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Abstract—The classical Monte Carlo ray tracing is a powerful technique for modeling almost all effects in
geometric optics; however, it can be prohibitively slow in many cases, such as generation of images seen by an
objective or camera with a point aperture. For this reason, numerous modifications of this technique are
used, among which is the bidirectional stochastic ray tracing with photon maps. A drawback of all stochastic
methods is the undesirable noise. The noise level, i.e., the variance of the pixel luminance calculated for one
iteration step, depends on various parameters, such as the number of rays traced from the light source and
from the camera, the method of merging their trajectories, the integration sphere radius, etc. The choice of
the optimal parameters makes it possible to minimize the noise level for the given computation time. This is
the topic of the current paper. It is shown that the variance of the pixel luminance is the sum of three functions
scaled by the reciprocal of the number of rays tracedfrom the light source and from the camera, where the
functions themselves are independent on the number of rays. Therefore, given these functions, one can pre-
dict the noise for any number of rays and thus find the optimal set of parameters. The calculation of these
functions based on the data obtained by ray tracing is a nontrivial problem. The paper proposes a practical
method for their calculation, and demonstrates that a single such calculation is able to predict the variance
for an arbitrary number of rays. Therefore, the noise can be minimized due to the optimal choice of the num-
ber of rays.

DOI: 10.1134/S036176882103004X

1. INTRODUCTION
Presently, modeling of light propagation is widely

used in realistic computer graphics and for designing
new materials and optical systems [1]. It is also used in
architectural, automobile and aircraft design. If wave
effects may be neglected in a problem, then stochastic
ray tracing methods are a good choice. This group of
methods mainly includes the simulation of radiation
transport using the Metropolis method [2] and sto-
chastic ray tracing [3]. The classical forward ray trac-
ing beginning from the light source is inefficient for
image generation, and for this reason it is replaced by
bidirectional modifications of this method [4–6].
Among them, we consider the so-called bidirectional
stochastic ray tracing with photon maps (BDPM –
Bidirectional Photon Mapping) [5, 7]. A drawback of
all stochastic methods is that they produce noisy
results. Therefore, the noise reduction problem is
always important, and it is considered in many works,
e.g., see [8–10].

The level of noise in BDPM mainly depends on the
random scattering of the forward and backward rays,
on the choice of the vertex for their merging (or, in
other words, on the vertex of the camera ray trajectory

at which photon maps are used for estimating the
luminance), and, finally, on the number of forward
and backward rays traced in one iteration step. The
majority of studies is devoted to the first two issues
(e.g., [9–12]), and the number of rays got less atten-
tion. However, this is an important factor, and it often
happens that the number of forward rays is already
redundant and its further increase only increases the
computation time but does not reduce the noise.
In other cases, it may happen that the number of for-
ward rays is indeed critical, while the number of traced
backward rays is redundant.

This situation is illustrated in Table 1, where the
dependence of variance (RMS) after a fixed computa-
tion time on the number of forward rays (from the light
source) NF and backward rays (from the camera
through the pixel) NB is shown. The scene description
can be found in the section Results. In this example,
there is almost no dependence on the number of back-
ward rays NB (indicated in columns), while there is a
minimum of noise level at NF ≈ 3000 depending on the
number of rays emitted from the source. Here we see
that the general claim that the more rays the lower the
noise does not hold.
194
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Table 1. Mean RMS over the region of the image marked by
a red box in Fig. 2 after 1000 seconds of computation for
various numbers of rays NF and NB

NF|NB 5 10 25 100

100 0.135 0.135 0.135 0.135
1000 0.101 0.101 0.101 0.101
3000 0.099 0.099 0.099 0.099

10000 0.101 0.101 0.101 0.101
30000 0.110 0.110 0.109 0.109

100000 0.136 0.136 0.135 0.135
It is usually difficult to predict which fraction of the
forward and backward rays is optimal: however, a good
choice can speed up the computations by several fold.

In this paper, we consider the optimization prob-
lem. In [8], a general rule determining noise in the
BDPM was derived. It states that the variance of the
pixel luminance is the sum of three components scaled
by the reciprocal of the number of rays. These three
components are independent of the number of rays
and, therefore, they can be calculated once and then
used for predicting the dependence of the noise level
on the number of rays traced in one iteration step. In
this way, we are going to predict the optimal number of
rays. In other words, if we know these three compo-
nents, then we are able to predict the level of noise for
any number of rays.

