
ISSN 0361-7688, Programming and Computer Software, 2022, Vol. 48, No. 8, pp. 781–787. © Pleiades Publishing, Ltd., 2022.
Optimization of ProVerif Programs for AKE Protocols
E. M. Vinarskiia,b,* (ORCID: 0000-0002-7328-0942)

and A. V. Demakova,** (ORCID: 0000-0001-6573-7925)
a Ivannikov Institute for System Programming, Russian Academy of Sciences,

ul. Solzhenitsyna 25, Moscow, 109004 Russia
b National Research University Higher School of Economics,

Pokrovskii bul’v. 11, Moscow, 109028 Russia
*e-mail: vinarskii@ispras.ru

**e-mail: demakov@ispras.ru
Received January 12, 2022; revised February 16, 2022; accepted March 22, 2022

Abstract—Cryptographic protocols are used to establish secure connection between agents who communi-
cate strictly in accordance with the rules specified by the protocol. To make sure that a newly designed cryp-
tographic protocol is cryptographically strong, various software tools are usually employed. However, an ade-
quate specification of a cryptographic protocol is generally represented as a set of requirements for sequences
of transmitted messages, including their format. The fulfillment of all these requirements leads to the fact that
the formal specification of a real-world cryptographic protocol becomes cumbersome and, therefore, diffi-
cult to analyze by formal methods. ProVerif is one of the intensively developed tools for formal verification of
cryptographic protocols. However, ProVerif often fails to analyze large protocols, i.e., it can neither prove the
security of the protocol nor refute it. In these cases, either the problem is approximated or equivalent trans-
formations of a program model in the ProVerif language are carried out to simplify the ProVerif model. In this
paper, we propose a technique to simplify ProVerif specifications for AKE protocols that use the ElGamal
encryption scheme. In particular, we define equivalent transformations that make it possible to construct a
ProVerif specification that facilitates the analysis for the ProVerif tool. Experimental results for the Need-
ham–Schroeder and Yahalom cryptoprotocols show that this approach is promising for automatic verifica-
tion of real-world protocols.

DOI: 10.1134/S0361768822080035

1. INTRODUCTION
Cryptographic protocols (CPs) are widely used in

modern networks. They guarantee authentication of
users, secrecy of session keys, etc. ProVerif is one of
the tools for formal verification of cryptoprotocols,
which is widely employed to check security properties
of practically important protocols, e.g., TLS 1.3 and
ARINC823 [1–3]. Due to a large number of require-
ments specified for cryptographic protocols, their
adequate formal models are very cumbersome, which
complicates their formal verification. However, if we
use certain features of ProVerif and carry out the anal-
ysis only with respect to some predefined security
properties (e.g., only with respect to secrecy of shared
session keys), then the awkwardness of the protocol
and, therefore, the complexity of the analysis can be
reduced. For ProVerif, this simplification can be car-
ried out using equivalent transformations (ETs), i.e.,
transformations that do not affect the adequacy of the
model while facilitating the analysis of the cryptopro-
tocol.

An encryption function is one of the main cryp-
tographic primitives. However, to construct an ade-

quate model that describes the encryption/decryption
operation, we need to supplement ProVerif with an
equation that relates these two operations; examples of
such equations are shown in Figs. 1 and 2. These equa-
tions can significantly complicate the ProVerif model
and, therefore, the verification of security properties
for this model. In this paper, we propose equivalent
transformations that simplify the ProVerif model with
encryption/decryption operations. We use the follow-
ing steps to optimize the ProVerif representation of
cryptographic protocols in order to facilitate the veri-
fication of their security properties.

Currently, the following two models are most
widely employed for formal verification of cryp-
tographic protocols.

• Symbolic model. Cryptographic primitives are
regarded as ideal black boxes modeled by function
symbols in a term algebra. All computations are car-
ried out in a fixed theory formed by functional sym-
bols and reduction rules (equations) over them. Mes-
sages are terms on these primitives. The attacker can
carry out computations only in the framework of the
781

782 VINARSKII, DEMAKOV

Fig. 1. ProVerify syntax.

termsM, N ::=

P, Q ::=

variable

name

output

input

nil

parallel composition

replication

restriction

destructor application

conditional

event

constructor application

x, y, z
a, b, c, k
f(M1,..., Mn)

let x = g(M1,..., Mn) in P else Q
if M = N then P else Q

M〈N〉.P
M(x).P

event(M).P

0

P | Q
!P
(νa)P

processes
Fig. 2. Standard symmetric encryption function.

fun Encrypt (bits tr ing, bits tr ing) : bits tr ing.

reduc forall mess : bits tr ing, key : bits tr ing

Decrypt (Encrypt (mess, key), key) = mess
fixed theory. Currently, the best symbolic solvers are
the Tamarin prover [4–6] and ProVerif [7–9].

