocharán-Hernández, J.O.,
Pérez-Arriaga, J.C., Limón, X., and Sánchez-García, Á.J.,
A design guide for usable web APIs, Program. Comput.
Software, 2020, vol. 46, no. 8, pp. 584–593.
https://doi.org/10.1134/S0361768820080241

39. Chen, L., Continuous delivery: overcoming adoption
challenges, J. Syst. Software, 2017, vol. 128, pp. 72–86.
https://doi.org/10.1016/j.jss.2017.02.013

40. Kitchenham,B., Budgen, D., and Brereton, P., Evi-
dence-Based Software Engineering and Systematic Re-
views, CRC Press, 2015.

41. Pearson, A., Robertson-Malt, S., and Rittenmeyer, L.,
Synthesizing Qualitative Evidence, Wolters Kluwer,
2011.

42. Tamburri, D.A., Miglierina, M., and Di Nitto, E.,
Cloud applications monitoring: an industrial study, Inf.

Software Technol., 2019, vol. 127, p. 106376.
https://doi.org/10.1016/j.infsof.2020.106376

43. Wohlin, C., Guidelines for snowballing in systematic
literature studies and a replication in software engineer-
ing, Proc. 18th Int. Conf. on Evaluation and Assessment in
Software Engineering EASE’14, London, 2014.
https://doi.org/10.1145/2601248.2601268

44. Garousi, G., Garousi, V., Moussavi, M., Ruhe, G., and
Smith, B., Evaluating usage and quality of technical
software documentation: an empirical study, Proc. 17th
Int. Conf. on Evaluation and Assessment in Software En-
gineering, Porto de Galinhas, 2013, pp. 24–35.
https://doi.org/10.1145/2460999.2461003

45. Valdivia, J.A., Lora-González, A., Limón, X., Cortes-
Verdin, K., and Ocharán-Hernández, J.O., Patterns re-
lated to microservice architecture: a multivocal litera-
ture review, Program. Comput. Software, 2020, vol. 46,
no. 8, pp. 594–608.
PROGRAMMING AND COMPUTER SOFTWARE Vol. 48 No. 8 2022

	1. INTRODUCTION
	2. RELATED WORK
	3. RESEARCH METHOD
	3.1. Problem Identification and Motivation
	3.2. Design the Objectives for a Solution
	3.3. Design and Development
	3.4. Demonstration and Evaluation
	3.5. Communication

	4. PROPOSED DEPLOYMENT GUIDE
	4.1. Deployment Design
	4.2. Configuration Management and Development Environment
	4.3. Deployment Pipeline
	4.3. Infrastructure Management and System Observability

	5. CONCLUSION AND FUTURE WORK
	REFERENCES

		2022-12-13T12:00:23+0300
	Preflight Ticket Signature

