
ISSN 0361-7688, Programming and Computer Software, 2022, Vol. 48, No. 3, pp. 181–189. © Pleiades Publishing, Ltd., 2022.
Russian Text © The Author(s), 2022, published in Programmirovanie, 2022, Vol. 48, No. 3.
3D Model Compression with Support
of Parallel Processing on the GPU

A. V. Nikolaeva,* (ORCID: 0000-0002-7194-2471), V. A. Frolova,b,** (ORCID: 0000-0001-8829-9884),
and I. G. Ryzhovab,*** (ORCID: 0000-0003-1613-3038)

a Moscow State University, Moscow, 1199991 Russia
b Keldysh Institute of Applied Mathematics, Russian Academy of Sciences,

Miusskaya pl. 4, Moscow, 125047 Russia
*e-mail: anton.nikolaev@graphics.cs.msu.ru

**e-mail: vfrolov@graphics.cs.msu.ru
***e-mail: ryzhova@gin.keldysh.ru

Received December 14, 2021; revised January 11, 2022; accepted January 16, 2022

Abstract⎯In this paper, we propose a method for 3D model compression with fast GPU-accelerated decom-
pression. This method applies on-the-fly decompression directly in the process of rasterization or ray tracing
and allows us to fit three to eight times more geometry into the same volume of GPU memory. For rasteriza-
tion, we implement two variants of decompression: via geometry and via mesh shaders. For ray tracing, we
use hardware acceleration with the Vulkan VK_KHR_ray_tracing_pipeline extension and propose a BVH
tree leaf caching technique, which speeds up rendering nearly twofold. The conclusions made in the process
of performance evaluation of the proposed method can be useful to design hardware support for 3D model
compression on future GPUs, because we ran into some hardware limitations of existing GPUs.

DOI: 10.1134/S0361768822030082

1. INTRODUCTION

The growing detalization of 3D models used for
rendering leads to the increase in the required amount
of memory. In off line rendering, there are cases where
scene data cannot be fully uploaded to GPU memory.
In real-time rendering, available memory is also lim-
ited: it is used not only for geometry but also for scene
textures, buffers, and textures that contain intermedi-
ate rendering results. Existing compression methods
allow one to decompress models only before upload-
ing them to VRAM, which reduces external memory
usage but does not reduce GPU memory consump-
tion.

2. EXISTING METHODS FOR 3D MODEL
COMPRESSION

Vertex data compression. Quantization of vertex
data (vertex attributes) is a widely used approach.
It carries out lossy compression based on the assump-
tion that the standard IEEE-754 f loating point repre-
sentation is redundant for most computer graphics
applications. In [1], the range of values from mini-
mum to maximum was divided into 2n levels, and each
value was rounded to one of the two nearest levels.
This approach requires storing only the minimum and

maximum values in the IEEE-754 representation and
n bits of data for each compressed value.

Most of the existing methods allow one to select
quantization bit counts individually for vertex posi-
tions, normals, and texture coordinates. Deltas can
also be quantized to achieve the same precision using
fewer bits. Values to compute deltas are chosen
depending on a compression algorithm. It is also pos-
sible to further compress the result by using entropy
coding [2].

Connectivity data compression. Generalized trian-
gle strips were one of the first approaches to connec-
tivity data compression. This approach combines the
triangle strip and triangle fan traversals and allows one
to add new triangles that do not share any vertex indi-
ces with the previous triangles. In this method, one of
three cases (restart, replace oldest, and replace mid-
dle) is associated with each index to specify the reuse
of vertices from previous triangles [2].

There is a large group of methods that implement
step-by-step surface compression by sequential addi-
tion of triangles while storing the traversal history.
Cut-Border [3] is an example of these methods. This
algorithm divides a 3D model into two—inner and
outer—parts, which contain processed and non-pro-
cessed triangles, respectively. On each iteration, one of
the triangles from the interface between these parts is
181

182 NIKOLAEV et al.
selected and one of six cases for it is determined. Each
case has its unique code; for some cases, an additional
parameter is also specified. The Edgebreaker algo-
rithm [4] belongs to the same group. It is based on tri-
angle traversal during which one of five symbols (C, L,
R, E, or S) is recorded for each triangle. At each step,
for a selected boundary edge, an untraversed triangle
containing this edge is processed. The symbol is cho-
sen depending on the location of the vertex of the tri-
angle opposite to the processed edge at the boundary
of the compressed region. Angle Analyzer [5] imple-
ments some ideas of Edgebreaker and Cut-Border: it
also uses five symbols (as Edgebreaker) to describe dif-
ferent cases. For instance, it introduces case J (when
two boundaries are connected) to store an additional
offset from the current vertex. This method can be
used for 3D models that contain both triangle faces
and quad faces, and it also provides slightly better
compression rate.

