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Abstract⎯A manual labeling of 20 layers of the known open dataset EPFL for six classes is prepared. These
classes are: (1) mitochondria, including their boundaries; (2) boundaries of mitochondria; (3) cell mem-
branes; (4) postsynaptic densities (PSD); (5) axon sheaths; and (6) vesicles. Software for generating synthetic
labeled datasets and the dataset itself balancing the representativeness of classes are created. Results of mul-
ticlass segmentation of brain electron microscopy (EM) data for each class for the case of binary segmentation
and segmentation into five and six classes using a modified U-Net model are investigated. The model was
trained on 256 × 256 fragments of the original EM resolution. In the case of six-class segmentation, mito-
chondria were segmented with the Dice–Sørensen coefficient of 0.908, which is somewhat lower than in the
case of binary (0,911) and five-class segmentation (0.91). An extension of the dataset by synthesized images
improved the classification results in an experiment. The extension of the manually labeled dataset (860 images of
size 256 × 256) by the synthesized dataset (100 images of size 256 × 256 containing the poorly represented classes—
axons and PSD) gave a significant increase of accuracy in the six-class U-Net model from 0.228 to 0.790 and from
0.553 to 0.745, respectively.
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1. INTRODUCTION
Considering the application of artificial intelli-

gence methods and especially deep neural networks
(DNN) for reconstructing brain electron microscopy
(EM) data during the last ten years, we begin with the
publication [1] of 2010. This paper actually announced
the beginning of the use of serial block scanning electron
microscopy as a source of high-resolution three-dimen-
sional nanohistology for cells and tissues. A subse-
quent series of works was aimed at creating datasets for
training deep learning networks and DNN methods
and models for EM data segmentation designed for
binary segmentation of brain cell organelles—neural
membranes [2] and supervoxel segmentation of mito-
chondria [3]. Simultaneously, the problem of 3D
reconstruction of the brain neural network and the
problem of brain connectomics on the basis of neuron
organelles and connections between neurons (syn-
apses) is stated [4]. In this problem, of particular
importance is the segmentation of such oganelles as
postsynaptic densities (PSD), vesicles, and axons.

In [5], a team of 24 authors involved in the organi-
zation of the first international competition in 2D-
segmentation of brain EM images claims that already

at the conference on connectomics in 2014 organized
by the Howard Hughes Medical Institute and
Max Planck Society it became clear that convolu-
tional networks became a dominating approach to
detecting cell boundaries in serial EM images. The
authors also suggest focusing on 3D processing of EM
images and joined efforts in connectomics; however,
they note that even the best modern algorithms for 3D
reconstruction still require significant manual correc-
tion effort, which is available only for crowd sourcing.
This opinion is supported by the earlier paper [6] of 21
authors from leading USA universities, which reports
about the creation by joined effort of a saturated 3D
reconstruction of a small (0.13 mm3) portion of an EM
mouse neorcortex and a database of 1700 synapses in
this portion.

The invention of U-Net in 2015 [7] opened a series
of novel models and adaptations for segmenting brain
EM data. The source of U-Net success is in involving
the contextual information of the input image at all
levels of processing. Almost immediately, the publica-
tion [8] experimentally confirmed that the skip con-
nection of the U-Net architecture is effective for solv-
ing segmentation problems in biomedicine. U-Net
164
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Table 1. Open labeled electron microscopy datasets

0a Data is available at GitHub: https://github.com/MancaZerovnikMekuc/UroCell.
b Data is available at https://www.epfl.ch/labs/cvlab/data/data-em/

No. Name Amount of data Amount of labeled data Labeled classes Resolution 
nm/voxel

