
ISSN 0361-7688, Programming and Computer Software, 2021, Vol. 47, No. 7, pp. 493–504. © Pleiades Publishing, Ltd., 2021.
Investigation of RISC-V
V. A. Frolova,b,*, V. A. Galaktionova,**, and V. V. Sanzharovb,***

a Keldysh Institute of Applied Mathematics, Russian Academy of Sciences,
Miusskaya pl. 4, Moscow, 125047 Russia

b Moscow State University, Moscow, 119991 Russia
*e-mail: vova@frolov.pp.ru

**e-mail: vlgal@gin.keldysh.ru
***e-mail: vadim.sanzharov@graphics.cs.msu.ru

Received December 14, 2020; revised January 15, 2021; accepted February 8, 2021

Abstract—An instruction set architecture (ISA) is a core around which the rest of a CPU is built. Errors or
inflexible solutions once embedded in an instruction set remain with a corresponding generation of proces-
sors forever. Hence, one of the key reasons why the growth in the performance of modern CPUs slowed down
is that the source code of processors “got corrupted” literally and figuratively: processors become more com-
plex, which makes their further development more difficult. In any case, the development of modern com-
puters (CPUs, GPUs, or specialized systems) is an extremely expensive process, which involves a large num-
ber of expensive stages. Therefore, the overall cost of CPU development is a key issue. In this paper, we inves-
tigate popular instruction set architectures, as well as make some conclusions about the prospects of RISC-V and
other open-source architectures. We try to answer the following questions. Why an instruction set architec-
ture is really important? Why RISC-V is better than the other architectures? Which opportunities does RISC-V
open for developers around the world and what competitors does it have?

DOI: 10.1134/S0361768821070045

1. INTRODUCTION
One of our main goals as developers is to write

highly efficient applications. The problem is that,
nowadays, programming is not an easy process. Typi-
cal C++ code uses hardly a tenth of the performance
of modern CPUs [1]. This situation is mostly due to
the lack of a transparent interface between the pro-
grammer and the hardware.

• High-level algorithmic description in C++ (or
another language) is translated into assembler code by
using various optimization techniques up to automatic
vectorization. At this stage, the compiler actively
employs machine-dependent optimizations (i.e., it
optimizes the code for a particular family of proces-
sors).

• In practice, an assembler does not provide any
information about the degree to which this code is
optimized, even though it is directly translated into a
machine code. Here, there is a fundamental problem.

The fact is that, in addition to the architectural
level (i.e., the instruction set itself) visible to the com-
piler and programmer, there is also a microarchitec-
tural level, which is responsible for execution of these
instructions on the processor. Thus, the instruction set
is a kind of an interface, while a particular generation
of processors (e.g., AMD Zen [2] or Intel Cascade
Lake) is an implementation of this interface. When an

interface becomes outdated (ceases to meet current
requirements), the programmer modifies it. However,
there are cases where the interface cannot be modi-
fied, e.g., if other developers use its old version. For
software systems, this is not a big problem because an
old interface can usually be implemented through a
new one, which makes it possible to move forward
while providing backward compatibility. For hard-
ware, however, this is not the case.

Problem 1. Any extra function in an instruction set
requires certain resources of the chip (transistors, fre-
quency, heat dissipation, etc.), which increases the
complexity of the whole solution. Additional pipeline
stages aimed, e.g., at maintaining frequency cause an
increase in latency (immediate execution time) of
instructions, which can affect the efficiency of the
entire system. Since backward compatibility is import-
ant for CPUs, with each new generation of a processor
that extends its basic interface, the problems grow like
a snowball. In this review, we consider the disadvan-
tages of existing instruction set architectures. How-
ever, before proceeding to them, there are a few more
things we need to discuss.

Problem 2: Lack of cross-platform capability. Pres-
ently, high-performance software components (librar-
ies) heavily depend on particular hardware. CPU
manufacturers deliberately release open-source soft-
493

494 FROLOV et al.
ware stuffed with as many hardware-dependent
instructions as possible. For instance, Intel provides
an open-source ray tracing library (Embree), as well as
many other free libraries, which is fully packed with
hardware-dependent intrinsics. Needless to say, the
cost of the Xeon processors for which this library is
optimized is rather high. The cost of porting such a
library to a processor with a different instruction set
architecture is equivalent to writing its counterpart

from scratch. Worst of all, porting the code “head-on”
leads to poor performance and, therefore, makes no
sense.

Let us consider a simple example. The x64 set has
the shuffle instruction, which allows the contents of a
vector register to be arbitrarily redistributed. Using
this instruction, we can implement a cross product of
two three-dimensional vectors stored in registers:

__m128 shuffle_yzxw(__m128 a_src)

{ return _mm_shuffle_ps(a_src, a_src, _MM_SHUFFLE(3, 0, 2, 1)); }

__m128 cross(const __m128 a, const __m128 b)

{

 const __m128 a_yzx = shuffle_yzxw(a);

 const __m128 b_yzx = shuffle_yzxw(b);

 const __m128 c =

_mm_sub_ps(_mm_mul_ps(a, b_yzx), _mm_mul_ps(a_yzx, b));

 return shuffle_yzxw(c);

}

However, it turns out that it is impossible to efficiently
implement a counterpart of shuffle on ARM with the
same order of components (yzxw) as in the general
case. Nevertheless, this does not mean that the code
using vector products cannot be efficiently imple-
mented on ARM. In this case, computations and data
should initially be organized differently (e.g., using
full-fledged code vectorization with processing by
four elements, which generally works well even on
x64). Obviously, an experienced reader might argue
that portability problems can be avoided if we confine
ourselves only to the constructs of a programming lan-
guage (e.g., C++ or Ada). However, even if we do not
take hardware-dependent libraries into account, some
nuances still remain (see below).