Valence-driven approaches are also popular. In these
algorithms, the traversal also begins with a triangle; then,
the boundary of the processed part is expanded, and
valences of vertices are stored. One of the first imple-
mentations of this approach was proposed in [6].
In that method, all vertices of the first triangle are
added to a list. Next, a vertex is selected from the list,
its outgoing edges are traversed, new vertices are added
to the list, and the valence of the current vertex is writ-
ten. Then, valences can be processed with arithmetic
coding to achieve higher compression rate. In certain
cases, this algorithm requires special symbols or addi-
tional vertices for its correct operation. In [7], this
approach was modified to improve compression effi-
ciency by using a more optimal traversal of the vertices
in the list, which makes it possible to avoid the fre-
quent use of vertex addition and special characters.

There are also progressive compression methods.
They use step-by-step detailing change by applying a
certain operation on a base model, which is much sim-
pler than the original one [8]. There are approaches
that use step-by-step merging of vertices [9] that share
the same edge (with edge splitting in the process of
decompression), approaches based on vertex removal
[10], etc. In [11], an approach that combines the com-
pression by gradual detailing change and the proce-
dural generation of models was proposed. In [12], a
spatio-temporal segmentation method for compres-
sion of animated 3D models was developed. In [13],
another approach to compress animated model
sequences under condition of constant connectivity
data was described. It was proposed to construct sim-
plified models, which are then used to obtain the
required element of the sequence. In [14, 15], existing
compression methods were considered and some gen-
eral directions, which correspond to those described
above, were determined.

In summary, all these approaches share the same
flaw (despite different ideas implemented): the impos-
PROGRAMMING A
sibility of large-scale parallelism in the process of
decompression because of the data dependency
between each previous and subsequent steps of
decompression. This implies that all these methods
are not quite suitable for direct decompression on
GPUs in the process of rendering, because the
speedup provided by the GPU is mostly due to highly
parallel computations.

BVH tree compression and geometry compression
for ray tracing. In ray tracing, there is a separate direc-
tion: BVH tree compression. It is used to speed up
intersection search because, in massive scenes, even
the BVH tree itself can require a significant amount of
memory, while its compact representation speeds up
ray tracing due to better cache usage [16, 17]. In [18],
a large number of existing methods for BVH tree com-
pression and geometry compression in ray tracing
applications were described. In addition, we can men-
tion several approaches, like, for example, hierarchical
quantization (where vertex attribute quantization
depends on the bounding volume of BVH tree leaves)
[19], compressed BVH with random access using delta
coding for indices [20], transformation of indexed
geometry into triangle strips, approaches with zero
memory cost for the tree [21, 22], etc. [18].

The main f law of these studies is that they investi-
gate compression only for ray tracing applications and
do not consider geometry compression for efficient
rasterization. In our study, this required a significant
modification of base algorithms. In addition, the use
of mesh compression in combination with hardware-
accelerated ray tracing on GPUs has not yet been
widely investigated.

3. PROPOSED METHOD

The main idea of the proposed algorithm is the
subdivision of a source 3D model into parts (meshlets)
with subsequent individual compression of each part.
Meshlets are groups of triangles such that, from each
triangle in a meshlet, another triangle can be reached
by traversal only between the group triangles that have
common edges. To improve the efficiency of compres-
sion, groups of vertices shared by two meshlets (here-
inafter, they are referred to as boundaries) are stored
separately, which makes it possible to avoid data dupli-
cation. The f lowchart of the proposed compression
method is shown in Fig. 1.

Delta quantization is used for boundary compres-
sion and compression of inner meshlet vertices. Con-
nectivity data of each meshlet are compressed using
the Edgebreaker algorithm [4]. A similar approach was
proposed in [23]; however, its authors used meshlets
with a significantly larger number of triangles, because
their main goal was to decompress only the part of a
3D model that is visible from the current position of
the camera. That allowed them to reduce resource
usage in the process of decompression. In addition,
ND COMPUTER SOFTWARE Vol. 48 No. 3 2022

3D MODEL COMPRESSION WITH SUPPORT 183

Fig. 1. Proposed compression method. Connectivity compression is separated from attribute compression, which uses quantiza-
tion from the meshlet bounding box.