• Provable security model. In this model, messages
are bit strings, cryptographic primitives are functions
of bit strings, and the attacker is any probabilistic Tur-
ing machine. The strength of a protocol is expressed in
terms of the strength of its primitives. Currently, the
most successful tool of this class is CryptoVerif [10].

In this study, we use ProVerif, which implements
the symbolic approach to CP verification. As an input,
ProVerif receives a model of a security protocol while
defining the actions of agents and specifying the
desired properties of the protocol. To describe agents,
a process algebra is used. ProVerif automatically trans-
lates processes into a system of Horn clauses and uses
an algorithm based on free choice of clauses from the
available set to determine whether a certain statement
holds in a given rewriting system (theory). If there is
no such inference, then the security property is con-
sidered proved. If the inference exists, then the prop-
erty may not be strong. There is no guarantee of its
weakness because Horn clauses can be applied
infinitely often, which is an approximation of the
cryptoprotocol; as a result, the inference can corre-
spond to a false attack [7, 8].

There are many papers devoted to optimization of
CP model representations for software verification
tools. In [5], two following approaches to facilitating
the proof of lemmas for CP models in the Tamarin
prover were proposed: (i) the use of source lemmas,
which allow one to limit the size of the model in which
solutions are sought, and (ii) the use of oracles, which
suggest a path of proving/refuting a lemma. We pro-
pose to use a standard mathematical method—equiv-
alent transformations—to simplify CP models. In [7],
a method of CP representation by Horn clauses (infer-
ence rules) was investigated: the resulting inference
rules were supplemented with the inference rules
defined for the attacker, and the final inference rules
formed a theory. The inference of a term signalizing
that the attacker knows the secret is regarded as a
PROGRAMMING A
threat. When optimizing the ProVerif model of a CP,
we first simplify the rewriting system. The following
steps are taken to optimize the ProVerif model.

1. The security properties are limited to the secrecy
of a session key.

2. The concept of ProVerif models equivalent with
respect to cryptoprotocol formulas is introduced.

3. Equivalent transformations of encryption func-
tions are proposed, and it is proved that the cryptopro-
tocol obtained by these transformations remains
equivalent to the original one in terms of the secrecy of
the session key.

4. Experiments on the Needham–Schroeder and
Yahalom protocols are carried out to demonstrate that
the proposed ETs do facilitate the analysis of the cryp-
toprotocol.

The paper is organized as follows. Section 2 intro-
duces basic definitions and demonstrates how Pro-
Verif translates a cryptoprotocol into a system of Horn
clauses. Section 3 describes the proposed equivalent
transformations. Section 4 presents results of the
experiments. Section 5 concludes the paper and out-
lines some directions for further research.

2. PROVERIF REPRESENTATION OF CPs
AND HORN CLAUSES

In this section, we briefly describe the syntax of the
ProVerif language. Figure 1 shows the grammar that
defines the rules for constructing terms and processes
in the ProVerif language; the complete description can
be found in [7].

Terms in ProVerif may consist of variables, identi-
fiers, constructors, and destructors. Constructors are
used to generate terms; destructors are partial func-
tions (not defined over all input data). For instance,
destructor let x = g(M1, …, Mn) in P else Q tries to com-
pute g(M1, …, Mn): in the case of a success, the result g
is written in variable x and process P is executed; oth-
erwise, process Q is executed. Action (va)P means that
process P has a random secret value a.

2.1. Representation of Encryption in ProVerif
We consider optimization of cryptoprotocols with

symmetric encryption. When modeling an encryption
scheme in ProVerif, the combination of constructor

 and destructor is generally used. Fig-
ures 2 and 3 show the ProVerif representation of
encryption schemes.