Problem 3: Compiler. CPU developers (e.g., AMD)
make significant contributions, especially to gcc [2]
and Linux kernel [3], because they have a direct inter-
est in it. The compiler and OS are software systems
that also depend on hardware. One cannot expect that
the same code is equally optimizable for different
CPUs, even if they have almost identical functionality
(LLVM alleviates this problem, yet only to some
extent).

System security (problem 4) is a completely sepa-
rate issue. Here, the situation is very bad because, sim-
ply put, no one guarantees it (recall the “spectre” and
“meltdown” vulnerabilities). If you want to be pro-
tected, then develop your own computer, including
the OS, compiler, and drivers, from scratch.

Finally, efficient inter-thread communication in a
multithreaded program (problem 5) has not yet been
properly resolved in most instruction set architectures.
Presently, this is especially important, as modern pro-
cessors increase the number of their cores.

In this case, CPU manufacturers pull the blanket
on their side, often deliberately adding “convenient”
instructions to their processors. Software developers
start getting used to this “convenience” without taking
into account the difficulties it can cause in the future
when porting code to a processor with a different
instruction set architecture. We are not saying that
“shuffle” instruction, for instance, is a bad idea.
We simply say that this problem should not be solved
by companies in an individual manner if cross-plat-
form capabilities, backward compatibility, and secu-
rity are important. There must be a solid standard the
developer can rely on to guarantee that his or her pro-
gram can subsequently be ported to newer, better,
faster, more energy efficient, and/or more secure
computing systems without significant loss in perfor-
mance.

Remark. In this regard, we should mention GPUs.
Since backward compatibility never was a goal in their
case, GPUs have been progressing significantly faster
and have managed to achieve impressive results.
We do not say that there are no challenges there; how-
ever, the problems of software portability for GPUs are
solved at the level of graphics and computational
APIs, which are much more f lexible than an instruc-
tion set architecture. Thus far, GPU manufacturers
have agreed on an open standard called Vulkan, which
is supported by almost all modern desktop and mobile
GPUs. Like RISC-V, Vulkan is a well-designed stan-
dard. We intend to discuss this topic in one of our
future papers. Meanwhile, we can conclude that, as
strange as it may sound, software systems and algo-
rithms that extensively use modern GPUs generally
have much wider cross-platform capabilities than their
CPU-based counterparts.
PROGRAMMING AND COMPUTER SOFTWARE Vol. 47 No. 7 2021

INVESTIGATION OF RISC-V 495

Fig. 1. x64 registers.
2. OVERVIEW OF EXISTING INSTRUCTION
SET ARCHITECTURES

First of all, it is necessary to consider the experi-
ence in this field accumulated around the world.

2.1. x86/x64
Intel and AMD have achieved significant success

in the proliferation of processors of this architecture
due to its backward compatibility, aggressive optimi-
zations, and leading manufacturing technologies [4].
However, the design of the instruction set is not their
strong suit. This is evidenced at least by the fact that,
in their processors, x86/x64 instructions have long
been translated to a simpler RISC-like representation.
This very much resembles some old program with leg-
acy functionality that is still alive only because every-
one is used to it. However, if we put compatibility aside
and consider the problem objectively, then x86/x64
“just doesn’t make a lot of sense” ([4, p. 12]). Note
that this was said back in 1994 [5]. The main problem
with x86/x64 is an extremely bloated (over 2000 items)
and poorly structured instruction set. Many of the
instructions have not been used or supported for a long
time; however, they remain in the instruction set
because of backward compatibility. Let us discuss
some basic problems.

x86/x64 instruction encoding. In x86/x64, instruc-
tions can take different numbers of bytes: from 1 to 15.
In this case, with time, shorter operations have
become less frequently used. The original idea was to
PROGRAMMING AND COMPUTER SOFTWARE Vol.
encode the most frequent operations in fewer bytes
(recall Huffman codes). Eventually, however, it
turned into its opposite. For example, there are a
whole lot of six 8-bit instructions for processing num-
bers in decimal representation; this practice was aban-
doned in gcc long time ago ([4], p. 12) and it is not
implemented in modern CPUs; however, it still valid
in the x86/x64 instruction encoding system. The same
can be said about the entire x87 coprocessor, which is
an atavism in 2020, even though it is used in old 32-bit
programs.

Registers. In x86/x64, there are a lot of registers
(see Fig. 1). However, at the same time, oddly enough,
there are very few of them. The former is due to the
backward compatibility between x64 and x86, includ-
ing segment registers, x87 FPU stack, and other com-
ponents that have not been in use for a long time. The
latter is because there are only 16 useful registers (as
compared to just eight in x86). Meanwhile, new regis-
ters are permanently implemented on top of the old
ones (see Fig. 1) because 32-bit and 64-bit CPUs had
to execute existing binary 16-bit and 32-bit codes,
respectively.

It may seem that this figure is not so large for mod-
ern chips. However, that is not true: first, register
memory in modern CPUs can have a large number of
ports and, in fact, can be very expensive; second, the
register renaming mechanism, which is implemented
in all modern CPUs with out-of-order execution of
instructions, uses N times more physical registers
(where N is generally from 2 to 4) than there are logical
47 No. 7 2021

496 FROLOV et al.
registers in the instruction set. Such a large number of
unused registers is almost a crime. However, modern
x64 has some other problems.

• Two-address instructions: these instructions
always overwrite one of the operands, which hinders
standard optimizations and forces the compiler to
insert additional move operations. This problem even
gave rise to the following meme well-known among
programmers: “I like to mov it, mov it.”