Source model Subdivision

into meshlets (step 1)

Connectivity

data com-

pression using

Edgebreaker

(step 2)

Vertex attribute compression

using quantization (step 3)

Inner-vertex

attribute

quantization

(step 3)

Boundaries

Meshlets
the method [23] used Angle Analyzer for connectivity
data. In this work, we use short (less then 64)
sequences of triangles and focus on the possibility of
parallel decompression of a 3D model compressed
with the described method.

Our approach enables individual processing of each
meshlet, and the decompression of all meshlets can be
carried out in parallel. In the proposed approach, the
decompression results are not stored in memory but
are directly passed to graphics (or ray tracing) pipe-
line, so the model data stored in the GPU memory are
the same as those in the external memory. This is
important for steaming optimization, when the model
can be uploaded to the GPU memory directly from
the hard drive in background [24, 25].

Meshlet generation. The subdivision algorithm
used in this work is similar to the one proposed in [23].
It is based on the repeating execution of two iterations:
the selection of meshlet center triangles and the addi-
tion of other triangles to meshlets until the meshlets
from the previous iteration differ from the newly com-
puted ones. Centers of meshlets are uniformly distrib-
uted across the model before the first iteration. To add
triangles to meshlets, weight function (1) is used. This
function allows us to obtain regular-shaped meshlets,
which improves the ratio of the boundary vertex count
to the inner vertex count. In addition, this function is
used to create meshlets that have small differences
between normals of triangles and also have approxi-
mately the same number of vertices (which does not
exceed a certain threshold).

(1)

(2)

where is the number of triangles in the current
meshlet, is the average number of triangles per
meshlet, is the center of a triangle, cm is the center of
a meshlet, is the triangle normal, is the meshlet
normal, is the parameter that characterizes the

 + λ −

, = () (,)(,),m
t m m t m t m

a

FW C F P c c n n
F

 ≥

max

max

0, <
() =

, ,m

N N
C N

C N N

mF
aF

tc
tn mn

λ

PROGRAMMING AND COMPUTER SOFTWARE Vol.
importance of planarity and compactness, Nmax is the
maximum number of triangles per meshlet, and is
a constant that determines the contribution of the
constraint on the number of triangles per meshlet.

The main difference from the algorithm proposed
in [23] is the explicit constraint on the maximum
number of triangles per meshlet. It is introduced
because geometry shaders have certain limitations:
they require specifying the maximum number of gen-
erated triangles and impose a constraint on the total
weight of generated vertex attributes. Table 1 compares
the proposed weight function with the original one.
However, even with the modified function, the num-
ber of triangles in some meshlets still does not satisfy
the constraint, which is why these meshlets are divided
into two parts until the constraint is met.

Meshlet connectivity data compression. As men-
tioned above, the Edgebreaker algorithm is used for
meshlet compression. The meshlet boundary is con-
sidered already compressed; as the initial edge, the
first edge of the first boundary in the meshlet bound-
ary list is selected. The frequencies of the symbols
(C, L, R, E, and S) are also analyzed. Since the shape
of meshlets for any model depends mostly on the
weight function used for subdivision into meshlets, the
distribution of the symbols can be assumed constant.
This allows us to fix symbol codes. On test models, the
following distributions were obtained: 34–42% for R,
24–29% for C, 12–17% for E, 9–14% for S, and 5–
12% for L. Using Huffman coding, 2-bit codes for C,
R, and E and 3-bit codes for L and S are generated.
In some rare cases, these codes may prove not opti-
mal. However, the history data occupy less than 5% of
the total size of a compressed model (see Fig. 3), and
even in the worst case, memory usage is not significant
(less than 2.5% of the overall model size). For this rea-
son, we do not use arithmetic coding.

Vertex attribute compression. Vertex positions are
compressed by quantization. Absolute values are used
for the first and last vertices of each boundary, while
the other vertices use delta quantization. To reduce
memory usage for leading zeroes upon quantization
(in the binary representation), which occur because

mC
48 No. 3 2022

184 NIKOLAEV et al.

Table 1. Comparison between the subdivision made using the weight functions from [23] and the subdivision made using
the proposed function on the Stanford Dragon model

Function
The number of meshlets with the number of triangles from the specified range

[0, 32) [32, 64) [64, 72) >72

Proposed one 1276 18474 216 23

Version from [23] 1285 18435 232 38
deltas are compressed with the same number of bits as

absolute values, extra bits are added to each final value

per component. These bits specify one of two formats

for writing position of vector components: the quanti-

zation with full bit count n or the format storing only

m trailing bits, where m is an integer from ,

which is selected by iterating over all values to mini-

mize the size of the final model. Value m is the same

for all components of all vertex positions. If the opti-

mal value is not found, then it is set to n and the extra

bit is not added. Figure 2 shows an example for

and .

