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Abstract—This paper proposes two simple methods for determining equilibrium orientations of a satellite
moving in a central Newtonian force field along a circular orbit under the action of the gravitational torque.
The first method uses linear algebra approaches, while the second one employs computer algebra algorithms.
The equilibrium orientations of the satellite in the orbital coordinate system for given values of principal cen-
tral moments of inertia are determined by the roots of a system of nonlinear algebraic equations. To determine
the equilibrium solutions, the system of algebraic equations is decomposed using linear algebra methods and
algorithms for Gröbner basis construction. The equilibria of the satellite are determined by analyzing the real
roots of the algebraic equations from the Gröbner bases constructed. Using the proposed approach, it is
shown that the satellite with unequal principal central moments of inertia has 24 equilibrium orientations on
a circular orbit.

DOI: 10.1134/S0361768821020055

1. INTRODUCTION
In this paper, we apply methods of linear and com-

puter algebra to study the equilibrium orientations of a
satellite (rigid body) moving in a central Newtonian
force field along a circular orbit.

In the 1960s, this problem was solved by rather com-
plicated methods. Due to solving the problem of equi-
librium orientations of satellites, gravitational attitude
control systems have become widespread. These sys-
tems operate based on the fact that, in a central Newto-
nian force field, a satellite with unequal principal cen-
tral moments of inertia has 24 equilibrium orientations
on a circular orbit, four of which are stable [1–3]. The
dynamics of satellites with gravitational attitude con-
trol systems was considered in detail in [4].

Investigating the motion of a satellite in a central
Newtonian force field on a circular orbit under the
action of the gravitational torque is of considerable
practical interest for developing control systems of
artificial Earth satellites. An important property of
gravitational attitude control systems is their capability
of long-term on-orbit operation without energy
and/or working f luid consumption.

In this paper, we conduct a detailed investigation of
the equilibrium orientations of a satellite by using alge-
braic methods that have been successfully employed to
study the equilibrium positions of a gyrostat satellite
[5–7], dynamics of a satellite with an aerodynamic atti-
tude control system [8], and dynamics of motion of a
system of two connected bodies [9]. The equilibrium
orientations of the satellite are determined by real
roots of a system of algebraic equations. To find the
equilibrium solutions, the system of algebraic equa-
tions is decomposed using linear algebra methods and
algorithms for Gröbner basis construction [10, 11].
For this purpose, we employ the Maple computer
algebra system [12]. All equilibrium orientations of the
satellite on a circular orbit are determined.

Computer algebra systems are widely used to solve
problems of celestial mechanics, in particular, the
three-body problem [13]. For instance, using symbolic
computations, new results were obtained [14–17] by
investigating the classical problem of three bodies with
variable masses in the general case and finding equilib-
rium orientations in the restricted four-body problem.
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2. EQUATIONS OF MOTION
We consider the motion of the satellite (rigid body)

relative to its center of mass along a circular orbit
under the action of the gravitational torque. To write
the corresponding equations of motion, we introduce
two right-handed rectangular coordinate systems the
origins of which are at the center of mass O of the sat-
ellite. In the orbital coordinate system , the OZ
axis is directed along the radius vector that connects
the centers of masses of the Earth and satellite, while
the OX axis is directed along the linear velocity vector
of the center of mass O of the satellite. Then, the OY
axis is directed along the normal to the orbital plane.
In the coordinate system  associated with the sat-
ellite, , , and  are the satellite’s principal cen-
tral axes of inertia.

Let us determine the orientation of the coordinate
system  relative to the orbital coordinate system
by using the pitch α, yaw β, and roll γ angles. The
directional cosines of the , , and  axes in the
orbital coordinate system are expressed in terms of
these angles as follows [4]:

(1)

For small satellite oscillations, the pitch corre-
sponds to the rotation about the OY axis, yaw corre-
sponds to the rotation about the  axis, and roll cor-
responds to the rotation about the OX axis.