• Some predicated instructions are designed to
improve performance. However, this goal is often not
achieved in x64 because their semantics is poorly
thought out. For instance, x64 has the conditional load
instruction. However, whereas unconditional loading
mandatorily requires an exception when referring to an
invalid address, it is not specified for conditional load-
ing. Because of this, the compiler quite rarely uses this
instruction for optimization when it is necessary to
guarantee correct code execution. Incidentally, these
instructions are exploited in the well-known “spectre”
and “meltdown” vulnerabilities (which, admittedly,
affect most of the modern architectures with specula-
tive execution). Upon fixing the critical vulnerabilities
in OS drivers, the performance of some applications,
on the contrary, dropped by 30%.

• Certain general-purpose registers are not actu-
ally general-purpose ones. For instance, the result of
the division operation is always in a DX/AX pair, while
the result of the shift operation always comes through
DX. ESI/EDI also have special semantics. In general,
this design pattern leads to inefficient data transfers
between registers and the stack [4].

2.2. ARMv7
Currently, x86/x64 have significantly more disad-

vantages than all other architectures. It is not surprising
that x86/x64 lost to ARM in the field of embedded sys-
tems, where energy efficiency is important. As com-
pared to x86/x64, ARM certainly seems a better choice.
However, the ARM architecture has its own disadvan-
tages.

• Lack of support for 64-bit address space in
ARMv7.

• ARMv7 has actually three instruction sets (rather
than one): standard mode and two compressed modes
(Thumb and Thumb 2). As a result, instruction decod-
ers must understand all three instruction sets, which
increases power consumption, latency, and design cost.

• In fact, ARMv7 is not a classic RISC architec-
ture. For instance, its program counter is one of the
addressable registers. This means that almost any
instruction can alter the control f low (i.e., perform a
jump). Worst of all, the last significant bit of the pro-
gram counter reflects the currently executed instruc-
tion set (ARM or Thumb), i.e., even the add instruc-
tion can change the instruction set currently executed
on the processor!
PROGRAMMING A
• Use of condition codes for jumps and predica-
tion, in fact, only complicates high-performance
implementations with out-of-order execution, even
though it makes sense for processors with in-order
execution or simple out-of-order execution based on
the scoreboard.

• A separate story is complex function call instruc-
tions “like, for example, “LDMIAEQ SP, R4-R7,
PC,” which performs six loads, increments the program
counter, and writes seven registers to the stack (includ-
ing the return address) and, in addition, is a conditional
instruction, namely, a conditional jump” [4].

• Finally, ARMv7 is a very large instruction set
with over 600 instructions, not including f loating
point and SIMD.

Of course, the question about the pros and cons of
complex instructions, as well as the question about the
bloating of the instruction set, is not so simple: is it
good or bad to have a large number of instructions?
Are complex instructions useful or not? Let us express
our opinion by using an analogy. When developing a
programming interface, it must reflect—in the sim-
plest and most obvious way—what happens in a sys-
tem, as well as express the goals pursued by its devel-
oper. It should not be too high-level or, conversely, too
low-level for its tasks. It should not contain unneces-
sary functions because this will complicate its subse-
quent support. A CPU instruction set is a quintessence
of a software–hardware interface, and it should con-
tain only functions that are actually implemented at
the hardware level. Hence, to answer this question, we
should take into account the best practices in this field
and make an informed decision in each particular
case. If the developer’s goals include portability, sim-
plicity, backward compatibility, and security, then it is
probably better to avoid complex instructions.

2.3. ARMv8

In 2011, a year after the commencement of the
RISC-V project, ARM announced a completely rede-
signed ARMv8 instruction system with 64-bit
addresses and extended set of integer registers. In the
new architecture, the ARM engineers removed the
ARMv7 functions that made implementation more
difficult: the instruction counter is no longer part of
the integer register set, there are no more predicated
instructions, complex instructions with multiple loads
and saves are removed, and instruction encoding is
facilitated. However, not all problems were resolved
and, in addition, new ones arose.

• Conditional codes are still used in cmov opera-
tions, which creates certain difficulties when renaming
registers: if a condition is not met, then an instruction
must still copy an old value to a new physical register.
In fact, this makes conditional move the only instruc-
tion that reads three source operands instead of two.
ND COMPUTER SOFTWARE Vol. 47 No. 7 2021

INVESTIGATION OF RISC-V 497
• ARMv8 is not modular. For instance, SIMD
instructions that imply the presence of 32 “fat” vector
registers are strictly mandatory. This is not suitable for
many embedded solutions where low cost and power
consumption are important.

In general, ARMv8 is a very large commercial
instruction set crammed with various functions: it
includes more than 1000 instructions in 53 formats,
described on about 6000 documentation pages. How-
ever, it still lacks some important things, e.g., an ana-
logue of Thumb (which is important for many embed-
ded systems due to limited memory for code) and
fused compare–branch instructions. In addition, the
function of placing constants directly in the code of an
instruction (the so-called immediate instruction) is
limited in both ARM versions: an arbitrary 32-bit con-
stant cannot be loaded directly from program code in
one or at least two instructions.

2.4. MIPS
The main problem of MIPS is the insufficient f lex-

ibility of its instruction set. Whereas x64 and ARM often
contain too-high-level instructions, MIPS instructions
go down to the microarchitecture level, assuming strictly
defined hardware implementation. For instance, the
results of multiplication and division are stored in a spe-
cial internal 64-bit register. This means that the result is

obtained using a separate instruction, even if we need
only 32 least significant bits.
mult R2, R3

mfhi R4

mflo R5

In fact, 32 most significant bits are almost always dis-
carded (what type do you think the result of multiply-
ing two 32-bit numbers in gcc with default settings will
have?) and only the least significant part is used. Here,
we can see a delay artificially introduced into the
instruction set (another example of this delay in MIPS
is the branch delay slot, namely, the “nop” instruc-
tion, which is inserted immediately after a branch
instruction). The problem of different pipeline lengths
for different instructions can be resolved by imple-
menting a simple variant of out-of-order execution
(scoreboard) while preserving complete determinism
and simplicity. On the other hand, the presence of this
additional internal state complicates superscalar imple-
mentation with out-of-order execution ([4, p. 4]).