Encrypt Decrypt
ND COMPUTER SOFTWARE Vol. 48 No. 8 2022

OPTIMIZATION OF PROVERIF PROGRAMS 783

Fig. 3. Symmetric encryption function with an initialization vector.

fun Encrypt (bits tr ing, bits tr ing, bits tr ing) : bits tr ing.

reduc forall mess : bits tr ing, key : bits tr ing, iv : bits tr ing

Decrypt (Encrypt(mess, key, iv), key, iv) = mess

Fig. 4. Equation in the ProVerif language.

equation forall a1 : bits tr ing, a2 : bits tr ing;

Exp(Exp(g, a1), a2) = Exp(Exp(g, a2), a1).
The encryption scheme shown in Fig. 2 is called
the standard scheme. For this scheme, ProVerif gener-
ates the following Horn clauses:

• ⇒
, key));

• attacker(key) ⇒
.

The encryption scheme shown in Fig. 3 is called
encryption with an initialization vector. This scheme
generates the following Horn clauses:

• ⇒
;

• attacker(key)

2.2. ElGamal Encryption Scheme

In this study, we assume that computations are car-
ried out in group G, where g is a generating element in

G [11]. Figure 4 shows ProVerif equation
for group G. The ElGamal encryption scheme [11]
allows a symmetric encryption key to be transferred to
another party in encrypted form. Let us describe the Pro-
Verif representation of the ElGamal scheme. Suppose

that the cryptosystem consists of client and

server , where x (y) is a long-term private key

of the client (server), while () is a long-term public
key of the client (server). Suppose that k is a symmet-
ric key generated on the client side that needs to be
safely passed to the server. Then, the client generates a

random a ∈U G, computes s = k ⋅ (gy)a, and sends the

following message to the server:

The server receives s and computes k = s ⋅ (ga)–y =

k ⋅ gya ⋅ g–ya = k. Thus, the server obtains the symmetric
encryption key k sent by the client.

The ElGamal encryption scheme in the ProVerif
language can be implemented using constructor

 and destructor (see Fig. 5). This
scheme is represented by the following Horn clauses,

where is the module of an elliptic curve:

•attacker(key) attacker(gy) attacker(vCurveN) ⇒
;

∧() ()attacker mess attacker key
((attacker Encrypt mess

((,))attacker Encrypt mess key ∧
()attacker mess

∧ ∧() () ()attacker mess attacker key attacker iv
((, ,))attacker Encrypt mess key iv

((, ,))attacker Encrypt mess key iv ∧ ∧
() ()attacker key attacker mess

=() ()
x y y xg g

(,)
xClnt x g

(,)
yServ y g

xg yg

→
(,)

.

ag s

Clnt Serv

ModMult 0ModDiv

vCurveN

∧ ∧
((, ,))

yattacker ModMult key g vCurveN
PROGRAMMING AND COMPUTER SOFTWARE Vol.
•
attacker(a2) ⇒ attacker(a0).

2.3. Security Properties of Cryptographic Protocols

In this subsection, we consider the secrecy property
(reachability property [7]) of the key. In ProVerif, this
property is defined by formula ϕsec = attacker(key).

To check security property ϕsec = attacker(key),

ProVerif constructs a system of Horn clauses and tries

to deduce term . If the attacker managed

to deduce term , then this should be
interpreted as “the attacker may know key.” Other-

wise, if the attacker fails to deduce , then
“the attacker does NOT know key.” This approxima-
tion is due to the fact that each Horn clause can be
applied infinitely often, which can lead to false posi-
tives. However, the problem of checking the satis-

fiability of term is decidable (see [7]),
and the algorithm proposed in [7] proved to be effec-
tive in checking practically important protocols (see
[4–6]).

Suppose that π is a cryptoprotocol; then, is a

model of π in the ProVerif language and is
a system of Horn clauses constructed based on model

. By (), we denote a set of public (private)

names. Thus, the system of Horn clauses constructed
based on protocol π with respect to the capabilities of

the attacker is = = P() ∪
[{attacker(a[]) | a ∈ } ∪ {(Rn), (Rh), (Rl), (Rs)}],

where inference rules are

shown in Fig. 6 and term means that

message y was sent via channel x. System is
referred to as the inference rules generated by the
model of protocol π, or simply the theory of π.

Cryptoprotocol π is said to satisfy the secrecy prop-
erty ϕsec = attacker(key) if and only if ϕsec,

i.e., event is NOT inferable in theory

. Let us define theories of cryptoprotocols

that are equivalent with respect to formulas.