Even though the mathematical expression is trivial,
these values are difficult to calculate in the process of
ray tracing. In this paper, we describe a method for
their effective calculation, and it is shown how they
can be used for choosing the optimal number of rays.

2. NOISE IN THE BIDIRECTIONAL RAY 
TRACING WITH PHOTON MAPS

In the BDPM, the computations are typically iter-
ative. At each iteration step, NF light paths and NB(p)
paths from the camera are traced for each pixel p.
Next, we check each pair, and if the light path goes
sufficiently close to a vertex on the path from the cam-
era, we join them to obtain the complete path from the
camera to the light source. Next, we calculate the con-
tribution of this joined path to the pixel luminance and
increase the pixel luminance by this magnitude. The
accumulated sum divided by NFNB(p)NI (where NI is
the number of iterations) converges to the luminance
expectation. This mean value is independent of NF and
NB(p), but its variance (noise) can vary significantly.
For example, if there are too many light ray trajectories
and the ray trajectories issued from the camera are few,
then tracing the redundant light rays only wastes time
without improving the image quality; therefore, it is rea-
sonable to reduce the number of the redundant rays.
PROGRAMMING AND COMPUTER SOFTWARE  Vol. 
The optimal number of rays (which is common for
all light paths in each scene and individual for each
pixel for the paths from the camera) is the number that
minimizes the noise after a fixed computation time.
To solve this minimization problem, we need to know
how the variance of the value obtained in one iteration
step depends on the number of rays. This dependence
is described by a simple algebraic formula [8]; how-
ever, its terms are not easy to find numerically.

Here and below, we always deal with values for one
specific pixel p; for this reason, we will omit the pixel
indication and will write NB instead of NB(p).

It was shown in [8] that the luminance variance at
a given pixel calculated during one iteration step is

where C(X(F), X(B)) is the contribution of the merged
path from the source X(F) and the path from the camera
X(B) to the pixel luminance, its mean C clearly coin-
cides with the limiting (exact) pixel luminance L, and
⋅F and ⋅B denote averaging over the ensemble of the
paths issued from the light source and the camera,
respectively.

Note that this functional form is independent of
whether or not the multiple importance sampling [13]
is used and is even independent of whether vertex
merging or vertex connection by an additional trajec-
tory segment [9] is used; however, the quantities
C2, , and  depend on the computa-
tion strategy. In any case, they are independent of the
number of rays, but they can depend on the radius of
the integration sphere (i.e., on the radius of vertex
merging).

3. CALCULATION OF THE COEFFICIENTS
IN NOISE FORMULA

The calculation of C2 is trivial (as in the calcula-
tion of the sample variance): by adding C to the accu-
mulated pixel luminance, we also add C2 to C2
accumulated in this pixel. That is, at each iteration step
we calculate

and the mean of this value Cavg over the iterations con-
verges to the desired value: Cavg → C2. However, this

method is certainly inapplicable for  and .
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Indeed, assume that NF is so large that, for each ray

issued from the camera, the sum , 

gives a good approximation to CF( ). At the same
time, the number of rays passing through the same pixel
NB is small; therefore the averaging  over this
small number of rays is insufficient. However, here we
can add averaging over iterations because at each iteration
step we have a random independent set of rays issued
from the camera, and this yields a good estimate of

.
Certainly, this is just a thought experiment, and this

method cannot be practically used because the number
of rays issued from the light source is not large enough for
providing a sufficiently accurate estimate of CF( )
within one iteration step. Averaging over iterations in this
case is extremely difficult because this quantity should be
calculated for each trace  issued from the camera,
and it occurs only once. It is clear that we actually will hit
a neighborhood of this path regularly, so that if we will
calculate and store the grid function  (on a suffi-
ciently fine grid), the aim will be achieved. However,
this is very inefficient since the space dimension,
which equals the maximum length of the trace issued
from the camera, is fairly large.