1 AC4, ISBI 2013 [5] 4096 × 4096 × 1850 1024 × 1024 × 00 membranes 6 × 6 × 30

2 EPFLb, Lucchi [3] 1065 × 2048 × 1536 2 datasets 1024 × 768 × 165 mitochondria 5 × 5 × 5

3 Kasthuri et al. [6] 2 datasets 1463 × 1613 × 85, 
1334 × 1553 × 75

mitochondria 3 × 3 × 30

4 UroCella [20] 1366 × 1180 × 1056 5 datasets 256 × 256 × 256 mitochondria, endolysosomes, 
fusiform vesicles

16 × 16 × 15
also provided a basis for creating models with parallel
inputs that make it possible to use correlation between
inputs and, in particular, between EM layers in the 3D
space [9, 10]. Next, attempts were made to use the
capabilities of 3D convolutions for a multiple increase
of the context amount in U-Net and U-Net-like net-
works—3DU-Net [11] (2016), V-Net [12] (2016),
DeepMedic [13] (2017), and HighRes3DNet [14]
(2017). This also gave a considerable effect, since the
amount of context data for the 3D neighborhood of
radius one of a voxel increases by a factor of three, and
for the neighborhood of radius two of a voxel it
increases by a factor of five.

An interesting direction of development of seman-
tic segmentation implemented using fully convolu-
tional networks is described in [15, 16]. The latter
paper is most interesting and promising. For recon-
structing the 3D interconnections of a system of neu-
rons, a novel deep contextual network with a threefold
reduction in resolution is proposed, which analyzes
multiscale contextual information in a hierarchical
structure of resolutions. The network architecture
includes auxiliary classifiers that analyze the semantic
meaning of image hierarchy and restrict themselves to
low-level contextual features. As a dataset for the seg-
mentation problem, ISBI 2012 is used. This method is
aimed at minimizing human involvement and demon-
strates a drift to explainable artificial intelligence (XAI).

The advantages of using 3D data analysis are unde-
niable; however, the use of 3D convolutional neural
networks (CNN) with a 3D convolution kernel signifi-
cantly increases the number of training parameters,
computational cost, and memory consumption,
which is especially sensitive for GPU applications. For
this reason, the architectures using 3D convolutions
are gradually replaced by the architectures that
decrease the number of training parameters, the
amount of memory, and increase the training speed,
while preserving the quality of training and regulating
balance between networks with 3D and 2D convolu-
tions. In this process, various preprocessing methods
PROGRAMMING AND COMPUTER SOFTWARE  Vol. 
are usually used, which often give an effect of 5% or
more [17–19]. For example, in [20] contrast is
enhanced using the adaptive gamma correction with
wait distribution (AGCWD) [21]. Another trend is the
factorization of low-rank convolutional kernels [22–25].

The paper [26] of 2019 reports the creation of a
UNI-EM system with an interface convenient for sub-
ject matter experts. After labeling a small number of
training samples, the system uses 2D and 3D deep
learning networks and produces a segmentation of brain
EM images for correcting the labeling and training
parameters. UNI-EM comes with a set of 2D DNNs—
U-Net, ResNet, HighwayNet, and DenseNet.

The paper [27] of 2019 determines the best version
of U-Net using as an example the detection of vesicles
in the data EM Transmission Electron Microscopy
(TEM) with the resolution of 1.56 nm (two–three
times better than the usual one) by comparing U-Net
and Fully Residual U-Net (FRU-Net) architectures.
It is found that the latter one improves accuracy by 4–
5%. In the case of binary classification on three different
datasets TEM, the error for FRU-Net did not exceed
10%. For the U-Net, the errors were 17, 27, and 17%.

The paper [28] of 2021 investigates the capabilities of
Fully Residual U-Net (FRU-Net) with four levels res-
olution reduction (the original resolution of 640 × 640
is reduced four times by a factor of two to 40 × 40)
using binary 2D segmentation of cell membranes as an
example. Augmentation that increased the dataset by
eight times due to rotations and reflections is created.
On Drosophila EM dataset (ISBI 2012 EM segmenta-
tion challenge leaderboard, June 2020), the accuracy
of about 98–99% of segmenting membranes was
achieved. The publication [29] of 2021proposes a
more complex network structure called hierarchical
view-ensemble convolutional (HVEC) network as an
alternative to a simple 3D structure. This structure
inherits the abovementioned idea of [16] with three
levels of resolution reduction and additional outputs
for each level; next, the resolution reduction architec-
48  No. 3  2022
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Fig. 1. Example of manual image labeling carried out by the authors: (а) original image, (b) membranes, (c) mitochondrion with
its boundaries, (d) boundaries of mitochondria, (e) PSD, (f) vesicles, (g) axon sheath.