To compress normals, normal vectors are trans-

lated to spherical coordinates, which makes it possible

to store two values instead of three, because the radius

always has the unit length. Delta compression is not

used.

To compress texture coordinate, we use quantiza-

tion of absolute values. In this case, delta compression

with the coordinate representation described above

can also be employed. However, texture coordinates

require fewer bits as compared to vertex positions (for

the compression parameters used, each texture coor-

dinate is represented as two 12-bit values at most, as

compared to three values for each position with the

same or larger number of bits). Meanwhile, this

approach provides additional compression for them by

no more than a factor of 1.5 (on test models) while

increasing decompression complexity. That is why this

approach is not used.

[]−1, 1n

= 8n
= 4m
PROGRAMMING A

Fig. 2. Vertex position compression on three samples, using eigh
value. Components of the position vector upon quantization are
while high-order bits are bright-colored. On the right-hand side
are followed by blocks of four low-order and four high-order bit
4. DECOMPRESSION ON THE GPU

Rasterization using geometry shaders. For decom-
pression in the process of rasterization, geometry
shaders are used as a convenient tool available on
modern GPUs. Each geometry shader thread succes-
sively decompresses triangles of one meshlet. The
main disadvantage of this approach is the low perfor-
mance of geometry shaders, which is due to hardware
limitations. In most hardware GPU implementations,
triangles from the geometry shader cannot be sent to
rasterization one by one. First, a predefined number of
triangles should be written to L1 cache (in our case, it
is the maximum number of triangles per meshlet,
because all of them depend on each other); then, these
triangles are sent to rasterization. The size of L1 cache
is limited; with a large number of triangles in a mesh-
let, geometry shaders work with low GPU occupancy
(the GPU cannot run enough threads), which causes
a slowdown [26].

In addition, the projection of vertices onto the
screen space from the model space is usually carried
out through multiplying vertex coordinates by one or
several 4 × 4 matrices. In the case of model decom-
pression by means of the proposed algorithm, this
operation is executed after the complete decompres-
sion of a meshlet in the geometry shader and can be
carried out only by iterating over all vertices, which
reduces the performance.

However, despite the problems described above, in
the classic rasterization pipeline, there is no other
stage for decompressing the meshlets compressed by
the proposed method. Vertex and tessellation shaders
cannot emit more than one vertex in each invocation,
ND COMPUTER SOFTWARE Vol. 48 No. 3 2022

t bits for quantization and four bits to store a part of a quantized
 shown on the left-hand side. Low-order bits are dark-colored,

, the first three bits are controlling bits of each component. They
s (they are stored only if at least one bit in the block is not zero).

3D MODEL COMPRESSION WITH SUPPORT 185

Fig. 3. Model data upon compression (as a percentage of the initial model size) when using 64 triangles per meshlet. It can be
seen that the compressed meshlet attributes (orange rectangles), together with the rest of the compressed data, take up almost the
same amount of memory as the uncompressed attributes of the boundary vertices (with respect to which the quantization is per-
formed). Therefore, for 64 triangles in a meshlet, the proposed approach is well balanced. To further improve the compression
efficiency, it is required to increase the meshlet size, which reduces the decompression parallelism.

Model 1

Model 2

Model 3

Model 4

Model 5

Model 6

Boundary vertex attributes

Array of boundary indexes

Meshlet vertex attributes

Boundary data

Edgebreaker symbols

Meshlet data

5 10 15 20 250

Size as % of the initial model size
while each suqsequent vertex needs data from the pre-
vious one. In addition, tessellation not only imposes a
constraint on the number of vertices, it also limits
mutual arrangement of triangles in a meshlet. This
makes it difficult to develop an algorithm to find a sub-
division that meets these requirements for an arbitrary
model.

Rasterization using geometry shaders. A partial
solution to the above problems of decompression with
geometry shaders is the Vulkan API’s standard exten-
sion called mesh shaders. This extension was pre-
sented by NVIDIA; it is supported by the NVIDIA
Turing architecture and subsequent generations of
NVIDIA GPUs [27]. It modifies the classical graphics
pipeline by replacing all its stages before the rasterizer
with two programmed stages: task shaders and mesh
shaders.

In the proposed algorithm, the task shader carries
out a partial restoration of triangle vertex indices based
on the Edgebreaker traversal history. For symbol C,
which specifies the addition of a new vertex, it also
decompresses quantized deltas and specifies the indi-
ces of the vertices from which these deltas are com-
puted. Then, these indices and vertex descriptions
(position deltas, other attributes, and indices of previ-
ous vertices) are passed to the mesh shader.

