
ISSN 0361-7688, Programming and Computer Software, 2021, Vol. 47, No. 8, pp. 858–865. © Pleiades Publishing, Ltd., 2021.
Russian Text © The Author(s), 2020, published in Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS) , 2020, Vol. 32, No. 6.
Intraprocedural Analysis Based on Symbolic Execution
for Bug Detection

A. E. Borodina,* and I. A. Dudinaa,b,**
a Ivannikov Institute for System Programming, Russian Academy of Sciences,

 ul. Solzhenitsyna 25, Moscow, 109004 Russia
b Moscow State University, Moscow, 119991 Russia

*e-mail: alexey.borodin@ispras.ru
**e-mail: eupharina@ispras.ru

Received February 18, 2021; revised February 25, 2021; accepted March 12, 2021

Abstract—In this paper, we overview the approaches and techniques employed by the Svace static analysis
tool for intraprocedural analysis. This analysis implies the traversal of the control f low graph, symbolic exe-
cution with state merging, analysis of a number of paths in functions with loops, simultaneous run of all ana-
lyzers, modeling of accessible memory cells, and value numbering.

DOI: 10.1134/S0361768821080028

1. INTRODUCTION
Svace is a static analysis tool for bug detection in

C/C++/Java source code. Svace finds errors with a
small number of false positives in a time comparable to
compile time. The analysis does not require special
preparation of programs and does not impose any
constraints on language constructs used.

For bug detection, Svace uses different approaches:
analysis based on an abstract syntax tree (AST) and
interprocedural analysis with modeling of values of
variables and memory cells.

As input, Svace receives the source code of the pro-
gram together with a build command. The tool inter-
cepts the compile and link commands. Then, a modi-
fied compiler (Clang for C/C++ [3] or OpenJDK
javac for Java [4]) is run. The compiler constructs an
AST to run bug detectors, as well as generates an inter-
mediate representation of the program (LLVM bit-
code [5] for C/C++ or bytecode for Java). The inter-
mediate representation is fed to the SvEng1 analyzer.
The engine constructs a call graph and initiates a
sequential analysis of each function, starting with the
leaves of the graph. In this paper, we describe intrap-
rocedural analysis of individual functions, which
forms a basis of interprocedural analysis.

Section 2 describes the generalized analysis based
on symbolic execution [6], which can be used by vari-
ous analyzers to find errors in source codes of pro-
grams. The scheme of the analysis is outlined and its
main abstractions (value identifier, reference, pointer

graph, attribute, and abstract state) are considered.
Subsection 2.7 describes an extension of the analysis
that enables path sensitivity. Section 3 describes its
implementation in Svace for intraprocedural analysis
of functions.

2. GENERALIZED ANALYZER
The developed procedure is intended primarily for

non-sound analysis. By the non-sound analysis, we
mean the analysis that can provide incorrect results in
some cases to fulfill certain requirements (speed,
memory consumption, ease of implementation, etc.).

2.1. Symbolic Execution with State Merging
Let us describe a bug detection analysis based on

symbolic execution with union of states at path merge
points.

Suppose that we have a control f low graph for some
function. The edges of the graph represent abstract
states, which describe certain properties of the func-
tion. Symbolic execution is carried out in topological
order. For each vertex of the graph, from an abstract
state on the incoming edge, the analysis forms an
abstract state for its outgoing edge. Merge points of
paths in acyclic subgraphs are analyzed once the states
on the incoming edges are obtained. The analysis
forms an abstract state on the outgoing edge of the
function, which describes properties of the program
for all paths under consideration.

To analyze strongly connected components
(SCCs) in the control f low graph, several iterations of1 Svace Engine: the main engine of Svace.
858

INTRAPROCEDURAL ANALYSIS BASED 859
the loop with preservation of all abstract states on the
edges outgoing from SCCs are carried out. Once SCCs
are analyzed, the states on the outgoing edges are
merged. In this case, heuristics are employed to obtain
a state that describes all possible execution paths of
SCCs. However, if these heuristics work incorrectly,
then the analysis can incorrectly describe properties of
some paths.