∧0 1 2 1()(, ,) ()attacker ModMult a a a attacker a ∧

()attacker key
()attacker key

()attacker key

()attacker key

π}

π} π}()P

π} 1 pub 1 priv

π5 π 1 15 , ,pub priv π}

1 pub

{(),(),(),()}Rn Rh Rl Rs
(,)message x y

π5

π 1 15 , ,pub priv
�

()attacker key
π 1 15 , ,pub priv
48 No. 8 2022

784 VINARSKII, DEMAKOV

Fig. 5. Equation in the ProVerif language.

fun ModMult (bits tr ing, bits tr ing, bits tr ing) : bits tr ing.

reduc forall a0 : bits tr ing, a1 : bits tr ing, a2 : bits tr ing;

ModDiv0(ModMult(a0, a1, a2), a1, a2) = a0.

Fig. 6. Horn clauses for the attacker.

(Rn)

(Rf)

(Rg)

(Rl)

(Rs)

attacker(b0[x])

For each public constructor f of arity n,

For each public destructor g,

attacker(x1) ∧ . . . ∧ attacker(xn) ⇒ attacker(f(x1, . . . , xn))

for each rewrite rule g(M1, . . . , Mn) → M in def(g),

attacker(M1) ∧ . . . ∧ attacker(Mn) ⇒ attacker(M)

attacker(x) ∧ . . . ∧ attacker(y) ⇒ attacker(x, y)

message(x, y) ∧ attacker(x) ⇒ attacker(y)
Definition. Suppose that ϕ is a formula, while π1

and π2 are cryptoprotocols; then, π1 ~ϕ π2 for

 ϕ if and only if ϕ.

3. EQUIVALENT TRANSFORMATIONS

In this section, we describe some equivalent trans-
formations of the ProVerif model that make it possible
to simplify the model of protocol π over public names

 and private names (). Our

experiments (see Section 4) show that, for an opti-
mized ProVerif model, the equivalent transformations
described here facilitate the verification of the secrecy
property for keys. For simplicity, we hereinafter write

 instead of .

3.1. Optimization in Encryption Scheme Representation

Let us prove that, if we check the security of a cryp-
toprotocol in ProVerif with respect to the secrecy
properties ϕsec defined in Subsection 2.3, then an

encryption scheme with an initialization value is
equivalent to the standard encryption scheme.

Suppose that is a cryptoprotocol that uses an

encryption scheme with initialization vector ; then,

 contains constructors/destructors shown in Fig. 2.
The corresponding system of Horn clauses for cryptopro-

tocol π is denoted by ; the theory of π, by .

By , we denote a model of cryptorotocol π in

which all constructors (Fig. 3) are replaced

by constructor (Fig. 2) and all destructors

 are replaced by destructor . The cor-

responding theory is denoted by . Then, the follow-

π 1 15
1, ,pub priv

� π 1 15
2, ,pub priv

�

pub1 priv1 π 1 15 , ,pub priv

π5 π 1 15 , ,pub priv

π ive

iv

π}
ive

π}()iveP π5
ive

π}
e

ivEncrypt
Encrypt

ivDecrypt Decrypt

π5
e

PROGRAMMING A
ing statement that theories and are equivalent
with respect to formula ϕsec = attacker(key) holds.

Proposition 1. Suppose that ∈ ; then,

 , i.e., ϕsec if and only if ϕsec.

Proof.

 Suppose that ϕsec holds, while ϕsec

does not. Then, term is inferable in the-

ory . Let us consider this inference ρ = r1, …, rn

(successive application of Horn clauses) in theory .
Inference ρ necessarily contains Horn clauses gener-
ated by constructors Encrypt and destructors Decrypt,
because, otherwise, similar inference ρ would exist in

theory .

Let us consider this inference ρ = r1, …, rn, where

rj is an application of Horn clause attacker(mess)
attacker(key) attacker(Encrypt(mess, key)). Rela-

tion ∈ implies that the attacker knows term

attacker(iv); therefore, inference ρ may contain Horn
clause attacker(mess) attacker(key) attacker(iv)
attacker(Encrypt(mess, key, iv)). Similarly, if inference
ρ contains an application of Horn clause
attacker(Encrypt(mess, key)) attacker(key)
attacker(mess), then Horn clause
attacker(Encrypt(mess, key, iv)) attacker(iv)
attacker(key) attacker(mess) can also be applied.

Thus, inference also exists in theory , i.e.,

 ϕsec does not hold, which is a contradiction.

 Suppose now that ϕsec; then, the fact that

 ϕsec is proved in a similar way.

