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Abstract—This paper proposes an algorithmic implementation of the elementary version of Runge’s method
for a family of fourth-degree Diophantine equations in two unknowns. Any Diophantine equation of the
fourth degree the leading homogeneous part of which is decomposed into a product of linear and cubic poly-
nomials can be reduced to equations of the type considered in this paper. The corresponding algorithm (in its
optimized version) is implemented in the PARI/GP computer algebra system.
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1. INTRODUCTION
Modern computer algebra systems (e.g., Mathe-

matica, Maple, PARI/GP, SageMath, etc.) include
only a small number of algorithms for solving Dio-
phantine equations in integers. Generally, these are
systems of linear equations in an arbitrary number of
unknowns, quadratic equations in two unknowns, and
cubic Thue equations (under some additional condi-
tions, see [1]). Meanwhile, there is a fairly large class
of Diophantine equations in two unknowns

(1)
for which an effective method (which yields explicit
upper bounds for integer solutions), the so-called
Runge’s method, can be applied.

A brief description of a simplified version of
Runge’s method can be found in the well-known
monographs [2–4]. It should be noted that the origi-
nal version of Runge’s method is more general (see
Runge’s old paper [5] or a modern paper [6]). Even
though Runge’s method has been known for over a
hundred years, its implementation in computer alge-
bra systems is quite limited. Only a few publications
(see [7–9] and especially [10]) discuss algorithmic
aspects of its implementation that, by and large, seem
nontrivial. This is partially explained by the following.

Suppose that the polynomial  is
irreducible and

It can be proved that, if  satisfies Runge’s
standard condition (see below), then the estimate

(2)

holds for all solutions  of Eq. (1) (see [6]).
Here, h is the height of the polynomial  (the
maximum of the absolute values of its coefficients).
This result suggests that the trivial implementation
using brute force within the bounds mentioned above
makes almost no sense even for fairly small d0.

Runge’s method is based on a constructive proof of
Runge’s theorem on the finiteness of a set of solutions
to Eq. (1) in integers. A simplified version of this the-
orem (cited below) is well known; its full version can
be found in the original paper and, e.g., in [6].

Suppose that  and  is the
leading homogeneous part of the polynomial .

Runge’s theorem. Suppose that  is decom-
posable into a product of two relatively prime polyno-
mials in  of positive degrees. Then, Eq. (1) has a
finite set of solutions .

For brevity, we hereinafter refer to the condition of
Runge’s theorem as Runge’s standard condition. For
cubic equations (d = 3), under Runge’s standard con-
dition, a realistic algorithm for solving Eq. (1) was pro-
posed in [9]. This algorithm is based on the so-called
elementary version of Runge’s method for Diophan-
tine equations of degrees not higher than four (see
[11]). Currently, the elementary version of Runge’s
method for d = 4 has been algorithmically imple-
mented only in some special cases [12, 13]. We should
also mention the well-known elementary algorithm
for solving fourth-degree equations of the simplest
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30 OSIPOV, KYTMANOV
type to which Runge’s method can be applied (this
algorithm was described in detail in [7]). As noted in
[10], it makes sense to avoid the use of Puiseux series
and algebraic coefficients because they usually lead to
bad estimates of type (2). In fact, this is the main chal-
lenge in algorithmic implementation of Runge’s
method.

The elementary version of Runge’s method for
Diophantine equations of low degrees is based on spe-
cial parametrizations used to enumerate possible inte-
ger solutions. Hence, the solution of a Diophantine
equation can be reduced to solving a finite set of (as a
rule, quadratic or cubic) equations in one unknown
over the integers. This idea was implemented in [9, 12,
13]. The method works especially well in the case of
cubic Diophantine equations, where only quadratic
equations need to be solved (therefore, the problem is
reduced to algorithmically simple extraction of square
roots).

Example 1. (a) To solve the Diophantine equation

(see Example 9 from [9]), it is sufficient to solve approx-
imately  quadratic equations in one unknown.
In particular, this allows one to solve the equation for
each H in the range of  within a reason-
able time.

(b) Similarly, the Diophantine equation

is reduced to solving approximately  quadratic
equations. In addition to being theoretically simpler,
this approach is also much faster than finding integer
points on a Mordell curve (as was proposed in [14,
Section 6.1]).