If it is possible to extract an inner SCC from a SCC,
then several iterations of the analysis are carried out
for the inner SSC at each step of analyzing the outer
SCC. This scheme of loop analysis has exponential
complexity in the number of nested loops. To reduce
the complexity for inner SCCs, the number of travers-
als is reduced. When a certain nesting threshold is
reached, the analyzer stops to extract the inner SCCs.

We use the following notation:
− S is a set of symbols;
− I is a set of instructions;
− P is a set of vertices in the control f low graph;
− E is a set of edges in the control f low graph;
− Γ is a set of abstract states.
The analysis is parameterized by the following

components:
− additional analyses Ai on the basis of which warn-

ings are issued;
− detectors Ci for finding program errors;
− transfer functions for each instruction T[I];
− number of SCC traversals N;
− functions that create a state at path merge points

U[P] : Γ × Γ ° Γ;
− functions that create a state from several states for

outgoing edges of SCCs U'[P] : Γ × Γ ° Γ.
For each instruction, all additional analyses and

detectors are run simultaneously.
The detector is run for each traversed vertex and,

based on the abstract state on its incoming edge, issues
an error warning. The additional analyses form
abstract states on the outgoing edges.

When traversing a vertex, any implemented ana-
lyzer or detector has access to the results of all other
analyzers on the incoming edges of this vertex, but it
does not have access to the results on its outgoing
edges. It is important that the sequence of analyses
does not affect the result.

This implementation has the following advantages.
• High speed of analysis; general actions are per-

formed by one analyzer.
• Rather complex detectors can easily be imple-

mented because all analyzed properties are available to
each detector.
PROGRAMMING AND COMPUTER SOFTWARE Vol.
2.2. Value Identifiers

A value identifier2 is an abstraction that is used to
group values of variables into equivalence classes for a
symbolic execution step and obeys the following rules.

I. If two variables are assigned the same value iden-
tifier, then these variables have the same values at run-
time (the value numbering problem3).

II. For an instruction, the value identifiers on the
incoming and outgoing edges are identical for all vari-
ables and memory cells, except for those the values of
which vary in this instruction. This requirement for
value identifiers significantly facilitates the implemen-
tation of transfer functions: all created properties do
not lose their correctness in the process of analysis.

Value identifiers play a key role in the proposed
analysis. In addition to value numbering, value identi-
fiers are used to describe most of the analyzed proper-
ties of values. In this case, the properties are associated
with value identifiers. In turn, the properties can be
described using value identifiers.

To describe properties, attributes are used. Attri-
butes can be associated with value identifiers and with
edges of the control f low graph for certain abstract
states. An attribute represents an analyzed property
(value interval of a variable, necessary reachability
condition, list of value identifiers for locked mutexes,
etc.). Attributes must have function ⊔ that merges two
attributes. This function is used for state merging.
In many cases, it is convenient to represent attributes
as lattices (or semi-lattices) and represent the merge
function as the least upper bound. However, this is not
a requirement for attributes.

Attributes allow an abstract state to be shared
among additional analyzers: each analyzer has its own
set of attributes, which is why there are no conflicts
when several analyzers form an output state in differ-
ent ways.

An abstract state contains information about values
of all attributes for value identifiers. For illustrative
purposes, let us consider the following attributes: value
interval VI, which describes the range of possible val-
ues for a variable, and attribute Null, which indicates
that a variable has a zero value. The type of an attribute
is written in bold, while the interval value is italicized:
VI is the type of an attribute and VI is the set of values.

By V, we denote a set of value identifiers. Function
val:S ↪ V returns an associated value identifier for
each symbol. Function val is a part of an abstract state.
An abstract state also contains the value of an attribute
for each attribute type and value identifier:

2 The value identifier is a symbolic variable. In this paper, we use
this term to denote symbolic variables together with a way of
their use in the analyzer.

3 The value numbering problem consists in determining a set of
variables the values of which are equal at a certain point for all
execution paths. In the case of symbolic execution, all execution
paths can be replaced by all paths under consideration.
47 No. 8 2021

860 BORODIN, DUDINA
− Γ[VI]:V ° VI,
− Γ[Null]:V ° Null.
Instead of Γ(Null, V), we write Γ[Null](V) or Null (V).
Let us consider the following code fragment in C

that illustrates the benefits of associating attributes
with value identifiers rather than with program vari-
ables.
1:void func(int*p) {

2: int*q = p;

3: if(!q) {

4: *p = 7;

5: }

6:}

Listing 1. Null pointer dereference.