Similar statements can be proved for other encryp-
tion schemes. Hence, in the following discussion, we

π5
ive

π5
e

vi 1 pub

π
v

5
ie

ϕsec
~ π5

e
π
v

5
ie
� π5

e
�

 5
π

ie
v

� 5
π

e
�

attacker key()

π
e

5

π
e

5

π
ive5

∧

vi 1 pub

∧ ∧

∧

∧ ∧

ρ 5
π

ie
v

π5
ive
�

⇐ π5
e
�

π5
ive
�

ND COMPUTER SOFTWARE Vol. 48 No. 8 2022

OPTIMIZATION OF PROVERIF PROGRAMS 785

Fig. 7. Scheme of the protocol with two symmetric session
keys.

processC(skC, pkC) =

processS(skS, pkS) =

new k1 : bitstring :

in(c, (g_a1 : bitstring, cms_k1 : bitstring, enc_mess1 : bitstring));

in(c, (g_a2 : bitstring, cms_k2 : bitstring, enc_mess2 : bitstring));

let g_pkS_al = Exp(pkS, a1) in
let cms_kl = ModMult(k1, g_a1) in

let g_pkS_a2 = Exp(pkS, a2) in
let cms_k2 = ModMult(k2, g_a2) in

let k1 = ModDiv0(cms_k1, Exp(g_a1, skS)) in
let mess1 = Decrypt(enc_mess1, k1) in

let k2 = ModDiv0(cms_k2, Exp(g_a2, skS)) in
let mess2 = Decrypt(enc_mess2, k2) in

let g_al = Exp(vBasePoint, a1) in
let enc_messl = Encrypt(mess1, k1) in
out(c, (g_a1, cms_k1, enc_mess1));

let g_a2 = Exp(vBasePoint, a2) in
let enc_mess2 = Encrypt(mess2, k2) in
out(c, (g_a2, cms_k2, enc_mess2));

new a1 : bitstring :

new k2 : bitstring :
new a2 : bitstring :

. . .

. . .

. . .

. . .

. . .

. . .

Fig. 8. Scheme of the protocol with one symmetric ses-
sion key.

processC(skC, pkC) =

processS(skS, pkS) =

new k : bitstring :

in(c, (g_a : bitstring, cms_k : bitstring, enc_mess : bitstring));

in(c, enc_mess2 : bitstring);

let g_pkS_a = Exp(pkS, a) in

let cms_k = ModMult(k, g_a) in

let g_pkS_a2 = Exp(pkS, a2) in

let cms_k2 = ModMult(k2, g_a2) in

let k = ModDiv0(cms_k, Exp(g_a, skS)) in

let mess1 = Decrypt(enc_mess1, k) in

let mess2 = Decrypt(enc_mess2, k) in

let g_a = Exp(vBasePoint, a) in

let enc_mess = Encrypt(mess1, k) in

out(c, (g_a, cms_k, enc_mess1));

let g_a2 = Exp(vBasePoint, a2) in

let enc_mess2 = Encrypt(mess2, k) in

out(c, enc__mess2);

new a : bitstring :

new k2 : bitstring :

new a2 : bitstring :

. . .

. . .

. . .

. . .

. . .

. . .
confine ourselves to the theories that use only stan-
dard encryption functions.

3.2. Using One Encryption Key for the ElGamal
Encryption Scheme

In this section, we propose equivalent transforma-
tions that make it possible to simplify models of cryp-
toprotocols that use symmetric encryption based on
the ElGamal scheme. Let one side of cryptoprotocol π
sends the other side encrypted messages mess1 on sym-

metric key k1 and encrypted messages mess2 on sym-

metric key k2. We consider the following secrecy prop-

erty of cryptoprotocol π: = attacker(k1).

Let us show that the scheme with two symmetric

session keys shown in Fig. 7 is equivalent to the
scheme with one symmetric session key k1 shown in

Fig. 8. The theory constructed on is denoted

by ; the theory constructed on , by . It is

required to prove that theories and are equiva-
lent with respect to formula ϕsec = attacker(k).

Proposition 2. .

Proof. Note that both the theories are defined over

the same namespace ∪ .

Suppose that ϕsec holds, while

does not. Then, term is inferable in the-

ory . Let us consider this inference ρ = r1, …, rn

sec
ϕ

1

1 2,k k

π}
1 2,

(),
k k

π5
1 2,k k π}

1()
k

π5
1k

π5
1 2,k k

π5
k

,1 25
π

k k
~

sec1ϕ 5
π

k

1 pub 1 priv

π5
1k
� π5

1 2,k k
� ϕ

1sec

()1attacker k

π5
1 2,k k
PROGRAMMING AND COMPUTER SOFTWARE Vol.
(successive application of Horn clauses) in theory .