(c) The Diophantine equation

(see [15]) is reduced by the substitution

to type (1), where

(see Example 1.1 in other notation from [13]). The
optimized algorithm from [9] reduces the solution of
Eq. (1) with this left-hand side to the solution of approx-
imately  quadratic equations. However, this result can
be further improved by lowering the order of the number
of quadratic equations to be solved to . For compar-
ison, the standard solution algorithm [7] would require
solving approximately  quadratic equations.
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In this paper, we consider a new family of Dio-
phantine equations (1) of the fourth degree with the
left-hand side of the form

(3)

where, in turn,

The coefficient d is assumed to be nonzero, which guaran-
tees the applicability of Runge’s method. As shown in [11],
an arbitrary equation with a leading homogeneous part

is reduced to an equation with left-hand side (3).
This paper is organized as follows. Section 2 pro-

poses an algorithm for solving Eq. (1) with left-hand
side (3). Its correctness is guaranteed by Theorem 1.
Technically, this algorithm somewhat differs from
similar algorithms (see [9, 12]) as it requires solving a
number of fourth-degree equations in one unknown
over the integers. This must be taken into account to
correctly estimate the complexity of the algorithm.
As in [13], for this purpose, we introduce an additional
parameter—weight coefficient—that depends on a
computer algebra system used to implement the algo-
rithm (in our case, it is PARI/GP; see [1]). Then, the
algorithm can be optimized in the well-known way
(see [9, 13]). Unfortunately, numerous technical diffi-
culties associated with its optimization have not yet
been overcome, which is why we confine ourselves
only to a single example of such optimization.

In Section 3, we make some remarks on the results.
In particular, we discuss further application of the ele-
mentary version of Runge’s method to solve fourth-
degree Diophantine equations of the remaining types.

2. ALGORITHM
Suppose that  (in the case of A = 0, the pro-

posed method can be simplified, see Section 3).
Recall that .

Assuming that , we consider

Obviously, l must be integer for each solution
 with x ≠ 0. Having divided both sides of the

equation by x, we obtain

This equality implies a congruence

in the ring . Next, we have

, = + + +
+ , + ,

3 2 2 3( ) ( )
( ) ( )

f x y x ax bx y cxy dy
xg x y h y

, = + + + + + ,
= + + .

2 2
0 1 2 3 4 5

2

( ) ( )

( )

g x y p x p y p x p y p y p

h y Ay By C

, = + + + +3 2 2 3
4 1 1 2 2 2 2( ) ( )( )f x y a x b y a x b x y c xy d y

≠ 0A

≠ 0d
≠ 0x

= .( )h yl
x

, ∈ Z
2( )x y

+ + + + , + = .3 2 2 3 ( ) 0ax bx y cxy dy g x y l

( )+ + + + ≡3 2
3 4 5 0 moddy p y p y p l x

Z

ND COMPUTER SOFTWARE  Vol. 47  No. 1  2021



AN ALGORITHM FOR SOLVING A FAMILY 31
for some integers B1 and C1 (which is a congruence in
the ring ). In particular,

(4)

With  , we obtain another congru-

ence   (both congruences
are in the ring ). Finally, we assume that

Clearly, k must also be an integer. Thus, we arrive
at the following result.

Theorem 1. Suppose that  is an arbitrary
solution of the equation with . Then, the number

(5)

is an integer. Here, B1 and C1 are determined by equal-
ities (4).

Note that Theorem 1 is easy to formally prove
based on symbolic computations in some computer
algebra system. Let us express the coefficient C as

Then, this expression is substituted for C in the
right-hand side of (5). Upon canceling by x2, we obtain
an explicit (yet rather cumbersome) expression for k in
the form of a polynomial from . Now, it is obvi-
ous that k must be an integer because .
It should be noted that this “mechanical” reasoning is
very straightforward in terms of its logic and is appli-
cable whenever we want to verify a complex “syn-
thetic” proof or quickly validate a hypothesis (see, for
example, [16]).

Example 2. For the equation with a left-hand side

the procedure described above yields

In fact, we have
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in the residue-class ring .
Further reasoning is based on the following idea.