However strange it may seem, the solution is simple.
Assume for convenience that the number of rays issued
from the camera and from the light source is independent
of the iteration step. To calculate , we divide the
whole set NF of rays issued from the source into two
parts (not necessarily equal) consisting of  and 
rays, respectively, and calculate at each iteration step

The mean Bavg of this quantity over the iterations is
nothing more nor less than the mean over the ensem-
ble of NF rays issued from the source and NB rays
issued from the camera. These two means are inde-
pendent and, therefore, they commute. Let us first
average B over the ensemble of rays issued from the
source: Bavg = BFB. Since the rays in the first and
second parts of this ensemble are obviously indepen-
dent, the mean of the product of the two internal sums
is the product of the means over these halves:

Furthermore, since the statistical characteristics of
the rays in the first and second parts are certainly iden-
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tical, the means over the halves of the ensemble and
over the entire ensemble are also identical:

The remaining averaging over the ensemble of the
rays issued from the camera yields

Thus, the second coefficient in the noise formula
can be calculated to an arbitrary accuracy by the
sequence of iterations even if each iteration contains a
small number of rays.

The computation of  is organized similarly
by dividing into two parts the set of rays issued from
the camera and passing through the given pixel and by
calculating at each iteration step the quantity

Its mean Favg over the iterations converges to .
Note that the set of rays issued from the camera

may be partitioned into unequal parts. However, this is
senseless because the sums over these two parts appear
in the formulas symmetrically, and there is no reason
to improve one of the parts at the expense of the other.
In practice, it is simpler to use the partition into even
and odd rays.

Now, knowing the RMS means and the limiting
pixel luminance L, we can calculate the variance of the
contribution of one iteration to this luminance as

(1)

after NI iterations, the variance will be .

Note that Cavg, Bavg, and Favg, as well as L, depend
on the pixel but are independent of the number of rays.
However, as has been mentioned above, Cavg, Bavg, and
Favg can depend on the radius of the integration sphere.
This is a very important property because it makes it
possible to predict the noise for an arbitrary number of
rays. Therefore, we may make one preliminary calcu-
lation for a certain, maybe even a very poor choice of
the number of rays, find Cavg, Bavg, Favg, and L, and
then calculate the optimal number of rays (in the gen-
eral case, NB will be specific for each pixel), which
ensures the minimal noise.
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4. FEATURES OF DIRECT LIGHTING

In the BDPM method, the direct illuminance can
be taken into account in two different ways. In the first
method, all the rays issued from the source—both
direct (not scattered)) and indirect (scattered) are pro-
cessed uniformly. That is, the direct illuminance is
also taken from the photon maps. In the second
method, the direct illuminance is calculated straight-
forwardly: each vertex of the path from the camera is con-
nected to the light source, its luminance is calculated
along this segment, and sum with the luminance estimate
is taken from the photon maps [14] (formula (2) for w0 =
0 and w1 = 1). As a rule, the second method is more
effective because in it the direct luminance component
does not contain the noise of the photon maps.

It is clear that in both cases the noise is described by
formulas of Section 3. Indeed, if all the luminance com-
ponents are taken from the photon maps as in the first

case, then the number of nonzero terms C( , ) is
much less than the maximal number NFNBNp (where
Np is the number of pixels in the image) because the
probability of trace “intersection” is low. For this rea-
son, the computation of the sums in C, B, and F will be
efficient.

In the second method, the situation is different;
indeed, in this case each path from the camera makes
certain contribution due to direct illuminance. Now,

all C( , ) are nonzero, even if  and  do
not intersect. The computation of the sums in C, B,
and F becomes two expensive. Therefore, it is reason-
able to slightly transform the second method to sim-
plify computations.

More precisely, to avoid this effect, we should sep-
arate the contribution of the direct illuminance in the
sums because it is independent of the ray issued from
the light source and may, therefore, be taken out of the
summation sign:

where C(I)( , ) is the contribution of the inter-
section of the camera and indirect rays issued from the

source and C(0)( ) is the contribution of the direct
illuminance obtained by connecting the node on the
camera ray with the light source.

Now, we write C as
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Here, the sums contain the same number of non-
zero terms as in the absence of direct illuminance (i.e.,
for C(0) = 0).

Next, we transform the expression for B as

where

Similarly,

where

Now, all the sums contain the same number of non-
zero terms as in the absence of direct illuminance (i.e.,
for C(0) = 0); therefore, the computations are fairly
efficient. The computation time is approximately the
same as in the calculation of the image luminance itself.