Upon analyzing the instruction in line 2, val(q) =
val(p) is executed in an abstract state. Suppose that
val(q) = . When analyzing the instruction in line 3,
the value identifier of variable q is associated with
attribute value Null, which indicates that a pointer has
only a null value. When analyzing the dereference
statement in line 4, the abstract state has the following
properties:

In fact, the analyzer knows that the pointer that can
have only a null value is dereferenced. This is sufficient
to issue a null pointer dereference warning. If line 4 is
reachable, then an error occurs.

With the value identifiers representing the values
invariant at different points of the program, many
properties can be expressed in terms of value identifi-
ers. In other words, attribute values refer to value iden-
tifiers. In this case, value identifiers are used as sym-
bols of a certain alphabet.

Let us consider attribute pt (see Subsection 2.4) the
values of which are value identifiers for addresses of
pointed cells.

1:void func(int f) {

2: int a, b, c;

3: int*p = f>0? &a : f<0? &b : &c;

4: int*q = p;

5: p = 0;

6:}

Listing 2. Example with assignment.

The state at point 3 in Listing 2 has the following
properties:

Thus, the value of variable p refers to the addresses
of variables a, b, and c.

The same properties also hold for line 6, even
though the value of variable p has changed:

v1

= = Γ =v v v1 1 1() , () , []() .val p val q Null null

= = =v v v(&) , (&) , (&) ,a b cval a val b val c

= =v v v v v() , () { , , }.pp pp a b cval p pt
PROGRAMMING A
Thus, it is sufficient for the analyzer to change the
information about the value of p without modifying
the properties of its values, which makes it possible to
optimize the time of the analysis.

2.3. References
By references, we mean a subset of value identifiers

for which the following two conditions hold:
(i) the value is a pointer;
(ii) the analyzer performs memory modeling for

this pointer, i.e., the values in the pointed memory cell
are tracked.

Let us extend function val for the purpose of mem-
ory modeling: val:S ∪ R ↪ V, where R is a set of refer-
ences. Notation val(s) ° , val() ° means that
variable s has a value described by identifier and the
value in the cell to which s points is described by iden-
tifier .

References are used to model pointers, and they
always correspond to pointers. Only the pointers for
which the analyzer can determine that they are not
aliases are modeled. In the simplest implementation,
references denote addresses of local variables that are
a priori not equal.

2.4. Pointer Graph
Analysis of pointers allows one to determine to

which modeled memory cells variables point. The
result of this analysis can be represented as a pointer
graph.

The pointer graph is a directed graph P = V, pt the
vertices of which are value identifiers and the edges of
which go from value identifiers to references. The edges
of the graph are defined by function pt:V ↪ 2R, which
returns a set of pointed references for a value identifier.
If the pointer graph has edge  , r2, then this means
that the value represented by identifier points to a
memory cell modeled by reference r2. In other words,
value can have alias r2.

Function pt is another part of an abstract state.
Analysis of pointers is required to model indirect
memory access. There are no specific requirements for
this analysis, and it can be regarded as another param-
eterization of the proposed analysis procedure.

2.5. Strong and Weak Updates
If the analysis of an instruction that assigns a value

to a variable or memory cell can eliminate the effect
from the assignment of all previous values, then this
behavior is called a strong update. If the effects of the

= = =
Γ =

v v v v v v

v

0

0

() , () , () { , , },
[]() .

pp pp a b cval p val q pt
Null null

v1 v1 v2

v1

v2

v1

v1

v1
ND COMPUTER SOFTWARE Vol. 47 No. 8 2021

INTRAPROCEDURAL ANALYSIS BASED 861
previous assignments are still taken into account by the
analyzer, then it is called a weak update.

In the proposed analysis, strong updates can be
carried out for all variables and cells for which the
pointer graph contains only one outgoing edge.

Let us consider the following C instructions for indi-
rect memory access: r = *p and *p = a. We describe
transfer functions for these instructions in the case of an
arbitrary analysis that stores its results in attribute Ai.