(a) (b) (c) (d) (e) (f) (g)

Fig. 2. Axon sheaths in the training and test EPFL datasets: (а) axon sheath in the training set; (b) axon sheath in the test set, fist
layer; (c) axon sheath in the training set, 35th layer; (d) axon sheath in the test set, 70th layer.

(a) (b) (c) (d)
ture is completed with a branch of resolution increase,
which is typical for U-Net.

The application of artificial intelligence method for
EM data processing is largely hampered by a small
amount of labeled data for training and testing DNNs.
Open EM data as a whole are represented by only a few
labeled dataset, both due to the laboriousness of pre-
paring samples for an electron microscope, and due to
the lack of specialists for manual labeling. We found
four open EM datasets the earliest and most popular
of which are labeled only for one class (mitochondria
or membranes). In the two other datasets, several
classes are distinguished. As a result, the majority of
neural networks used in EM processing are trained
only to perform binary segmentation.

In connection with the above, the main aim of this
work is to (1) create a dataset with manual multiclass
labeling for a list of classes that provides a solution to
the main modern tasks of EM data segmentation;
(2) to develop algorithms for automatic generation of a
dataset of synthetic objects of the specified main
classes and create a dataset of synthetic objects, pri-
marily those objects that are scarcely represented in
the traditional datasets; (3) to study the capabilities of
multiclass segmentation of U-Net-like architectures,
starting with U-Net (in this work), using datasets with
manual labeling and additional synthetic labeling.
PROGRAMMING A
2. DATA AND METHODS
In this section, we describe publicly available data-

sets. The most popular datasets for assessing the seg-
mentation of mitochondria were collected by Lucchi
et al. in [3].

It is seen that in three of the four labeled open data-
sets, only one class is labeled. Only one dataset con-
tains more than one labeled class. For this reason, the
vast majority of neural networks in EM are trained to
classify only two classes (object and background).

We used the dataset EPFLВ or the data set of mito-
chondria segmentation Lucchi available at
https://www.epfl.ch/labs/cvlab/data/data-em/. Ini-
tially, these data contain masks only for mitochondria.
For this reason, to assess multiclass segmentation
algorithms, we manually labeled 20 layers in the train-
ing sample (1024 × 768) and three layers for the fol-
lowing classes: (1) mitochondria, including their
boundaries; (2) boundaries of mitochondria; (3) cell
membranes; (4) postsynaptic densities (PSD);
(5) axon sheaths; and (6) vesicles.

Accurate manual labeling of one layer takes 5–
8 hours. Our labeling of the dataset EPFL is available at
https://github.com/GraphLabEMproj/unet.
We plan to continue the work on labeling and do this
for both datasets. An example of labeling a layer frag-
ment is shown in Fig. 1.

It just so happens that the axon sheath in the train-
ing dataset is present only in the first 36 layers and
looks completely different from the axon sheath in the
ND COMPUTER SOFTWARE  Vol. 48  No. 3  2022
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Fig. 3. Example of synthesized data (only nonzero masks are shown): (a) layer, (b) mask of axon sheaths, (c) mask of membranes,
(d) PSD mask.

(a) (b) (c) (d)
test dataset (Fig. 2). In the test dataset, the axon is rep-
resented in the first 70 layers, changes its shape for
elongated to more rounded, and also has a darker inte-
rior and inner ring.

For the synthesized dataset, we generated 100 images

of size 256 × 256 pixels containing the least represented

classes—postsynaptic densities and axon sheaths. An

example of data is shown in Fig. 3. The program for data

generation is written in C#. The shape, size, and gray

levels of compartments are chosen to be similar to the

shape, size, and gray levels of the test dataset EPFL.

To make the generated images more similar to real-life

images, these images was blurred with a Gaussian fil-

ter with a kernel of radius seven, and Gaussian noise

with a level of 20 was added. The advantage of a syn-

thetic set is that you can get any number of images you

need along with their labeling automatically.

2.1. Network Architecture

U-Net is considered to be a standard convolutional
network architecture for image segmentation tasks.
This architecture consists of a contracting path for cap-
turing the global context and a symmetric expanding
path that enables accurate localization. The basis of this
network is the project U-Net https://github.
com/zhixuhao/unet. In the original project, U-
Net was used for binary classification of membranes.
In this work, we use U-Net for multiclass segmenta-
tion. We copied the original repository, and made
modifications in it, which are available at
https://github.com/GraphLabEMproj/unet

together with our labeling of the Lucci data.