The mesh shader runs with 16 threads per meshlet.
It decompresses boundary vertices in parallel (vertices
of each boundary can be processed only sequentially
because of delta compression; however, boundaries do
not depend on each other and are processed in sepa-
rate threads). Then, in one of the threads, global posi-
tions of inner vertices are generated based on the
already available absolute values at boundaries and the
deltas with vertex indices that are received from the
task shader. This operation is relatively simple (it
involves a small number of simple vector additions),
which is why it does not significantly reduce the effi-
ciency of parallel mesh shader execution. Upon com-
puting the absolute values, the parallel multiplication
PROGRAMMING AND COMPUTER SOFTWARE Vol.
by matrices is carried out in 16 threads. Finally, the
indices from the task shader and the generated coordi-
nates are written as the results of mesh shader execu-
tion.

Decompression in the process of ray tracing. For
decompression in the process of ray tracing, we use the
Vulkan standard extension—VK_KHR_ray_trac-
ing_pipeline—which adds support of acceleration
structures and introduces a new pipeline used for ray
tracing.

To find intersections with a compressed 3D model,
intersection shaders are used. As an accelerating struc-
ture, a set of axis-aligned bounding boxes (AABBs) is
used. Coordinates of AABB nodes are computed at the
application startup by using the compute shader,
which carries out a one-time decompression of the 3D
model and finds the minimum and maximum coordi-
nates of each meshlet along each coordinate axis.
In the intersection shaders, the index of a meshlet is
determined based on the index of the bounding box
the intersection with which is currently checked.
To check the intersection between a ray and a meshlet,
decompression is first carried out; then, the intersec-
tion of the ray with each triangle of the meshlet is
checked. If there are several intersections, then the
nearest one is selected. However, this implementation
has a very low performance. As compared to rasteriza-
tion (where each primitive and meshlet is processed
only once per frame), in ray tracing, the number of
rays is the main factor. Each ray requires the decom-
pression of the meshlet the intersection with which is
checked, which can be done only in one thread (in
VK_KHR_ray_tracing_pipeline, several threads can-
not be launched in the intersection shader). This prob-
lem is partially solved by caching the decompressed
meshlets (see below).

Caching for ray tracing acceleration. The main idea
of this optimization is based on a preliminary decom-
pression of a fixed number of meshlets by using com-
pute shaders. By varying the number of cached mesh-
48 No. 3 2022

186 NIKOLAEV et al.

Fig. 4. Comparison of decompression performance with
geometry shaders and mesh shaders (carried out on
NVIDIA RTX 2070 Mobile).

10

5

20

15

30

25

Number of triangles

500 000 1000 000 1500 000

Time, ms

Mesh shaders Geometry shaders

0

Fig. 5. Comparison of decompression performance
depending on the number of meshlets in the cache. Car-
ried out for 921 600 traced rays. Different colors are used
for different models.

40

60

20

100

80

160

120

140

Cached meshlets as %

of the total number of meshlets, %

20 40 60 10080

Decompression time, ms

0

0

00000000

000000

0

0

0

0000000000

Table 2. Analysis of the decompression performance limita-
tions in rasterization on the Blender Suzanne and Stanford
Dragon models. (Based on the NVIDIA Nsight Graphics
data [28].) The decompression time differs from that shown
in the results because, when measuring in Nsight, GPU
boost was disabled

Model Shader

Warps that cannot

launch due to lack

of L1 cache

Decompressi

on time

Suzanne Geom. 50.8% 1.25 ms

Suzanne Mesh 14.2% 0.54 ms

Dragon Geom. 77.5% 19.1 ms

Dragon Mesh 28% 7.13 ms
lets, we can find a balance between memory usage and
ray tracing performance.

Meshlets to be cached are selected by counting the
number of intersection shader launches for each
meshlet. The atomicAdd operation is used to incre-
ment the counter of intescections with the current
meshlet by one for each intersection check. Since the
direct obtention of these data for the current frame
requires extra computations, values from the previous
frame are used while assuming small changes between
the frames. Based on these values, the meshlets not
present in the cache are decompressed (they are writ-
ten instead of the meshlets that are no longer in the
cache). Then, the intersection shader checks the pres-
ence of the meshlet in the cache, and either the inter-
section with the already decompressed meshlet is
checked or the decompression is preliminarily carried
out.

Figure 5 shows the tracing performance versus the
cache size.