The Horn clauses generated by theories and

 differ in that theory contains terms

, , Exp(g,

a2))), and , which are

absent in theory .

Thus, since inference ρ exists in theory

but does not exist in theory , ρ contains terms

, , Exp(g,

a2))), and , because oth-

erwise this inference would also exist in theory .

In this case, terms and

, Exp(g, a2))) can be inferred by

the attacker based on inference rule (Rh) from Fig. 6. Sim-

ilarly, if inference ρ contains term , then there

is term and there is infer-

ence = ρ[k1/k, k2/k]. Therefore,

does not hold, which is a contradiction.

Now, let us consider another simplification of the
ElGamal encryption scheme. Suppose that the client
uses symmetric encryption key kC passed to the server

by using the ElGamal scheme, while the server uses
symmetric encryption key kS passed to the client by

using the same scheme. We propose equivalent trans-
formations that make it possible to obtain a model that
uses only one symmetric encryption key. Let us denote

π5
k

π5 ()
k

π5
1 2,

()
k k π5

1 2,
()

k k

2((,))attacker Exp g a 2((attacker ModMult k
2((2,))attacker Encrypt mess k

π5
1()

k

πk k
5 1 2,

()

1()5
k
π

attacker Exp g a2((,)) 2((attacker ModMult k

attacker Encrypt mess k2 2((,))

πk
5 1()

attacker Exp g a2((,))

2((attacker ModMult k

attacker k1()

attacker Encrypt mess k2 2((,))

ρ π �
k

attacker k5 1

1() ()
48 No. 8 2022

786 VINARSKII, DEMAKOV

Fig. 9. Scheme of the Needham–Schroeder protocol with
three symmetric session keys.

processAli processBob

(ga1, k1 · pkB , 〈nonceA, pkA〉)a1

(ga2, k2 · pkB , 〈nonceA, nonceB〉)a2

(ga3, k3 · pkB , 〈nonceB〉)a3

pkB
a theory constructed on by and a the-

ory constructed on by . Then, the follow-
ing statement holds, which is proved in the same way
as Proposition 2.

Proposition 3. .

Thus, we have shown that checking the secrecy
property of a session key in a protocol with the
ElGamal encryption scheme that uses several session
keys can be reduced to checking the secrecy property
of the session key in a protocol that uses only one ses-
sion key. We have also shown that encryption schemes
with initialization vectors are equivalent to the stan-
dard encryption scheme for the ProVerif model.
In Section 4, we demonstrate how these results can be
used to optimize ProVerif code.

4. EXPERIMENTAL RESULTS

This section describes our experiments with the
Needham–Schroeder and Yahalom protocols, which
confirm the effectiveness of the proposed equivalent
transformations for ProVerif code of cryptoprotocols.

We used a modification of the Needham–Schro-
eder protocol shown in Fig. 9. The original scheme

,
()} C Sk k
π π

C Sk k
5

,

()}
Ck
π π

Ck5

,
5 C Sk k

π
~

sec
ϕ C π

Ck5
PROGRAMMING A

Fig. 10. Scheme of the Yahalom proto

processA(skA, pkA) processJ(s

(ga1, kAJ · pkJ)

(A, nA)

a

(〈A, k〉KBJ, 〈

(〈A, k, nA, nB〉KAJ, 〈A, k〉KBJ)
uses three session keys. We checked the secrecy prop-
erty of a session key, ϕsec = attacker(key). This scheme

was modified as follows. First, Theorem 1 was used for
reduction to the standard encryption function; then,
Theorems 2 and 3 were applied to obtain equivalent
ProVerif models with fewer inference rules. Next, we
ran ProVerif to check three versions of the models:
with three session keys, with two session keys, and
with one session key. All source codes of the experi-
ments are available online [12]. As a metric, we used
the number of rules used by ProVerif to prove the
secrecy formula of the session key, ϕsec = attacker(key).

As a result, ProVerif used 45800 rules for three ses-
sion keys, 3000 rules for two session keys, and
200 rules for one session key. Thus, we can see a signif-
icant gain when using the optimizations proposed in
this paper.