The memory read instruction is mn = *p. Suppose
that pt(val(p)) = Pt. There are three possible cases: set
Pt has one element, the set has more than one ele-
ment, and the set is empty. In the first case, Pt = {m},
a strong update can be carried out; as a result, the out-
put state contains val(r) = val(m).

In the case of more than one element, Pt = {m1, m2,
…, mn}, a new value identifier is created and associ-
ated with r in the output state, val(r) = val(). For all
attributes, we use the following property merge (join)
function:

If the set is empty, then a new value identifier is
associated with variable r.

The memory write instruction is *p = a. Let us also
consider three cases for set Pt. If Pt = {m}, then val(m) =
val(a) in the output state. In the case of Pt = {m1, m2,
…, mn}, a weak update is carried out. For this purpose,
a new value identifier is created for each memory
cell; this identifier is associated with the cells in the
output state, val(mi) = . For all attributes, we use the
following property merge (join) function:

Here, function prev returns value val(mi) (if it is
defined) or creates a new value identifier. Thus, for
each possible reference, the fact that its value could
have changed is taken into account. If the set is empty,
then a new value identifier is associated with variable
val(p).

To create an abstract state at a path merge point, a
rule similar to that for the memory read instruction is
used. The rule for values of modeled memory cells
merges properties from input states

Function journal returns a value identifier for refer-
ence m if, in both states for the incoming edges, the
same value identifier is assigned to m; otherwise, it
creates a new value identifier.

vr

vr

Γ = Γ Γv 1[]() ([] (),..., [] []).i r i i nA A val m A val m�

vi

vi

Γ = Γ Γv[]() [](() [](())).i r i i iA A val a A prev m�

Γ
= Γ Γ1 2

[](())
[](() [](())).

i

i i i

A journal m
A val m A prev m�
PROGRAMMING AND COMPUTER SOFTWARE Vol.
2.6. Analysis Core and Additional Analyses
All additional analyses are implemented as instruc-

tion handlers that operate with value identifiers rather
than with variables. The main engine tracks the
pointer graph, executes strong or weak updates, and
calls handlers for the corresponding situations. In fact,
the main engine processes the following components
of abstract states: val, pt; i.e., it tracks values of vari-
ables and performs analysis of pointers.

Let us consider a small example in Listing 3, where
interval analysis is used as additional analyses.

1:int f(int a, int*p) {

2: int x = 1;

3: *p = x;

4: if(a)

5: *p = 2;

6: return *p;}

Listing 3. Small example.

The abstract states of the analysis after the corre-
sponding lines are

2: val(x) = , VI() = [1, 1];
3: Γ2, val(p) = , val() = ;
5: Γ4, val() = , VI() = [1, 2];
6: Γ5, val() = , val(ret) = , VI() = [1, 2].
The value of attribute VI in the last abstract state is

obtained by applying the attribute merge (join) func-
tion in accordance with the rule described in Subsec-
tion 2.5 for merge points:

2.7. Path Sensitivity
An analysis is called path-sensitive if it is capable of

distinguishing execution paths of a program. The
implementation of path sensitivity described below is
based on expanding the use of value identifiers, which
are regarded as building blocks in conditional expres-
sions and in definitions of value identifiers. The goal of
path sensitivity is to filter out the paths not feasible due
to inconsistent conditions.

For a particular analyzer, adding path sensitivity
not only reduces the number of false warnings due to
inconsistent conditions but also increases the number
of true warnings. The latter is achieved by issuing
warnings in complex cases where an analyzer without
path sensitivity cannot provide an acceptable quality
of analysis.

vx vx

v p v p vx

v p v2 v2

v p v 2p v 2p v 2p

Γ
= Γ Γ

v

v v1 2

[](())
[](() [](())),

p

p p

VI journal
VI val VI prev�

Γ
= Γ Γ

= =

v

v v

2

1 2 2

[](())
[](() [](()))

[1;1] [2;2] [1;2].

i p

i x i

A journal
A val A prev�

�

47 No. 8 2021

862 BORODIN, DUDINA
For instance, in Listing 4, the path that passes
through two dereferences of p is not feasible.

1:void f(int a, int**p) {

2: int x = a+2;

4: if(a>10) {

5: *p = 0;

6: }

7: if(x<12) {

8: **p = 0;

9: }

10: }

Listing 4. Function with an infeasible path.