5. DISADVANTAGES OF THE PROPOSED
ALGORITHM

Most of the limitations of the proposed method are
due to the subdivision into meshlets. This algorithm
requires smoothing the majority (at least) of the nor-
mals of a 3D model; otherwise, the subdivision oper-
ation fails to find adjacent triangles, creating a lot of
small meshlets and reducing the efficiency of com-
pression. Another disadvantage of the meshlet subdi-
vision algorithm is its performance on models with
small sets of triangles that do not have common verti-
ces with the rest of the model. This reduces the effi-
ciency of compression: the description of the meshlet
does not change, whereas the number of triangles in it
PROGRAMMING A
decreases, causing an increase in the number of bits
per triangle.

6. ANALYSIS OF THE RESULTS

Compression efficiency evaluation. To evaluate the
efficiency of compression, it is reasonable to compute
the compression rate for each resulting component.

For vertex data, the quantization makes it possible
to reduce the amount of the data required for each ver-
tex from 256 bits (eight IEEE-754 floating-point val-
ues) to 76 bits (when using the following quantization
parameters: 12 bits per vertex position, 8 bits per nor-
mal, and 12 bits per texture coordinate), while the use
of the reduced bit count for the quantization of posi-
tion deltas provides an additional reduction in the
amount of these data by a factor of 1.23 to 1.34 (on test
3D models). This allows us to achieve the total size of
about 69 bits (the total amount of vertex data is
reduced by more than 3.7 times). In practice, storing
ND COMPUTER SOFTWARE Vol. 48 No. 3 2022

3D MODEL COMPRESSION WITH SUPPORT 187

Fig. 6. 3D models used for comparison.

Fig. 7. Size of the 3D model as a percentage of its initial size.

10

5

20

15

30

25

40

35

0
Stanford

Dragon

Stanford

Bunny

Material

Ball

Sponza Blender

Suzanne

Amazon

Lumberyard

Bistro

Draco, minimum compression rate

Draco, maximum compression rate

Corto

Proposed method
both the start and end points of the boundary slightly
reduces the compression efficiency (e.g., by a factor of
3.7 to 3.1 on test models).

For connectivity data, the Edgebreaker algorithm
makes it possible to use less then 3 bits (2.19–2.22 on
test models) per triangle, instead of 32 bits per each of
three vertices, thus enabling the compression by a fac-
tor of 32 and higher. The amount of additional data
depends on the number of meshlets and the number of
boundaries, which exceeds the number of meshlets by
an average factor of 2.9 (with each meshlet using an
average of 5.5 boundary indices) on test 3D models.
PROGRAMMING AND COMPUTER SOFTWARE Vol.
This results in approximately 400 bits of additional
data per meshlet. If we attribute the additional data to
the connectivity data, then the final result is approxi-
mately 11.63 bits per triangle on test models, which is
equivalent to an 8.25-fold compression.

Thus, depending on the volume of vertex data and
connectivity data in a 3D model, it is possible to
achieve a compression rate from 3.1 to 8.25. On the
test models where connectivity data occupies about
40% of the initial volume, the compression makes it
possible to reduce the amount of the required memory
by a factor of 4.26 to 4.35. It can be seen from Fig. 4
48 No. 3 2022

188 NIKOLAEV et al.

Fig. 8. Comparison of decompression times, carried out
on RTX 2070 Mobile for the proposed method and the
version without compression, as well as on Intel Core I7
10750H for the other methods as they do not support par-
allel decompression on the GPU.

Draco, minimum compression rate Corto

No compressionProposed method

STANFORD DRAGON AMAZON SPONZA

LUMBERYARD BISTRO

T
IM

E
,

M
S

7
7
.6

1
2

7
.2

9
2

.8

7
.4

6

2
.3

12
4

.8

3
1
.4

0
.6

0

0
.4

4

5
2

.8

5
.7

1

0
.5

7

Fig. 9. Comparison of decompression times (continua-
tion).

Draco, minimum compression rate Corto

No compressionProposed method

BLENDER

SUZANNE

STANFORD BUNNY MATERIAL BALL

T
IM

E
,

M
S

5
.0

7
.0

4
.4 4
.8

3
.53
.6

0
.7

7

0
.7

9

0
.8

2

0
.2

5

0
.2

5

0
.2

5

that vertex attributes constitute the major part of data
in the compressed model, and a further reduction in
their size is hardly feasible. This requires either the
reduction in the number of quantization bits (this can
be done in some tasks; however, in the general case, it
reduces the accuracy and introduces visual distor-
tions) or the use of entropy coding for these data,
which significantly complicates the decompression
and reduces the performance.