There are also problems with f loating point in
MIPS. It should be noted that, in the MIPS assem-
bler, double-precision instructions use only registers
with even numeration. This is because double-preci-
sion numbers occupy two adjacent registers, e.g., a
pair (f2, f3) when accessing f2.

add.s $f1, $f0, $f1 # single precision add

sub.s $f0, $f0, $f2 # single precision sub

add.d $f2, $f4, $f6 # double precision add

sub.d $f2, $f4, $f6 # double precision sub

This solution has certain advantages. Since double
precision and single precision are not usually mixed in
C++ code, the same set of physical registers can be
used more efficiently either for the former or the latter.
This contrasts, e.g., with x64 and ARMv8, which use
half the 128-bit register for double precision and one
quarter of the register for single precision. In addition,
conversions from single precision to double precision
can be implemented relatively easily (this is also true
for x64 and ARMv8). However, there is also a down-
side here. The use of adjacent pairs of registers com-
plicates superscalar implementation with out-of-order
execution when renaming registers: upon renaming,
logically adjacent registers cease to be such in the
physical register file ([4, p. 6, par. 3]).

2.5. SPARC

A distinctive feature of SPARC is register windows. At
first glance, they seem to be a good idea: the actual num-
ber of registers is increased using the “base + offset”
technique, whereby “R1” actually means “SP+R1.”
This is convenient: a part of the stack is stored on reg-

isters; when calling functions, there is no need to move
data anywhere, and the compiler seems to become
slightly simpler.

However, register windows are expensive to imple-
ment. A large number of registers located “in the
stack” are actually not used. Recall that registers are
still more expensive than L1 cache due to the need for
multi-port memory; for instance, in Elbrus, which is
based on SPARC, the register file contains 20 ports,
which, in our opinion, is a lot ([6, p. 126]). Moreover,
when register memory runs out, an apocalypse in the
operating system occurs ([4, p. 6]).

In fact, the register stack could be implemented
through a circular buffer, and the unused registers
could be swapped in and out from the memory in par-
allel. However, this requires even more ports in regis-
ter memory! Something like that is observed in Elbrus
([6, p. 139]); however, the guide [6], in our opinion,
does not fully cover this situation. As a result, modern
researchers agree on the following: if we have extra
transistors, then it is reasonable to just make more reg-
isters and let the compiler have fun with inlining func-
tions. This task should not be shifted to hardware.
PROGRAMMING AND COMPUTER SOFTWARE Vol. 47 No. 7 2021

498 FROLOV et al.
However, there is another problem. SPARC has a
separate set of f loating point registers (organized as in
MIPS). Communication between integer registers and
floating point registers is done only through memory.
In addition, there are eight global registers. If a proce-
dure uses f loating point arithmetic or modifies global
registers, then they must be stored in a stack. Which
stack should it be then? We now have two stacks: one
in memory for f loating point and global registers, and
one on registers for integers. If, however, there is only
one stack, then we must first save the data into tempo-
rary memory cells, only to subsequently put them into
our register stack, where they will not be used in any
way. As a result, register windows for f loating point do
not work in SPARC.

2.6. Power
The Power instruction set architecture is a result of

the evolution of the instruction sets developed mostly
by IBM. This evolution can be represented as follows:

On the one hand, Power is a rather complex instruc-
tion set developed by IBM, a company which is not
famous for its openness. On the other hand, recently,
this architecture was made fully open-source on very
attractive terms [7]. Even though Power cannot be
called a simple architecture (it includes slightly less
than 1000 instructions in 25 formats, including vector
instructions), it is still not as complex as ARM. A fea-
ture of Power is its modularity: each register belongs to
a functional class, and most of the instructions in a
class use only registers that belong to this class. Only a
small number of instructions pass data between differ-
ent functional classes. Functional classes include con-
ditional class, fixed-point class, f loating-point class,
and vector class. Thus, a particular implementation
may not support, e.g., f loating point operations (like
some embedded solutions on the Power architecture).
In addition, their support can be disabled relatively
easily. Moreover, this differentiation of functionality
in the processor provides the compiler with the infor-
mation about dependencies between registers. How-
ever, this approach also has disadvantages: interaction
among different functional classes can lead to imple-
mentation-dependent delays. Looking ahead, this
approach is very similar to RISC-V; perhaps, that is
why the RISC-V developers did not mention the
Power architecture in [4].

Conditional registers should also be mentioned.
Like ARM and SPARC, Power has special registers in
which four status bits are set upon executing compari-
son operations. However, in Power, there are eight
copies of them. Each of these copies can be a result of
the comparison instruction, and each copy can be a
branch source. This redundancy allows instructions to
use different conditional states without conflict (when

→ →
→

POWER PowerPC Power ISA v2.x
Power ISA v3.x.
PROGRAMMING A
different branches of code have different states for sub-
sequent branches). In addition, it is possible to execute
logical operations between these 4-bit registers, which
enables one branch to check more complex condi-
tions.

Another feature of Power is two special registers: link
and count. The link register is used as a general-purpose
register (as in many other architectures) to store the
return address when calling a procedure. The count reg-
ister acts as a counter in loops with a fixed number of
iterations. Using this special register, hardware can
quickly determine probable branches because the regis-
ter value is known at the beginning of an execution
cycle. In addition, both registers can contain the
address of a conditional branch, and there are special
instructions to get this address. On the one hand, this
solution provides certain speedup when processing
branches; on the other hand, it introduces additional
complexity in the implementation.