If the path were feasible, then a null pointer p deref-
erence would occur in line 8.

An attribute that characterizes conditions of occur-
rence of certain events is called a conditional attribute.
The value of an attribute is a formula, an expression of
propositional logic, where programming language
constants and value identifiers can be used to express
properties of values. An example of a condition is
(>) ∧ (≠ 0) ∨ (< 10).

There is a predefined conditional attribute Ness:
the necessary conditions for the reachability of an
edge in the control f low graph.

The other attributes are used by individual detec-
tors in accordance with the following scheme. At the
point where an event of interest occurs, the value of
attribute Ci is set to true and is associated with a certain
value identifier. At path merge points 1 and 2, the
value of the attribute is computed using the following
formula:

To filter out infeasible paths, an SMT solver is run
before issuing an error warning; as input, the solver
receives a conjunction between the necessary condi-
tion and the condition of a tracked attribute. If the
SMT solver returns unsat, then there is no error on
these paths.

For the example from Listing 4, the value of attri-
bute Ness is = + 2 ∧ < 12, and the value of the
attribute that tracks null pointer assignment is > 10.
With formula = + 2 ∧ < 12 ∧ > 10 having no
model, the SMT solver ensures that no false warning
about null dereference is issued.

It should be noted that transfer functions for ana-
lyzed properties and necessary conditions, as well as
the form of conditional attributes, depend on their
particular implementation. A simpler implementation
may not add condition = + 2 ∧ < 12 to the set
of required conditions. In this case, the path is not fil-
tered out. In fact, this is a path-sensitive analysis with-
out data sensitivity.

vx vy vx vy

Γ = Γ ∧ Γ
∨ Γ ∧ Γ

v v v

v v

1 1

2 2

[]() ([]() []())
([]() []()).

res i i

i

C Ness C
Ness C

vx va vx

va

vx va vx va

vx va vx
PROGRAMMING A
The SMT solver is called only when an error is sus-
pected. If the formula is not decidable, then the warn-
ing is not issued; in all other cases, the warning is
issued. The SMT solver is not called to compute inter-
mediate data.

The implementation of the path-sensitive analysis
described above has the following advantages:

• ease of extension for the analysis based on value
identifiers;

• high speed, because the SMT solver is called only
when an error is suspected;

• no constraints on types of analyzed formulas are
imposed.

3. IMPLEMENTATION
OF THE ANALYSIS IN SVACE

3.1. Heuristics

The analysis is non-sound and can use heuristics
both to improve its accuracy (sometimes to the detri-
ment of correctness) and to reduce the analysis time.
The main heuristics are as follows:

• the input parameters of the procedure, including
their offsets and dereferences, are not aliases;

• a selected set of paths of the analysis describes all
its essential paths (a path is considered essential if it
can affect the result of the analysis).

The analysis covers all possible paths in functions
without loops and only some paths in functions with
loops.

In addition, the following constraints on various
parameters are imposed:

• the body of a loop is traversed only twice (a larger
number of traversals slows down the analysis);

• the maximum number of references modeled for
one value identifier is 150;

• the maximum number of non-constant offsets
modeled for one pointer is 10;

• the maximum length of a chain of dereferences
and offsets modeled for variables is 6;

• the maximum analysis time for one function is
5 min.

The constraint on the analysis time for one func-
tion is used to protect against non-standard code. For
all well-known projects, the analysis of all functions
fits into the 5-min time limit.

3.2. Analyzed Language: svace0

The analysis is carried out for the internal represen-
tation in the svace0 language, which is a simplified
version of the LLVM language with additional instruc-
tions that make it possible to gather more information
about a program.
ND COMPUTER SOFTWARE Vol. 47 No. 8 2021

INTRAPROCEDURAL ANALYSIS BASED 863

Table 1. Analysis time for big projects

Project Code size,
thousand lines

Analysis time, min
Build time, min

server1 server2

tizen 5.5 19988 272 516 250
android 5 8561 236 421 31
android 9 java 12122 27 32 77
To analyze programs in C/C++, they are trans-
lated into the intermediate representation of LLVM,
which is then translated into svace0.