5. RESULTS
As an example, we used the well-known bench-

mark scene Cornell Box. An isotropic point light
source is located slightly below the ceiling center.
All the surfaces are Lambertian with the albedo 0.5.
The method BDPM was used without multiple
importance sampling, and the ray issued from the
camera was forcefully interrupted after the second dif-
fuse intersection. The integration sphere radius was

= =

=

=

+

+





( ) ( ) ( ) 2

1 1
( ) ( ) ( ) (0) ( )

(0) ( ) 2

1

1 (( ( , ))

2 ( , ) ( ))

1 ( ( ))

B F

B

N N
I F B

i j
j iB F

I F B B
i j j
N

B
j

jB

C X X
N N

C X X C X

C X
N

∈

=

∈

=

 Σ
= +  

 

 Σ
× +  
 

=





1

1

2

2

( ) ( ) ( )
(0) ( )

1

( ) ( ) ( )
(0) ( )

( ) ( )
1 2

1

( , )1 ( )

( , )
( )

1 ( ) ( )

B

B

I F BN
Bi half i j

j
jB F

I F B
Bi half i j

j
F

N
B B

j j
jB

C X X
B C X

N N

C X X
C X

N

B X B X
N

∈
≡ + 

( ) (0) ( ) ( ) ( ) ( )1( ) ( ) ( , )
kk

B B I F B
k j j i j

i halfF

B X C X C X X
N

=

=

= + +

=

+ + +





( ) ( ) (0) ( ) ( ) (0)
1 1 2 2

1

( ) ( ) ( ) ( )
1 2

1
( ) ( ) (0) ( ) ( ) (0) (0) (0)

1 2 2 1 1 2

1 (( ( ) )( ( ) ))

1 (( ( ) ( )

( ) ( ) ))

F

F

N
I F I F

i i
iF

N
I F I F

i i
iF

I F I F
i i

F F X F F X F
N

F X F X
N

F X F F X F F F

∈

∈

≡

≡





( ) ( ) ( ) ( ) ( ) (0)

(0) ( )

1( ) ( , )

1 ( )

kk

kk

I F I F B
k i i j k

i halfB

B
j

i halfB

F X C X X F
N

C X
N

47  No. 3  2021



198 ERSHOV et al.

Fig. 1. Virtual photo of the model Cornell Box scene.

Fig. 2. Noise   for NB = 25 and NF = 1000—(a, above)
benchmark value found as the sample variance over the
sequence of iterations; (b, below) V is found by formula
(1). The mean RMS over the region within the red box in
the upper image is 1.2767 and 1.2769 in the lower image.

(a)

(b)

V

1/120 of the scene size. The direct luminance was cal-
culated by connecting the surface point to the light
source rather than taken from photon maps.

The image obtained by the virtual camera is shown
in Fig. 1.

The three terms of the noise were calculated as
described in Sections 3 and 4, and the total variance of
the contribution to the luminance in one iteration was
found by formula (1). For comparison, it was also cal-
culated as sample variance over a series of iterations,
which is possible because the contributions of differ-
ent iterations are independent.

The noise amplitude, i.e., , calculated using
these two methods is shown in Fig. 2. It is seen that the
results are almost undistinguishable.

To illustrate the contribution of all three terms in for-
mula (1) to the total variance, they are show in Fig. 3 as
the (R, G, B) components of the image. More precisely,

the quantities , ,

and  are written to the R, G, and B

channels of the image, respectively.
It is seen that the image in Fig. 3 is mainly green,

i.e., the second component is dominant. Therefore, to
reduce the noise in this case, we should mainly reduce
this dominant second term, i.e., increase NB because
Cavg, Bavg, Favg, and L are independent of the number of
rays. The increase of the number of rays NF issued from
the light source has almost no effect and only slows down
the computation. The result for NB increased by a factor
of three is shown in Fig. 3b.

In practice, it is not so much the variance of the
contribution of one iteration V that matters as the vari-
ance of the luminance after a given computation time

T. During this time, NI =  iteration steps will be per-

formed, and the variance of the resulting image will be
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VT = . While V monotonically decreases with increas-

ing number of rays, the time taken by one iteration step
monotonically increases. These two “opposing factors”
provide the optimum in the number of rays, as shown in
Fig 4 and Table 2. They illustrate the behavior of the
mean RMS (i.e. ) over the red box for the bench-
mark scene under consideration, depending on the
number of rays per one iteration step for T = 1000 s.
Note that the number of rays issued from the camera
was the same for all pixels (not only within the red
box).