The Power architecture has some other specific
instructions: multiple load and store (up to 32 regis-
ters), generating a random number in a register, set of
48 instructions to support decimal f loating point, etc.
For vector extension, 128-bit fixed-point numbers are
supported, and there is an extension that adds vector-
scalar instructions. Thus, Power has a number of spe-
cific features, which can be both an advantage (perfor-
mance) and disadvantage (complexity). This specific-
ity is reflected in the existing applications and imple-
mentations of this instruction set architecture:
supercomputers (the first two positions in TOP500 are
occupied by Power9-based computers) and microcon-
trollers (used mainly in the automotive and aircraft
industries). Other examples of Power implementa-
tions are a component of the Cell Broadband Engine
used in Playstation 3 and the Apple Power Mac com-
puters released before 2006.

The large variety of Power applications led to the
fact that the ecosystem created by independent devel-
opers (rather than the instruction set itself) became
one of the main problems of Power. Highly specific
applications hinder the formation of a wide developer
community capable of producing efficient applica-
tions for this architecture and contributing to its sup-
port and refinement.

However, in recent years, this situation has been
improving. Computers based on Power9 processors
[8], which feature open-source firmware of the boot-
loader and other related components, became avail-
able to ordinary users. The instruction set itself
became public and open-source FPGA implementa-
tions appeared [9]. The Libre-RISCV project aimed at
developing an open- source GPU [10], which was ini-
tially based on RISC-V, switched to the Power archi-
tecture (the reasons, however, were more likely politi-
cal [11]). A project to create an open-source laptop
based on PowerPC is being developed [12]. However,
thus far, all in-silicon implementations of the Power
ND COMPUTER SOFTWARE Vol. 47 No. 7 2021

INVESTIGATION OF RISC-V 499
architecture were carried out with the direct participa-
tion of IBM. The future will show whether Power,
which has become open-source, will be able to catch
up with RISC-V or IBM, having once lost its PC mar-
ket share, will again repeat its mistake. In our opinion,
Power is a worthy competitor to RISC-V.

3. INVESTIGATION OF THE RISC-V
ARCHITECTURE

The RISC-V instruction set architecture is devel-
oped at the University of California, Berkeley. Its basic
concept is formulated as follows: RISC-V must
become a unified instruction set architecture for com-
puters of all types, from microcontrollers to high-per-
formance systems. In reality, behind this perfectionist
agenda, there are a number of practical and very spe-
cific goals.

1. Improving energy efficiency and performance,
lowering the number of transistors, and reducing the
cost of developing and supporting processor cores due
to a well-designed interface: the developers of proces-
sor cores in their basic version are required to imple-
ment only a relatively small set of instructions (as
compared to other open- and closed-source instruc-
tion sets) to obtain a fully operational system. Then,
the developers can focus on their specific tasks.

2. Modularity and extensibility. Presently, there are
many basic instruction sets, and RISC-V is far from
being the smallest of them. The main problem with
existing instruction set architectures is that a small set
of instructions is not universal. It can be focused, e.g.,
on high performance computing or tasks that require
specific hardware functions (multithreading, graphics,
cryptography, etc.). RISC-V is designed to solve this
problem by implementing a modular structure of its
instruction set. PC developers can employ already
available extensions (e.g., RVF32 for f loating point
operations or RVA32 for atomic operations) or add
their own solutions: the instruction set is designed to
be extensible. Thus, it is assumed that developers of
particular systems extend the architecture. This
approach fundamentally distinguishes RISC-V from,
e.g., ARM: the extension of ARM is not only very
problematic, but also the ARM company itself explic-
itly prohibits its extension in the license agreement.

3. Reducing the development cost of various elec-
tronic systems by creating an open ecosystem: compil-
ers, operating systems, drivers, and peripherals. In addi-
tion, it offers open-access repositories, which already
include a lot of high-quality solutions developed by the
RISC-V community.

4. Backward compatibility of software: programs
developed for old CPUs (more precisely, CPUs that
support fewer extensions) must run on new ones
(CPUs of the same instruction set architecture but
with a larger number of supported extensions) without
recompilation. In addition, the compatibility of librar-
PROGRAMMING AND COMPUTER SOFTWARE Vol.
ies is implemented at the binary level: a static library
compiled for one OS and one CPU can be used as it is
on another OS and another CPU due to compatibility
at the compiler and CPU levels. However, this requires
an additional remark. If a program uses some existing
extension (e.g., f loating point) or, especially, some
custom-made extension, then this library may not run
as it is on another system. Nevertheless, due to speci-
fication of extensions, the situation can be improved!
The compiler can recompile a user library while
replacing, e.g., f loating point instructions or instruc-
tions of any other extension with calls of the corre-
sponding functions implemented in software. In the
case of commercial instruction sets like x64 or ARM,
this is much more difficult to do.

5. Security. If vulnerability is found in one RISC-V
CPU, then it can easily be replaced with another
RISC-V CPU, maybe a less efficient yet more secure
one. In this case, all necessary software can be run on
the latter with minimal effort and time.

6. Safety. Life-critical software (on which people’s
lives depend) undergoes a special certification proce-
dure and sometimes formal verification, whereby the
correctness of a program is proved mathematically.
The cost of these procedures can significantly exceed
the cost of software development. However, even if the
correctness of an operating system kernel is proved,
the certification procedure is a separate process and,
in that case, it is often impossible to change hardware.
That is why the Power architecture is widely employed
in the field of civil aviation. The RISC-V standard
allows the cost of the certification procedure to be
reduced because the instruction set and software
largely remain the same. This means that some part of
the system is changed in one way or another to meet
the requirements of a particular client, and it is
important that this part be small to reduce the cost of
the certification procedure.

3.1. Core Instruction Set of RISC-V

The RISC-V instruction set has the following dis-
tinctive features.

1. Absence of implicit internal states. The result of
any operation (except for jump instructions) is always
placed in a general register. In other words, RISC-V
does not have, e.g., state f lags, which are used by the
cmp instruction in x86. Instead, the result of the com-
parison instruction is placed in one of the general reg-
isters. This approach significantly facilitates supersca-
lar implementation with out-of-order execution; how-
ever, as compared to f lags or other states, it does not
add significant overhead to simple implementations.