Then, the equations that describe the satellite’s
motion relative to its center of mass are written as fol-
lows [18]:

(2)

(3)

In equations (2) and (3), A, , and  are the principal
central moments of inertia of the satellite; p, q, and 
are the projections of the satellite’s absolute angular

OXYZ

Oxyz
Ox Oy Oz

Oxyz

Ox Oy Oz

= , = α β,11 cos( ) cos cosa x X

= , = α γ − α β γ,12 cos( ) sin sin cos sin cosa y X

= , = α γ + α β γ,13 cos( ) sin cos cos sin sina z X

= , = β,21 cos( ) sina x Y

= , = β γ,22 cos( ) cos cosa y Y

= , = − β γ,23 cos( ) cos sina z Y

= , = − α β,31 cos( ) sin cosa x Z

= , = α γ + α β γ,32 cos( ) cos sin sin sin cosa y Z

= , = α γ − α β γ.33 cos( ) cos cos sin sin sina z Z

OZ

+ − − ω − = ,�

2
0 32 33( ) 3 ( ) 0Ap C B qr C B a a

+ − − ω − = ,�

2
0 33 31( ) 3 ( ) 0Bq A C rp A C a a

+ − − ω − = ,�

2
0 31 32( ) 3 ( ) 0Cr B A pq B A a a

= + ω , = α + γ,� �0 21 21p p a p a

= + ω , = α + β γ,�

�0 22 22 sinq q a q a

= + ω , = α + β γ.�

�0 23 23 cosr r a r a

B C
r

PROGRAMMING A
velocity on , , and ; and  is the angular
velocity of the satellite’s center of mass on a circular
orbit. The dot denotes differentiation with respect to
time t.

For the system of equations of motion (2) and (3), the
following generalized energy integral is valid [19, 20]:

(4)

3. EQUILIBRIUM ORIENTATIONS
Suppose that all three principal central moments of

inertia of the satellite are different ; then,
setting , , and  =
const in (2) and (3), we obtain the equations

(5)

which determine the equilibrium orientations of the
satellite in the orbital coordinate system. Taking into
account (1), system (5) can be regarded as a system of
three equations in unknowns α0, β0, and γ0.

Another (more convenient) way of closing equa-
tions (5) is to impose six orthogonality conditions on
the direction cosines:

(6)

Equations (5) and (6) form a closed algebraic sys-
tem of equations with respect to six direction cosines
that determine the equilibrium orientations of the sat-
ellite. For this system of equations, it is required to
determine all nine direction cosines, i.e., all equilib-
rium orientations of the satellite in the orbital coordi-
nate system. Upon finding six direction cosines , ,

, , , and , the remaining direction cosines
, , and  can be determined by the following for-

mulas taking into account that each component of the
direction cosines is equal to its algebraic complement:

(7)

The cosines , , and  do not vanish simultane-
ously.
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Solutions to the system of equations (5), (6) have been
studied in a number of publications. For instance, in
[1, 2], it was shown that the satellite in the orbital coordi-
nate system has 24 equilibrium orientations. In [1, 2],
system (5) was solved by expressing the direction
cosines in terms of Euler angles. In [3], these equilib-
rium orientations were obtained in an explicit and
rather complex form.

4. STUDYING THE EQUILIBRIUM 
ORIENTATIONS OF THE SATELLITE

Equations (5) and (6) allow us to determine all
equilibrium orientations of the satellite. To find the
equilibrium solutions, we first use an approach based
on linear algebra methods.

Let us consider the second and third equations of
system (5) with respect to variables a21 and . These
equations form a homogeneous subsystem with the
determinant Δ1 =  = 3a11. If ,
then , , and equations (7) imply that a12 =

 = 0 and .
Taking into account the expressions a22 = a11a33 –

 = a11a33 and  = –a11a32
obtained from the orthogonality conditions, equations (5)
and (6) can be simplified as follows:

(8)

Equation (8) implies that either  and  or
 and . Thus, in the case of , we

obtain eight equilibrium solutions of system (5), (6)
that constitute the following two groups:

(9)

(10)

Similarly, in the case of , we consider the first
and third equations of system (5) with respect to a22,

. These equations form a homogeneous subsystem
with the determinant  = –3a12.
If , then ,  and equations (7)
imply that ,  Under these condi-
tions, from equations (5) and (6), we obtain eight
equilibrium solutions included in the following two
groups:
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By further considering the first and second equations
of system (5) with respect to  and  as a homoge-
neous subsystem with the determinant Δ3 =  –
a22a31) = 3a13, we obtain  and  for

. Then, equations (7) imply that  and
 = 1. Under these conditions, from equations (5) and

(6), we obtain the following eight equilibrium solu-
tions included in two groups:

(13)

(14)

Note that each of the six groups of solutions (9)–(14)
determines four equilibrium solutions (four equilib-
rium orientations in the orbital coordinate system).
All these 24 solutions correspond to different cases of
coincidence between the principal central axes of iner-
tia of the satellite and the axes of the orbital coordinate
system. Thus, the satellite with different principal cen-
tral moments of inertia has 24 equilibrium orientations
on a circular orbit.