Following the author of the code at
https://github.com/zhixuhao/unet, the
implementation of U-Net has some differences from
the classical U-Net network [7]:

• The network input is an image of size 256 × 256 × 1.

• The network output is 256 × 256 × ,

where  is the number of classes.

_num classes
_num classes
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• The sigmoid activation function guarantees that
the mask is in the range [0, 1].

In addition, we added batch normalization after
each ReLU convolution and activation layers.

3. EXPERIMENTAL RESULTS

3.1. Assessment Criteria
We use the Dice–Sørensen coefficient (DSC) and

Jaccard’s coefficient (JAC), which are usually used for
segmenting biomedical images. Define the number of
correctly classified pixels as belonging to the target
class (true positive) TP, the number of correctly clas-
sified background pixels (true negative) TN, the num-
ber of erroneously classified pixels as belonging to the
target class (false positive) FP, and the number of erro-
neously classified background pixels (false negative)
FN. Then, define the metrics as follows:

The values of the DSC and JAC vary from zero to one.
By contrast with Jaccard’s coefficient, the corre-
sponding difference function is not a correct distance
metric since it does not satisfy the triangle inequality.
JAC and DSC are equivalent in the sense they may be
represented in terms of each other:

Since we consider multiclass segmentation in this
work, we are interested in multiclass metrics. Since the
Jaccard (or Dice) metrics compare two sets, in the
case of multiclass classification the result will be a vec-
tor of Jaccard (or Dice) metrics for each class. For
training a neural network, a scalar error function is
used. Therefore, for multiclass segmentation, we

+ +
2

= ,
2

TPDSC
TP FP FN

+ +
= .

TPJAC
TP FP FN

+
2

= .
1

JACDSC
JAC
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Fig. 4. Learning curves for the original dataset; from left to right learning curve for six-class segmentation, learning curve for five-
class segmentation, and learning curve for binary segmentation of mitochondria.
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should convolve the metric vector. To convolve a vec-
tor into a scalar, we use the linear convolution

where  is a weighting coefficient and  is the value

of the distance coefficient for the ith class.  is a
scalar value or convolution of a distance vector, and N
is the number of classes.

In this work, we use the linear convolution of DSC

with the weighting coefficients  equal to 1/N.

3.2. Experiments
To obtain a new training sample, twenty high-res-

olution images of the original training sample were cut
into 256 × 256 fragments with an overlap of a quarter
of the fragment size. In total, 860 fragments were
obtained. To additionally increase the training sample,
we made random rotations of images, random shifts,
and random scale changes in a small range (5%).

To obtain a mixed training sample, we added to the
original 860 fragments 100 synthesized fragments;
thus, in total we have 960 fragments.

We selected 20% of images from the training sample
into a validation sample with the batch size equal to
seven. The model was tested on three layers (129 frag-
ments). We used Adam’s optimizer with the training

rate of 2 × 10–5. The training curves for different
experiments are presented in Figs. 4 and 5.

Experiment 1. Five segmentation classes—mito-
chondrion with its boundary, membranes, PSD, axon
sheaths, and vesicles. The number of epochs is 1000.

Experiment 2. Six segmentation classes—mito-
chondrion with its boundary, boundary of the mito-
chondrion, membranes, PSD, axon, and vesicles. The
number of epochs is 1000.

λ λ ≥ λ 
=1 =1

= , 0, = 1,

N N

scalar i i i i
i i

W W

λi iW
scalarW

λi
PROGRAMMING A
One more class of mitochondria boundaries is added.

Experiment 3. One segmentation class—mitochon-
drion with its boundary. The number of epochs is 200.

It is seen from Table 2 that the quality of multiclass
segmentation is only slightly inferior to binary seg-
mentation.

The class mitochondria boundaries is a sublass of the
class mitochondria with their boundaries, and the addi-
tional edge enhancement improves the segmentation
results of the unifying class. The network was trained
on unbalanced classes, since the sizes of compart-
ments and their occurrence differ by dozens of times.