2. Absence of predicated instructions. More pre-
cisely, they are absent in the core set but are included
in the vector extension. Predicated instructions are
absolutely necessary for VLIW processors (Elbrus)
and vector data processing. However, the gain from
47 No. 7 2021

500 FROLOV et al.

Fig. 2. RISC-V computational instructions. Integer instructions from the RISC-V core set. In fact, there are only 11 different
instructions, because most of them are implemented in two formats: R-format (standard) and I-format (whereby the second
operand is read directly from the instruction). It should be noted that storing constants in code is a great idea that improves per-
formance. With instructions already being on the chip in one way or another, a constant can be read from instruction memory
with zero cost.
using them in scalar code is generally not very large.
To improve the efficiency of branching, the RISC-V
developers add a simple implementation of a branch
predictor (the so-called branch target buffer in the
form of a small table of branch addresses), which also
allows one to get rid of the branch delay slot. On the
other hand, the absence of these instructions facili-
tates the implementation of superscalar processors
with out-of-order execution.

3. Compact core set of instructions. The core set
(see Fig. 2) includes only 11 basic arithmetic instruc-
tions (most of them can occur in two forms, giving a
total of 21 instructions), 10 memory access instruc-
tions, and 8 branch instructions. Thus, there are 39
instructions in total.

4. Loading an arbitrary 32-bit constant from
instruction memory in two commands (liu + the next
instruction in the I-format). In this case, most of the
constants 12 bits or less in length are loaded from pro-
gram code in one instruction (I-format).

5. 32 general-purpose registers, which is two times
more than in most RISC architectures.

6. Compressed 16-bit representation of instructions
(RV32C) similar to ARM Thumb for microcontrollers.

7. Relaxed memory model support in the core set
(see Fig. 3). This model does not deal with actual
atomic operations; for them, there is a special RV32A
PROGRAMMING A
extension. The relaxed memory model is a more
explicit (than traditional) expression of data synchro-
nization between threads in a multithreaded program.
For this purpose, C++ uses a special part of its stan-
dard library (see std::memory_order). The fact is that
data communication between threads is actually a very
difficult and often expensive operation, taking into
account multi-level cache in modern processors. The
widely accepted strong memory model (whereby any
memory modification made in one thread must be
immediately seen in another thread) is one of the main
factors that limit performance gain from increase in
the number of cores. The relaxed memory model helps
the programmer to more clearly express his or her
intentions, e.g., by avoiding expensive data synchroni-
zation via L2/L3 cache when writing to a memory cell
if there is no need in it.

8. Fused compare–branch instructions, which
reduce the amount of program code.

9. Instructions that speed up function calls (jal), vir-
tual function calls, and switch statements (jalr).

Thus, the extremely compact set of less than 40
instructions contains a large number of useful func-
tions.
ND COMPUTER SOFTWARE Vol. 47 No. 7 2021

INVESTIGATION OF RISC-V 501

Fig. 3. RISC-V instructions for working with memory, including special fence instructions for data synchronization in multi-
threaded programs.
3.2. Floating Point in RISC-V
The RV32F floating point extension adds 32 new

registers. The support of instructions for conversion to
integers (including inverse conversion), as well as
instructions for immediate data transfer from an inte-
ger register to a f loating point register, which is a prob-
lem for many existing instruction set architectures
(where data have to be moved through memory),
should be especially noted. In RV32D, there are no
move operators for double precision because double-
precision registers occupy two times more bits (never-
theless, they are available in RV64D); however, oper-
ators for f loating-to-integer conversion are imple-
mented in RV32D. The presence of FMA instructions
(fused multiply–add/subtract operations), which sig-
nificantly reduce the amount of code and improve
performance, should also be noted.

3.3. RISC-V Vector Extension
The RISC-V architecture has even more useful

extensions. Let us consider the RV32V extension for
vector operations. It has the following key features.

1. Vector length is not fixed in the instruction set,
and it is set in a program by using a special instruction.
This is a fundamentally different approach, as com-
pared to other architectures, which allows programs
compiled for a longer vector to be executed on processors
with short vector length, even with lower performance.
In modern x64 processors, for instance, this is impossi-
ble. If a program is compiled, e.g., with AVX512, then
this program can run only on expensive Xeon models
and latest 109*0X processors with large vector registers
(zmm).

2. Predicated execution, i.e., the presence of masks
in all vector operations. This approach is equally good
for both common CPU programs and massively paral-
lel systems (like OpenCL).

3. Vector registers are separated from the other reg-
isters, and data transfer between a scalar and a vector
is also supported at the hardware level. Hence, in
RISC-V, there are no unexpected problems in mixed
PROGRAMMING AND COMPUTER SOFTWARE Vol.
scalar–vector code as, e.g., in x64 (and especially in
x86), where it is often better to explicitly use the vector
type __m128, instead of f loat or int, if we want to be
sure that there are no unnecessary data uploads from
vector registers to memory.

4. There are some other operators used in vector
code, e.g., to load data from memory with a certain
step, gather and scatter; matrices are also supported.

Overall, we can say that the vector extension is
designed taking into account the experience of many
other architectures and, like the rest of the instruction
set, it is well implemented. In this connection, the
enoki library project, which tries to emulate this func-
tionality at the software level on x64 and ARM, should
also be noted; moreover, in gcc, variable vector length
has been implemented at the compiler level (even
though, in gcc, it must be a multiple of four) [13].