Decompression performance analysis. Figures 4 and
5 show the decompression performance when using
geometry shaders and mesh shaders and the decom-
pression performance for ray tracing depending on the
cache size. It is found that the main factors that limit
the performance is the amount of the data written by
geometry shaders and mesh shaders, as well as the size
of the arrays used for temporary data storage. This
effect is most noticeable when using geometry shaders.
In fact, less than 15% of the available GPU computing
resources are used. The corresponding results are
shown in Table 2. In the case of decompression for ray
tracing, it can be seen that, starting from 50% of the
cached meshlets, the performance remains almost the
same. This is due to the fact that some of the meshlets
are almost always covered by other meshlets. The bot-
tleneck here is the check of intersections with all
meshlet triangles for each ray, which is implemented
in the intersection shader without any hardware accel-
eration.

Comparison with existing methods. For comparison
with the existing methods, we used the decompression
with mesh shaders on two open-source libraries:
Draco and Corto. Both libraries support data quanti-
zation and delta compression, as well as use (in one
form or another) triangle traversal for connectivity
data.

The comparison was carried out on six 3D models
(see Fig. 6): Blender Suzanne (62976 triangles and
32057 vertices), Stanford Bunny (33528 vertices and
PROGRAMMING A
65630 triangles), Material Ball (31310 vertices and
61088 triangles), Sponza (184330 vertices and 262267
triangles), Stanford Dragon (438929 vertices and
871306 triangles), and Amazon Lumberyard Bistro
(1020907 vertices and 762263 triangles; only the
indoor scene was used).

For quantization, the following values were used in
all the cases: 12 bits per vertex positions, 8 bits per nor-
mal, and 12 bits per texture coordinates. The tests were
carried out on NVIDIA RTX 2070 Mobile and Intel
Core I7 10750H. For the performance comparison of
the methods on the CPU, the average decompression
time for 5 runs was computed; the time required for
uploading the 3D model to RAM was not taken into
account. The results of the comparison on six models
with different characteristics are shown in Figs. 7–9.
The comparison in terms of the memory required to
store these models on the GPU is not shown because,
for proposed method, it is the same as in Fig. 7, whereas
the other methods store decompressed models.

7. CONCLUSIONS, DISCUSSION, AND
FUTURE RESEARCH

The proposed approach increases the amount of
geometry that can be placed in the GPU memory by a
factor of 3 to 8. Moreover, it is almost always possible
to achieve a fourfold increase without visible geomet-
ric distortions, even when the camera approaches the
surface. However, the potential slowdown of visualiza-
tion is quite significant (from 5 to 10 times). In real-
world applications, it can be less due to the fact that
the pipeline is performance-limited at other stages
(e.g., in the fragment shader). The performance anal-
ysis using special tools [28] has shown that the existing
GPU pipelines have the following limitations that
become bottlenecks. (1) For rasterization using geom-
etry shaders, it is necessary to store all decompressed
vertex data in the L1 cache of the GPU (shared mem-
ory) before sending the entire meshlet for rasteriza-
tion. (2) For rasterization using mesh shaders, it is
ND COMPUTER SOFTWARE Vol. 48 No. 3 2022

3D MODEL COMPRESSION WITH SUPPORT 189
required to write data when transferring them from the
task shader to the mesh shader, as well as use L1 cache
to store temporary data for decompression, because
not all of them can be placed in registers. (3) For ray
tracing, the data decompression at the leaves limits the
performance.

REFERENCES

1. Chou, P.H. and Meng, T.H., Vertex data compression
through vector quantization, IEEE Trans. Visualization
Comput. Graphics, 2002, vol. 8, no. 4, pp. 373–382.

2. Deering, M., Geometry compression, Proc. 22nd Annu.
Conf. Computer Graphics and Interactive Techniques,
1995, pp. 13–20.

3. Gumhold, S., Improved cut-border machine for trian-
gle mesh compression, Proc. Erlangen Workshop, 1999,
vol. 99, pp. 261–268.

4. Rossignac, J., Edgebreaker: Connectivity compression
for triangle meshes, IEEE Trans. Visualization Comput.
Graphics, 1999, vol. 5, no. 1, pp. 47–61.

5. Lee, H., Alliez, P., and Desbrun, M., Angle-analyzer:
A triangle-quad mesh codec, Comput. Graphics Forum,
2002, vol. 21, no. 3, pp. 383–392.