To analyze programs in Java, they are translated
into bytecode, which is then translated into svace0.
The implementation of the majority of detectors and
analyzers for C/C ++ and Java is similar.

This is a quite low-level language. On the one
hand, this makes it possible to adequately model the
semantics of programs; on the other hand, this com-
plicates the analysis of some high-level constructs.

3.3. Attributes

The simultaneous run of all analyzers and the pos-
sibility of using the results of other analyzers provide a
gain in both analysis time and memory consumption.
The high speed of the analysis is due to the absence of
redundant computations: the results of other analyzers
can be used immediately. Memory optimization is
achieved by the fact that the analysis does not need to
store the majority of abstract states: in the general case,
once an instruction is analyzed, the state on the incom-
ing edge is no longer required and can be deleted.

The results of the analysis are saved as attributes.
Adding a new attribute does not require significant
computational effort. Currently, there are more than
350 attributes implemented in Svace. Below are some
of their types:

• possible value interval for integer variables;
• array size interval and offset interval for array

pointers;
• mutex is locked;
• variable is received from an unverified source;
• line length interval;
• heap pointer is compared with a constant;
• heap allocation conditions;
• conditions under which a variable is not initial-

ized;
• conditions under which a pointer is assigned a

null value (required to find null pointer dereferences);
• conditions under which a variable can have a zero

value (required to find divide-by-zero errors);
• necessary reachability conditions for a point in a

program.
PROGRAMMING AND COMPUTER SOFTWARE Vol.
3.4. Other Analyses
In Svace, the analysis procedure described above is

only a small component used for intraprocedural anal-
ysis, which, in turn, forms a basis for summary-based
interprocedural analysis. Based on interprocedural
analysis, the analysis of constructors, destructors, and
class assignment operators for C++ is carried out to
detect inconsistencies in their implementation [7].

In addition, before initiating the intraprocedural
analysis, a data f low analysis is carried out for each
function; it computes important properties of the
function (unreachable code, termination functions,
live variables, etc.) in a conservative way [8].

Moreover, AST-based analyses are used to imple-
ment some of the detectors. These analyses are run in
modified compilers (clang and javac).

3.5. Results
Table 1 shows the analysis times for some open

source projects. Only the runtime of SvEng was mea-
sured. In the process of analysis, all implemented
detectors were enabled.

The analysis was carried out on two servers with the
following characteristics:

• server 1: Intel Xeon E5-2650 2.00 GHz, 32 cores,
256 GB RAM;

• server 2: Intel Core i7-6700 3.40 GHz, 8 cores,
32 GB RAM.

The source code size of the tizen and android oper-
ating systems is significant, which is why it is reason-
able to analyze them on a server with at least 32 GB of
RAM. The current speed of the analysis allows these
projects to be analyzed during a nightly build. For
comparison, Table 1 shows the build times for these
projects on server 1.

For many small projects, the analysis requires not
more than 2 GB RAM. Table 2 shows the data for the
busybox, cairo, xorg-server, and nss projects (which
amount to 139 to 393 thousand lines of code) on server 1
with limited memory.

The size of source code (in lines) allows us to
roughly estimate the complexity of a project. The
speed of the analysis depends on the complexity of
code and constructs used. It can be seen that the speed
of the analysis varies from 448 to 1534 lines per second
with 16 GB RAM. Reducing the amount of RAM to
47 No. 8 2021

864 BORODIN, DUDINA

Table 2. Analysis time for small projects

Memory, GB

Project

busybox-1.18.5 cairo-1.12.14 xorg-server-1.12.3 nss-3.17.4

Code size, thousand lines

139 270 393 355

16 310 176 524 336
8 314 160 521 336
4 319 156 520 335
2 338 158 594 378
1 419 231 1430 418
2 GB has only a slight effect on the analysis time. The
worst result (274 lines per second) was achieved for
xorg-server with 1 GB RAM; increasing the amount of
RAM to 2 GB speeds up the analysis of this project by
a factor of 2.4.