4. DISCUSSION

In this section, we discuss Table 3 “Comparison of
mitochondria segmentation results,” in which we
placed the most representative results on membrane
segmentation using binary and multiclass models.

We tested our models on the entire dataset EPFL
and used these values instead of the results presented
in Table 2. We cannot directly compare the results in
Table 3, since our models were trained on a signifi-
cantly reduced version of EPFL. However, we can put
forward several hypotheses that need to be tested. The
worst results were obtained in layers containing an
axon, fuzzy membranes, incomplete mitochondria,
mitochondria with darker borders and darker inclu-
sions than on labeled layers.

We assume that labeling more layers or generating
synthetic data with proper characteristics will improve
the results.

5. CONCLUSIONS

We manually carried out the multiclass labeling of
20 layers of the training set and three layers of the test
set for the well-known dataset EPFL, which includes
the following classes: (1) mitochondria, including
ND COMPUTER SOFTWARE  Vol. 48  No. 3  2022
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Table 2. Results of electron microscopy data segmentation for the original dataset (ORG) and for the dataset enriched with
synthesized images (SYN); Dice coefficient is used as the metric

Class

Number of classes

6 5 2

ORG SYN ORG SYN ORG SYN

Mitochondria with their boundaries 0.932 0.938 0.928 0.924 0.952 0.950

Boundaries of mitochondria 0.742 0.748 – – – –

Membranes 0.743 0.750 0.741 0.701 – –

Postsynaptic densities (PSD) 0.553 0.745 0.728 0.633 – –

Vesicles 0.709 0.711 0.671 0.688 – –

Axon sheaths 0.228 0.790 0.098 0.716 – –

Table 3. Comparison of mitochondria segmentation methods

Method Number of classes Publication Dataset JAC Dice

Cheng et al. (3D) [25] 1 M. Yuan et al. [29] EPFL 0.889 0.941

3D U-Net [11] 1 M. Yuan et al. [29] EPFL 0.878 0.935

Cheng et al. (2D) [25] 1 M. Yuan et al. [29] EPFL 0.865 0.928

U-Net [7] 1 M. Yuan et al. [29] EPFL 0.844 0.915

U-Net 1 ours EPFL 0.840 0.911

U-Net 5 ours EPFL+syn 0.840 0.910

U-Net 1 ours EPFL 0.838 0.909

U-Net 6 ours EPFL 0.833 0.908

U-Net 6 ours EPFL+syn 0.833 0.908

V-Net 2 M. Žerovnik Mekuč et al. [20] UroCell – 0.898

HighRes3DNet 2 M. Žerovnik Mekuč et al. [20] UroCell – 0.883

U-Net 5 ours EPFL+syn 0.793 0.882

HighRes3DNet 1 M. Žerovnik Mekuč et al. [20] UroCell – 0.862

Lucchi et al. [3] 1 M. Yuan et al. [29] EPFL 0.755 0.86

U-Net 2 M. Žerovnik Mekuč et al. [20] UroCell – 0.855
their boundaries; (2) boundaries of mitochondria;
(3) membranes; (4) postsynaptic densities (PSD);
(5) axon sheaths; and (6) vesicles. Software for gener-
ating synthetic labeled datasets with the same classes
was developed. A synthetic labeled dataset that
includes axons, PSD, and membranes was created.

Results of segmentation of multiclass brain electron
microscopy data obtained using a modified U-Net with
decomposition of data layers into 256 × 256 fragments
while preserving the original resolution are presented. 

The study showed that the results of binary, five-
class and six-class segmentation are similar in quality:
PROGRAMMING AND COMPUTER SOFTWARE  Vol. 
0.911, 0.910 and 0.908, respectively. The quality of

segmentation is affected by the presence of a sufficient

number of specific features that distinguish the

selected classes, and the representation of these fea-

tures in the training sample.

The expansion of datasets by synthesized images

improves the classification results. The expansion of a

manually labeled dataset (860256 × 256 images) by a

synthesized dataset consisting of (100256 × 256 images

containing less represented classes (axons, PSD, and

membranes) significantly improved the accuracy of the

six-class model (see Table 2)—from 0.228 to 0.790,
48  No. 3  2022
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from 0.553 to 0.745, and from 0.743 to 0.750, respec-
tively, in proportion to the liquidated deficit.
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