4. RISC-V TODAY
Currently, the RISC-V community includes many

well-known companies (Fig. 4). Among them, we
would like to mention Nvidia, which uses RISC-V and
Ada to create self-driving cars, and Alibaba, which
introduced an IP block for artificial intelligence in
2019. In addition, RISC-V is already gaining popular-
ity at the level of large government entities: India
declared RISC-V a national standard, US DARPA
requires RISC-V as a mandatory component for a
number of programs (including the entire field of HW
security research), Israel Innovation Authority creates
a common platform GenPro based on RISC-V, China
announced a large grant program to support RISC-V-
based solutions (2018), and the European Union dis-
cusses a large RISC-V HPC project. In addition,
RISC-V forms the basis of training programs in com-
puter science and electronic engineering at many uni-
versities. Finally, RISC-V has come to Russia [14].

We are sure that there are more examples that prove
the maturity of the standard. What is more important
is that, presently, RISC-V already has a firmly estab-
lished ecosystem:
47 No. 7 2021

502 FROLOV et al.

Fig. 4. Some of the companies that are involved in the development of the RISC-V ecosystem and use this ecosystem in their
solutions.
• open-source software: GCC, Linux, BSD, LLVM,
QEMU, FreeRTOS, ZephyrOS, LiteOS, and SylixOS;

• commercial software: Lauterbach, Segger,
Micrium, ExpressLogic, etc.;

• open-source processor cores: Rocket, BOOM,
RI5CY, Ariane, PicoRV32, Piccolo, SCR1 (Syn-
tacore, Russia), Hummingbird, etc.;

• commercial processor cores: Codasip, Cortus,
C-Sky, Nuclei, SiFive, Syntacore (Russia), etc.;

• companies using RISC-V internally: Nvidia,
Western Digital, Qualcomm, CloudBear (Russia), etc.

4.1. Prospects for Domestic Developers
Here, we would like to mention the most famous

domestic processors: Elbrus from MCST, slightly less
well-known NMC4 (neuromatrix) from STC “Mod-
ule,” and “multicore” from Elvis. Both Elbrus and
NMC4 are VLIW processors with their own compilers
and specific infrastructures. From a technical per-
spective, in our opinion, these are very good solutions,
especially when high performance is required. For
instance, the current version of the Elbrus processor
holds the absolute record on the number of instruc-
tions per cycle (up to 50) and outperforms the latest
products from Intel and AMD in many tasks. How-
ever, these solutions are expensive and mostly propri-
etary.

The problem with most of the domestic companies
is that their solutions do not sufficiently follow open-
source standards, which is why their applicability is
limited even in Russia. Considering domestic develop-
PROGRAMMING A
ments in the field of civil aviation software, we can
conclude that the developers are reluctant to work
with the closed-source and specific ecosystem of
Elbrus, just like with any other non-transparent sys-
tem. In this connection, it should be noted that, for
onboard and many other applications, there are certi-
fication procedures and closed-sourced solutions are
unacceptable. Moreover, weapons systems exported
by Russia are often supplied with foreign electronic
components because customers do not trust domestic
ones (like any other closed-source systems).

With all its advantages, unfortunately, the VLIW
technology (used by Elbrus [6] and NMC4) does not
fit in with the RISC-V ideology because of the follow-
ing fundamental contradiction: whereas the RISC-V
approach provides an interface while distinguishing
between the architectural and micro-architectural lev-
els, the VLIW approach is exactly the opposite (its
instruction set is formed specifically for the microar-
chitectural level of a particular processor with a given
number of blocks of a certain type). For instance, if
two different VLIW processors have different numbers
of f loating point multiplication blocks (and there are
no other differences between them), then the compiler
generates different programs for them. However, this
does not mean that standardization and openness are
impossible for VLIW in principle. In this case,
OpenCL or Vulkan could be of use: if the execution of
a group of threads (e.g., 256 or 512 threads) in the mas-
sively parallel model is regarded as a loop, then this
loop can obviously be pipelined at the software level.
Since, in most cases, OpenCL threads process data
ND COMPUTER SOFTWARE Vol. 47 No. 7 2021

INVESTIGATION OF RISC-V 503
independently, the software mechanism of loop pipe-
lining should provide good results.

4.2. Disadvantages of RISC-V
Despite the obvious advantages of RISC-V over its

competitors, there are a number of nuances.
1. Any standardization organization, like the RISC-V

consortium (or, e.g., Khronos), has two faces. One of
them is openness, compatibility, and ease of entry for
small companies. The other one is limited flexibility:
only very large sponsors are allowed to add their exten-
sions of an instruction set architecture, and even for
them this is a complex process. As mentioned above,
the open-source GPU project Libre-RISCV switched
to the Power architecture (without changing its name)
while referring to the impossibility of obtaining the
necessary documentation from the community. How-
ever, the cause of the conflict is clear: the developers
of Libre-RISCV proposed a vector extension (called
Simple-V) that apparently was not of interest to the
RISC-V community due to the development of the
community’s own vector extension.

2. As for high performance, almost all RISC-V
materials exhibit a very strong bias towards superscalar
cores with out-of-order execution. On the one hand, it
is expectable because this way of performance improve-
ment is a natural development of the RISC ideology.
On the other hand, it looks like lobbying for a certain
technology in order to promote in-house develop-
ments.

3. Thus, RISC-V is not a universal solution because,
in its current version, it cannot be used as a basis, e.g., for
VLIW processors (note that the VLIW approach is not
mentioned in RISC-V documentation). Moreover, in
the vast majority of cases, the RISC-V community is
silent about GPUs, getting away with vague comments
in their presentations.

4. As compared, e.g., to Power, the RISC-V eco-
system seems less mature (yet more holistic) because
RISC-V still has significantly fewer in-silicon imple-
mentations, while Power has long been used in the air-
craft industry.