An important characteristic of the analyzer is the
percentage of true warnings. In fact, the goal is to issue
as many warnings as possible while ensuring an
acceptable level of true positives. Table 3 describes the
quality of warnings for 190 stable detectors. The table
includes only the data for SvEng. The “Total” column
shows the total number of warnings issued for the eval-
uated detectors, the “Labeled” column contains the
percentage of manually labeled warnings among the
issued warnings, and the “True” column provides the
percentage of true warnings among the labeled ones.

4. RELATED WORKS

Tools based on symbolic execution without state
merging are PREfix [9], Archer [10], and, apparently,
Prevent [11]. PREfix, which analyzes 50 paths by
default, was the earliest implementation. The number
of issued warnings almost ceases to vary upon consid-
ering more than 100 paths in a function.

The use of symbolic execution without path merg-
ing has both pros and cons. An obvious disadvantage is
the problem of exponential growth of paths in the
function. Because of this, the tool fails to analyze a sig-
PROGRAMMING A

Table 3. Quality of analysis

Project Total Labeled True

cairo-1.12.14 321 10.9% 94.2%
xorg-server-1.12.3 791 10.1% 78.7%
nss-3.17.4 826 22% 85.1%
busybox-1.18.5 1561 10.1% 80.5%
android 9 java 7327 10.68% 77.7%
android 5.02 10414 10.7% 76.4%
tizen 5.5 18920 22.1% 70.8%
nificant portion of paths in functions with a large
number of paths. In addition, the total time of the
analysis is higher as compared to the path merging
scheme. Another problem is creating a summary for a
function under analysis. For this purpose, it is
required either to implement an additional analysis or
confine oneself to a summary that incompletely
describes the behavior of the function (because not all
paths are analyzed). The advantages of this approach
are as follows: each path is modeled more accurately,
there is no need for a heuristic function to merge
abstract states, and the implementation of many
detectors is facilitated. In addition, it is easier to report
an error to the user because it is sufficient to show the
path under analysis.

The Saturn tool [12] unites states at path merge
points. A SAT solver is used. Detectors are run succes-
sively. A loop analysis method depends (among other
things) on the detector. Abstract states are not shared
among detectors. Duration of analysis depends sig-
nificantly on the enabled detectors. The Calysto tool
[13], which is based on the SMT solver, has a similar
architecture but higher speed and accuracy.

SharpChecker [14, 15] is a tool developed at the
Ivannikov Institute for System Programming of the
Russian Academy of Sciences to analyze C# pro-
grams. The tool is quite similar to the scheme
described above (state merging, simultaneous run of
all analyzers, and modeling of accessible memory
cells), even though it was originally designed to be
used in combination with an SMT solver. The current
loop analysis scheme implemented in Svace was bor-
rowed from this work. In the earlier versions of Svace,
states were merged on back edges.

5. CONCLUSIONS
In this paper, we have considered the intraproce-

dural analysis that enables a relatively fast and high-
quality processing of large amounts of source code,
which is confirmed by its implementation in Svace.

The general scheme of the analysis has been
described. It can be improved in the following ways:
ND COMPUTER SOFTWARE Vol. 47 No. 8 2021

INTRAPROCEDURAL ANALYSIS BASED 865
• adding devirtualization to construct a more
accurate call graph;

• improving the analysis of pointers, including the
use of path-sensitive pointer analysis;

• more accurate modeling of loops;
• reducing the number of modeled memory cells

and values of variables to speed up the analysis.

REFERENCES
1. Ivannikov, V.P., Belevantsev, A.A., Borodin, A.E., Ig-

natyev, V.N., Zhurikhin, D.M., Avetisyan, A.I., and
Leonov, M.I., Static analyzer Svace for finding of de-
fects in program source code, Tr. Inst. Sist. Program.
Ross. Akad. Nauk (Proc. Inst. Syst. Program. Russ.
Acad. Sci.), 2014, vol. 26, no. 1, pp. 231–250.
https://doi.org/10.15514/ISPRAS-2014-26(1)-7

2. Borodin, A., Belevantsev, A., Zhurikhin, D., and Izby-
shev, A., Deterministic static analysis, Proc. Ivannikov
Memorial Workshop, 2018, pp. 10–14.
https://doi.org/10.1109/IVMEM.2018.00009