It is clearly seen in Fig. 4 that the dependence on
the number of rays issued from the camera (shown by
plots of different colors) is very weak in this example.
On the contrary, the dependence on the number of
rays issued from the light source (plotted on the hori-
zontal axis) has a minimum in a neighborhood of NF =
3100. The exact value of this minimum can slightly
vary depending on the number of rays issued from the
camera. However, this minimum is very f lat; i.e.,
RMS is almost invariable in a wide range of NF varia-
tion, and its growth becomes noticeable only when the
deviation from the optimum is by several orders of
magnitude.

τV
T

TV
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Fig. 3. Contributions of ,

, and  to the

total noise written in the color channels R, G, and B of the
image—(a, above) NB = 25, (b, below) NB = 100; in both
cases NF = 1000. The mean values over the region within
the red box in the upper image are (0.3812065, 1.21883,
0.01907) and (0.19602,0.610129,0.0204105) in the lower
image; thus, the first two components decreased by a fac-
tor of . The total RMS, i.e. , averaged over the red
box is 1.27689 in the upper image and 0.639361 in the
lower image.

(a)

(b)
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Fig. 4. The mean RMS over the region of the image
marked by the red box in Fig. 2 after 1000 seconds of com-
putation for various NB and NF (on the horizontal axis).
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Table 2. Statistical data for tracing 25 rays issued from the
camera per pixel depending on the number of rays issued
from the source during 1000 s for the benchmark scene

NF 1000 3000 10000 30000 100000 300000

0.1 0.098 0.1 0.11 0.13 0.18

1.277 1.234 1.224 1.222 1.21 1.202

Ni 160 158 149 130 89 47
τ 6.25 6.33 6.7 7.7 11.25 21.47
τBMCRT 6 6 6 6 6 6
τFMCRT ≈0 ≈0 ≈0 ≈0 0.05 0.17
τmerge 0.25 0.33 0.7 1.7 5.2 15.3

TV

V

Note that the smooth curve in Fig. 4 is constructed
on the basis of a lot of points obtained by calculating
the RMS over one iteration by the exact formula (1),
and the time taken by one iteration step is found by the
approximate formula τ = αNF + βNB + γNBNF the
coefficients in which are obtained by fitting to the data
in Table 1. This approximation works very well.

More detailed information is shown in Table 2 for
the case NB = 25. The time τ of one iteration step is com-
posed of the time spent on tracing the rays issued from
the camera τBMCRT, tracing the rays issued from the light
source τFMCRT, and the time spent on merging these
traces τmerge. In addition to the total noise , Table 2
shows the variance over one iteration , the number
of iterations performed in the time T, the time spent on
one iteration τ, and its components.

TV

V
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It is clearly seen from Table 2 that the variance in
one iteration decreases with increasing number of rays
issued from the light source (which could be
expected),while the final noise increases. The analysis
of the time components allows us to estimate their
contribution to the total tracing time and understand
why an increase in the number of rays ultimately leads
to degradation in the quality of the final image.

6. CONCLUSIONS
A practical method for computing the coefficients

C2, , and  appearing in the formula for
the BDPM noise on the basis of quantities obtained by
ray tracing is proposed. A practical method for comput-
ing the coefficients for the case of the straightforward
calculation of the direct luminance is also considered.

The final noise value can be found using the sam-
ple variance of a series of values accumulated in a
sequence of iteration steps. This yields its value only
for a specific number of rays; however, it does not
allow us to predict how the variance will change for
another number of rays. Meanwhile, it is easy to calcu-
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late, knowing the coefficients C2, , .
Therefore, given the results of only one computation,
we are able to predict the variance (the contribution of
one iteration step) for an arbitrary number of rays.

If the time spent on tracing the rays issued from the
camera and the light source is known together with the
time spent on their merging (as shown in Table 2),
then the optimal number of rays can be calculated,
which is the number of rays that ensures the minimum
noise during the given computation time.
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