5. INVESTIGATING SATELLITE 
EQUILIBRIUM ORIENTATIONS

BY COMPUTER ALGEBRA METHODS

To solve the system of algebraic equations (5), (6),
we employ algorithms for Gröbner basis construction
[10, 11]. Construction of Gröbner bases is an algorith-
mic procedure that completely reduces a problem with
a system of polynomials in many variables to a prob-
lem with a polynomial in one variable. Most modern
computer algebra systems implement algorithms for
Gröbner basis construction. Our investigation is car-
ried out using the Groebner[Basis] package for Maple
17 [21]. We construct a Gröbner basis for six polyno-
mials fi, which are the left-hand sides of the equations
from system (5), (6) with six direction cosines aij

( , ), by using the lexicographic order-
ing option plex:

G:=map(factor,Groebner[Ba-
sis]([f1,…,f6], plex(a21,…,a33))).

When using this instruction, the system executes
the FGLM Gröbner basis construction algorithm
developed by Faugere, Gianni, Lazard, and Mora
[22]. The resulting Gröbner basis consists of 18 poly-
nomials:
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(15)

Let us consider the first equation in (15) with
respect to  = 0. For  (  =
a23 = 0), equations (5) imply the equalities ,

, and . These equalities are also
included in relations 15, 16, and 17 of the Gröbner
basis (15). In this case, there are eight solutions when
either  or , which exactly coincide with
the groups of solutions (9) and (11) considered above.

From the second equation in (15), we can also
obtain two groups of four solutions under the condi-
tion  ( ) when either  or

, which also follow from the third equality of
(15) and coincide with the groups of solutions (10) and
(13) considered above.

Let us construct a Gröbner basis by using another
lexicographic order, plex(a21,a22,a23,a32,
a33,a31): to obtain a polynomial in a31:

(16)

The variant when  has been considered in the
previous case. Let us consider the case where 
(  = 0). Equations (5) imply that  = 0,
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included in relations 15, 16, and 17 of the Gröbner
basis (16). In this case, there are eight solutions when
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either  or , which follow from the third
and fourth equalities of (16). These solutions exactly
coincide with the groups of solutions (12) and (14)
considered above.

The Gröbner bases constructed imply that, for
, , and , each of the three cases

involve eight equilibrium orientations of the satellite.
In total, there are 24 equilibrium orientations of the
satellite on a circular orbit (9)–(14). The same result
can be obtained by constructing a Gröbner basis with
the lexicographic order in , ,  and considering
the cases where , , and .

Using the left-hand side of generalized energy inte-
gral (4) as a Lyapunov function, it can be shown that,
under the condition

(17)

one of solutions (9) ( ), a12 = a13 = a21 =
, is stable [19, 20]. It is easy to verify

that the remaining three solutions (9) also satisfy suf-
ficient stability conditions (17). Thus, out of 24 equi-
librium orientations, there are four stable equilibria for
which the axis of the satellite’s maximum moment of
inertia coincides with the normal to the orbital plane,
while the axis of the satellite’s minimum moment of
inertia coincides with the radius vector of the orbit.
Solutions (10)–(14) do not satisfy conditions (17).

6. CONCLUSIONS

In this paper, we have investigated the equilibrium
orientations of a satellite moving along a circular orbit
by using methods of linear and computer algebra.

Construction of Gröbner bases is a universal
method used to solve systems of algebraic equations.
A significant disadvantage of this method is the expo-
nential complexity of Gröbner basis construction
algorithms. In our case, the time it took to construct a
Gröbner basis on Intel Core i7 2.8 GHz with 8 Gb
RAM was about 0.01 seconds. The analysis of the
polynomials in the Gröbner basis has allowed us to
conclude, based only on their form, that the original
system of algebraic equations (5), (6) has only those
solutions for which the direction cosines that deter-
mine the orientation of the satellite can take values
either 0 or 1, i.e., it has only those solutions for which
the axes of the orbital and satellite coordinate systems
coincide.

The first method solves this problem by extracting
linear subsystems from the original system while
assuming that the determinants of these linear subsys-
tems are not zero. We have not considered the cases
where these determinants are zero and it is possible to
obtain parametric solutions. When using the Gröbner
basis method, this problem does not arise.
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In turn, computer algebra methods allow one to
solve the classical problem of space f light mechanics
in a fairly simple form.
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