6. Touma, C. and Gotsman, C., Triangle mesh compres-
sion, Proc. Graphics Interface, 1998, pp. 26–34.

7. Alliez, P. and Desbrun, M., Valence-driven connectiv-
ity encoding for 3D meshes, Comput. Graphics Forum,
2001, vol. 20, no. 3, pp. 480–489.

8. Abderrahim, Z., Techini, E., and Bouhlel, M.S., State
of the art: Compression of 3D meshes, Int. J. Comput.
Trends Technol., 2012, vol. 4, no. 6, pp. 765–770.

9. Hoppe, H., Progressive meshes, Proc. 23rd Annu. Conf.
Computer Graphics and Interactive Techniques, 1996,
pp. 99–108.

10. Cohen-Or, D., Levin, D., and Remez, O., Progressive
compression of arbitrary triangular meshes, IEEE Visu-
alization, 1999, vol. 99, pp. 67–72.

11. Uyttersprot, S., Mesh compression and procedural
content generation, 2018.

12. Luo, G. et al., Spatio-temporal segmentation based
adaptive compression of dynamic mesh sequences,
ACM Trans. Multimedia Comput., Commun., Appl.,
2020, vol. 16, no. 1, pp. 1–24.

13. Hajizadeh, M. and Ebrahimnezhad, H., Eigenspace
compression: Dynamic 3D mesh compression by re-
storing fine geometry to deformed coarse models, Mul-

timedia Tools Appl., 2018, vol. 77, no. 15, pp. 19347–
19375.

14. Maglo, A. et al., 3D mesh compression: Survey, com-
parisons, and emerging trends, ACM Comput. Surv.,
2015, vol. 47, no. 3, pp. 1–41.

15. Elmas, A.A., Investigation of single-rate trianguar 3D
mesh compression algorithms.

16. Mahovsky, J.A., Ray tracing with reduced-precision
bounding volume hierarchies, 2005.

17. Ylitie, H., Karras, T., and Laine, S., Efficient incoher-
ent ray traversal on GPUs through compressed wide
BVHs, Proc. High Performance Graphics, 2017, pp. 1–13.

18. Meister, D. et al., A survey on bounding volume hierar-
chies for ray tracing, Comput. Graphics Forum, 2021,
vol. 40, no. 2, pp. 683–712.

19. Segovia, B. and Ernst, M., Memory efficient ray trac-
ing with hierarchical mesh quantization, Proc. Graphics
Interface, 2010, pp. 153–160.

20. Kim, T.J. et al., RACBVHs: Random-accessible com-
pressed bounding volume hierarchies, IEEE Trans. Vi-
sualization Comput. Graphics, 2009, vol. 16, no. 2,
pp. 273–286.

21. Eisemann, I.M., Bauszat, P., and Magnor, M., Implicit
object space partitioning: The no-memory BVH, Techni-
cal Report, Computer Graphics Lab, 2011, vol. 365.

22. Chitalu, F.M., Dubach, C., and Komura, T., Binary
ostensibly-implicit trees for fast collision detection,
Comput. Graphics Forum, 2020, vol. 39, no. 2, pp. 509–
521.

23. Choe, S. et al., Random accessible mesh compression
using mesh chartification, IEEE Trans. Visualization
Comput. Graphics, 2008, vol. 15, no. 1, pp. 160–173.

24. AMD Smart Access Memory.
https://www.amd.com/en/technologies/smart-access-
memory. Accessed June 3, 2021.

25. Thompson, A. and Newburn, C., GPUDirect storage:
A direct path between storage and GPU memory,
NVIDIA Developer Whitepapers, 2019, vol. 8.

26. Barczak, J., Why geometry shaders are slow, 2015.
http://www.joshbarczak.com/blog/?pf7. Accessed
May 5, 2020.

27. Kubisch, C., Introduction to turing mesh shaders,
2018. https://developer.nvidia.com/blog/introduction-
turing-mesh-shaders. Accessed May 5, 2020.

28. NVIDIA Nsight Graphics. https://developer.nvid-
ia.com/nsight-graphics. Accessed June 3, 2021.

Translated by Yu. Kornienko
PROGRAMMING AND COMPUTER SOFTWARE Vol. 48 No. 3 2022

	1. INTRODUCTION
	2. EXISTING METHODS FOR 3D MODEL COMPRESSION
	3. PROPOSED METHOD
	4. DECOMPRESSION ON THE GPU
	5. DISADVANTAGES OF THE PROPOSED ALGORITHM
	6. ANALYSIS OF THE RESULTS
	7. CONCLUSIONS, DISCUSSION, AND FUTURE RESEARCH
	REFERENCES

		2022-05-29T11:16:01+0300
	Preflight Ticket Signature