We conducted similar experiments with the Pro-
Verif model of the Yahalom protocol (the scheme is
shown in Fig. 10). We checked the secrecy property of
a session key, ϕsec = attacker(key). All source codes of

the experiments are available online [12]. We modified
this scheme in accordance with Propositions 2 and 3
to obtain the ElGamal encryption scheme with one
session key. Overall, ProVerif used 2600 rules for two
session keys and 200 rules for one session key. Thus,
again, we can see a significant gain from the optimiza-
tions proposed in this paper when proving the secrecy
property of the session key by using ProVerif.

5. CONCLUSIONS

In this paper, we have described some optimization
techniques for ProVerif models of cryptographic pro-
tocols. We have proposed several transformations of
the ProVerif model and proved that they are equivalent
with respect to the secrecy formula of the session key.
The effectiveness of these transformations has been
tested on implementations of the Needham–Schro-
eder and Yahalom protocols.
ND COMPUTER SOFTWARE Vol. 48 No. 8 2022

col with two symmetric session keys.

kJ, pkJ) processB(skB, pkB)

(ga2, kBJ · pkJ)
b

(B, 〈A, nA, nB〉KBJ)

nB〉k)

OPTIMIZATION OF PROVERIF PROGRAMS 787
In our future works, we intend to develop various
optimization techniques for other ProVerif constructs
and experiment on practically important protocols.

6. FUNDING

This work was supported by the Ministry of Education

and Science of the Russian Federation, grant no. 075-15-

2020-788.

REFERENCES

1. Blanchet, B., Symbolic and computational mechanized
verification of the ARINC823 avionic protocols, Proc.
30th IEEE Computer Security Foundations Symp. (CSF),
2017, pp. 68–82.

2. Bhargavan, K., Blanchet, B., and Kobeissi, N., Veri-
fied models and reference implementations for the TLS
1.3 standard candidate, Research Report RR-9040, In-
ria, 2017.

3. Bhargavan, K., Blanchet, B., and Kobeissi, N., Veri-
fied models and reference implementations for the TLS
1.3 standard candidate, Proc. IEEE Symp. Security and
Privacy (S&P), pp. 483–503.

4. Meier, S., Schmidt, B., et al., The TAMARIN prover
for the symbolic analysis of security protocols, Proc.

25th Int. Conf. Computer Aided Verification, 2013,
pp. 696–701.

5. Meier, S., Advancing automated security protocol veri-
fication, PhD Thesis, ETH Zurich, 2013.

6. Schmidt, B., Formal analysis of key exchange protocols
and physical protocols, PhD Thesis, ETH Zurich, 2012.

7. Blanchet, B., Modeling and verifying security protocols
with the applied pi calculus and ProVerif, Found. Trends
Privacy Secur., 2016, vol. 1, nos. 1–2, pp. 1–135.

8. Blanchet, B., Automatic verification of correspondenc-
es for security protocols, J. Comput. Secur., 2009,
vol. 17, no. 4, pp. 363–434.

9. Blanchet, B., Automatic verification of security proto-
cols in the symbolic model: The verifier ProVerif, Lect.
Notes Comput. Sci., 2012, vol. 8604, pp. 54–87.

10. Blanchet, B., CryptoVerif: A computationally sound
mechanized prover for cryptographic protocols, Proc.
Dagstuhl Seminar on Formal Protocol Verification Ap-
plied, 2007.

11. Elgamal, T., A public-key cryptosystem and a signature
scheme based on discrete logarithms, IEEE Trans. Inf.
Theory, 1985, vol. 31, no. 4, pp. 469–472.

12. Vinarskii, E., Proverif_code_optimisation.
https://github.com/vinevg1996/proverif_code_opti-
misation. Accessed October 24, 2021.

Translated by Yu. Kornienko
PROGRAMMING AND COMPUTER SOFTWARE Vol. 48 No. 8 2022

	1. INTRODUCTION
	2. PROVERIF REPRESENTATION OF CPs AND HORN CLAUSES
	2.1. Representation of Encryption in ProVerif
	2.2. ElGamal Encryption Scheme
	2.3. Security Properties of Cryptographic Protocols

	3. EQUIVALENT TRANSFORMATIONS
	3.1. Optimization in Encryption Scheme Representation
	3.2. Using One Encryption Key for the ElGamal Encryption Scheme

	4. EXPERIMENTAL RESULTS
	5. CONCLUSIONS
	REFERENCES

		2022-12-13T12:03:20+0300
	Preflight Ticket Signature