5. CONCLUSIONS
Presently, electronic systems have become so com-

plex that adherence to open standards is now crucial to
viability and cost-effectiveness of projects. Even for
specific hardware functions, there is no reason not to
consider open standards as a basis for development of
new technologies. RISC-V is a well-designed standard
that allows one to solve the following problems when
developing hardware and software systems: compati-
bility (including backward compatibility in the long
term), security, certification, power consumption,
efficient multithreading, and cost-effectiveness. This
is especially important when designing CPUs and
PROGRAMMING AND COMPUTER SOFTWARE Vol.
their environment (memory interface, cache, etc.),
operating systems, compilers, drivers, and high-per-
formance libraries. When starting a new project in one
of these areas, RISC-V is definitely worth considering.

Among instruction set architectures, a worthy
competitor to RISC-V is Power (as well as the Open-
POWER project), which in practice proved the possi-
bility of using a unified instruction system for different
applications (from embedded systems to supercom-
puters). It is worth considering if the maturity of the
technology is more important then the cost of chip
development, or if there is a good ready-made solution
available. MIPS has also recently become open-
source (due to the progress of RISC-V); however, its
extensibility is limited. SPARC is a very outdated solu-
tion, which has failed in several applications (first of
all, due to register windows). In addition, it has prob-
lems with f loating-to-integer conversion, which cur-
rently makes it one of the worst options.

The other popular instruction set architectures
considered in this paper are intellectual property of
commercial companies (their licenses only cost from
$1 million). ARM, which presently dominates the
market, being implemented in a huge number of chips
(mainly due to their affordability), will fight to the last
against the transition of the global IT community to
open-source technologies; however, in our opinion, it
is only a matter of time. In addition, with the develop-
ment of open-source software, the need for x86/x64
support in 2020 has become vanishingly low, and it is
likely that personal computers will eventually switch to
RISC-V because nowadays x86/x64 “just doesn’t
make a lot of sense” [5].

REFERENCES
1. Albrecht, T., Pitfalls of object-oriented programming,

2009.
http://harmful.cat-v.org/software/OO_program-
ming/_pdf/Pitfalls_of_Object_Oriented_Program-
ming_GCAP_09.pdf. Accessed April 1, 2020.

2. Venkataramanan, K., [patch][x86_64]: AMD znver2
enablement, 2018. https://gcc.gnu.org/legacy-ml/gcc-
patches/2018-10/msg01982.html?print=anzwix. Ac-
cessed April 1, 2020.

3. Larabel, M., AMD vs. Intel contributions to the Linux
kernel over the past decade, 2020. https://www.phoro-
nix.com/scan.php?page=news_item&px=AMD-In-
tel-2010s-Kernel-Contrib. Accessed April 1, 2020.

4. Waterman, A.S., Design of the RISC-V instruction set
architecture, Technical report no. UCB/EECS-2016-1,
University of California at Berkeley, 2016. https://peo-
ple.eecs.berkeley.edu/~krste/papers/EECS-2016-1.
pdf. Accessed March 31, 2020.

5. Slater, M., AMD’s K5 designed to outrun Pentium,
Microprocessor report, 1994.
http://cgi.di.uoa.gr/~halatsis/Advanced_Com-
p_Arch/Papers/k5. Accessed March 31, 2020.

6. Kim, A.K., Perekatov, V.I., and Ermakov, S.G., Mikro-
protsessory i vychislitel’nye kompleksy semeistva
47 No. 7 2021

504 FROLOV et al.
“El’brus” (Microprocessors and Computing Systems of
the Elbrus Family), St. Petersburg: Piter, 2013.

7. Blemings, H., Final draft of the Power ISA EULA re-
leased, 2020. https://openpowerfoundation.org/final-
draft-of-the-power-isa-eula-released. Accessed March 31,
2020.

8. Raptor Computing Systems, Talos II, 2019.
https://www.raptorcs.com/TALOSII. Accessed March 31,
2020.

9. Blanchard, A. and Mackerras, P., Microwatt project on
GitHub: A tiny Open POWER ISA softcore written in
VHDL 2008, 2020.
https://github.com/antonblanchard/microwatt. Ac-
cessed March 31, 2020.

10. Leighton, L.K.C., Immanuel, Y., Lifshay, J., et al., Li-
bre-RISCV GPU project, 2019.
https://libre-riscv.org/3d_gpu. Accessed March 31,
2020.
PROGRAMMING A
11. Leighton, L.K.C., [libre-riscv-dev] power pc, 2019.
http://lists.libre-riscv.org/pipermail/libre-riscv-dev/
2019-October/003035.html. Accessed March 31, 2020.

12. Open Hardware GNU/Linux PowerPC notebooks,
2020. https://www.powerpc-notebook.org/en. Ac-
cessed March 31, 2020.

13. GCC manual, 6.49: Using vector instructions through
built-in functions, 2019. https://gcc.gnu.org/onlined-
ocs/gcc-4.7.2/gcc/Vector-Extensions.html. Accessed
April 1, 2020.

14. Asanovic, K., Redkin, A., et al., Tekhnicheskii simpozi-
um RISC-V Moscow (Proc. Tech. Symp. RISC-V Mos-
cow), Moscow, 2019. https://riscv.expert. Accessed
April 1, 2020.

Translated by Yu. Kornienko
ND COMPUTER SOFTWARE Vol. 47 No. 7 2021

	1. INTRODUCTION
	2. OVERVIEW OF EXISTING INSTRUCTION SET ARCHITECTURES
	2.1. x86/x64
	2.2. ARMv7
	2.3. ARMv8
	2.4. MIPS
	2.5. SPARC
	2.6. Power

	3. INVESTIGATION OF THE RISC-V ARCHITECTURE
	3.1. Core Instruction Set of RISC-V
	3.2. Floating Point in RISC-V
	3.3. RISC-V Vector Extension

	4. RISC-V TODAY
	4.1. Prospects for Domestic Developers
	4.2. Disadvantages of RISC-V

	5. CONCLUSIONS
	REFERENCES

		2021-12-01T13:24:47+0300
	Preflight Ticket Signature