3. Clang project. https://clang.llvm.org. Accessed Sep-
tember 10, 2020.

4. The javac compiler. https://docs.oracle.com/en/ja-
va/javase/11/tools/javac.html. Accessed September 10,
2020.

5. LLVM bitcode.
https://releases.llvm.org/8.0.1/docs/BitCodeFormat.
html. Accessed September 10, 2020.

6. King, J.C., Symbolic execution and program testing,
Commun. ACM, 1976, vol. 19, no. 7, pp. 385–394.

7. Borodin, A.E. and Belevancev, A.A., A static analysis
tool Svace as a collection of analyzers with various com-
plexity levels, Tr. Inst. Sist. Program. Ross. Akad. Nauk
(Proc. Inst. Syst. Program. Russ. Acad. Sci.), 2015,
vol. 27, no. 6, pp. 111–134.
https://doi.org/10.15514/ISPRAS-2015-27(6)-8

8. Mulyukov, R.R. and Borodin, A.E., Using unreachable
code analysis in static analysis tool for finding defects in
source code, Tr. Inst. Sist. Program. Ross. Akad. Nauk
(Proc. Inst. Syst. Program. Russ. Acad. Sci.), 2016,
vol. 28, no. 5, pp. 145–158.
https://doi.org/10.15514/ISPRAS-2016-28(5)-9

9. Bush, W.R., Pincus, J.D., and Sielaff, D.J., A static an-
alyzer for finding dynamic programming errors, Soft-
ware-Pract. Exper., 2000, vol. 30, no. 7, pp. 775–802.

10. Xie, Y., Chou, A., and Engler, D., Archer: Using sym-
bolic, path-sensitive analysis to detect memory access er-
rors, ACM SIGSOFT Software Eng. Notes, 2003, vol. 28,
no. 5, pp. 327–336.

11. Bessey, A., Block, K., Chelf, B., Chou, A., Fulton, B.,
Hallem, S., Henri-Gros, C., Kamsky, A., McPeak, S.,
and Engler, D., A few billion lines of code later: Using
static analysis to find bugs in the real world, Commun.
ACM, 2010, vol. 53, no. 2, pp. 66–75.

12. Aiken, A., Bugrara, S., Dillig, I., Dillig, T., Hackett, B.,
and Hawkins, P., An overview of the saturn project,
Proc. 7th ACM SIGPLAN-SIGSOFT Workshop Program
Analysis for Software Tools and Engineering, 2007,
pp. 43–48.

13. Babic, D. and Hu, A.J., Calysto: Scalable and precise
extended static checking, Proc. 30th Int. Conf. Software
Engineering, 2008, pp. 211–220.

14. Koshelev, V.K., Dudina, I.A., Ignatyev, V.N., and Bor-
zilov, A.I., Path-sensitive bug detection analysis of C#
program illustrated by null pointer dereference, Tr. Inst.
Sist. Program. Ross. Akad. Nauk (Proc. Inst. Syst. Pro-
gram. Russ. Acad. Sci.), 2015, vol. 27, no. 5, pp. 59–86.
https://doi.org/10.15514/ISPRAS-2015-27(5)-5

15. Koshelev, V., Ignatiev, V., Borzilov, A., and Belevant-
sev, A., Sharpchecker: Static analysis tool for C# pro-
grams, Program. Comput. Software, 2017, vol. 43, no. 4,
pp. 268–276.
https://doi.org/10.1134/S0361768817040041

Translated by Yu. Kornienko
PROGRAMMING AND COMPUTER SOFTWARE Vol. 47 No. 8 2021

	1. INTRODUCTION
	2. GENERALIZED ANALYZER
	2.1. Symbolic Execution with State Merging
	2.2. Value Identifiers
	2.3. References
	2.4. Pointer Graph
	2.5. Strong and Weak Updates
	2.6. Analysis Core and Additional Analyses
	2.7. Path Sensitivity

	3. IMPLEMENTATION OF THE ANALYSIS IN SVACE
	3.1. Heuristics
	3.2. Analyzed Language: svace0
	3.3. Attributes
	3.4. Other Analyses
	3.5. Results

	4. RELATED WORKS
	5. CONCLUSIONS
	REFERENCES

		2021-12-20T16:51:16+0300
	Preflight Ticket Signature