Suppose that the polynomial

is irreducible. Suppose also that α is any real root of
φ(t). For the corresponding branch  of the
algebraic function defined by the equation, the follow-
ing estimate holds:

Hence, for , the function

has the limit

Thus, for any number m > 0, there is a number
 such that

for all x that satisfy the condition . Now, we
can proceed to the algorithm for solving Eq. (1) with
left-hand side (3).

Solution algorithm. For any real root α of the poly-
nomial φ(t), do

1. choose m > 0 and compute ;
2. for any integer x satisfying

solve  as a cubic equation in y over the inte-
gers and add the found pairs  into a set of
solutions;

3. for any integer k with

find all pairs  that satisfy the system of equa-
tions

(6)

and add them to the set of solutions.
The first problem in the implementation of our

algorithm is associated with setting  as an
explicit function of the control parameter m. This prob-
lem is technically complex and has not yet been fully
resolved (we briefly discuss this in Section 3).

The second problem can be formulated as follows:
how to choose the optimal value of m? More formally,
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32 OSIPOV, KYTMANOV
for each fixed α, we aim at minimizing a cost function
of the form

(7)
where the weight coefficient q can be determined by
experiment depending on the computer algebra sys-
tem used to implement the algorithm (in our case,
PARI/GP). More precisely, as q, one should take a
ratio between the complexity of solving systems of
form (6) and the complexity of solving cubic equations
(in both cases, over the integers).

Let us consider the system of equations (6) in more
detail. Having eliminated y, we obtain a fourth-degree
equation in x of the form

(8)

where  are polynomials in k with integer
coefficients. Here, we do not cite their explicit and
rather cumbersome expressions; note only that

 = 3 and  for the other j. Thus,
it is required to determine to what extent the problem
of solving fourth-degree equations over the integers is
more complex than the same problem for cubic equa-
tions. In PARI/GP, we solve both the problems by
using the I nfroots function, which allows us to find all
rational roots of a polynomial in one variable with
integer coefficients. Thus, the weight coefficient q can
be determined by computer experiments and prelimi-
nary analysis of the possible height of the polynomial
on the left-hand side of Eq. (8).

Unfortunately, the expected analytical expression
for  (see Section 3) does not allow cost function (7)
to be minimized using symbolic methods. Let us denote
the value of m that delivers the global minimum of

 by m*. It makes sense to focus on “reasonable”
estimates for m* and ; then, we can estimate
the theoretical complexity of the so-called optimized
algorithm (an algorithm in which m = m*). In practice,
we can find m* using any approximate method (in this
case, it is desirable to solve the localization problem
for m* analytically).

To illustrate the difficulties that must be overcome
in the general case, we consider the following example.

Example 3. Let us “manually” construct an opti-
mized algorithm for a family of equations

(9)

where H > 0. The only real root of  is  =
21/3. Then,

In addition, we have

The coefficients of Eq. (8) are as follows:
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For , we can prove that, if , then
the following estimate holds:

(10)

Using (10), it is easy to obtain the desired estimate
for , more specifically,

for those x that satisfy . Hence, assuming that
, we obtain

Since, for , we have

the estimate for  has the same order in H.
Thus, the optimized algorithm for the family of equa-
tions (9) is constructed.

3. REMARKS
For A = 0, the proposed algorithm runs faster than

in the general case. Indeed, the second equation in (6)
is reduced to a linear one, and Eq. (8) becomes cubic
in x (while remaining cubic in k).

Clearly, a bottleneck of our algorithm is the deriva-
tion of an explicit symbolic expression for .
An obvious approach (successfully applied in [9]) is to
solve Eq. (8) as a cubic equation in k by using the Car-
dano formula. However, because of the cumbersome
expressions for the coefficients, this approach seems
counterproductive. A more realistic way is to solve
original equation (1) as a cubic one in y and, then,
explicitly estimate the difference  for .
In other words, we can concretize the theoretical esti-
mate

in the same way as in Example 3 (i.e., obtain estimates
of type (10) for all sufficiently large x while specifying
an explicit bound for these x). For this purpose, we can
consider several first terms of the power series expan-
sion for the function  with . In the gen-
eral case, in addition to the (very careful) use of Pui-
seux series, we can employ algorithms of power geom-
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etry that proved useful in resolving algebraic singularities
(see [17, 18]).

To illustrate possible difficulties, let us return to
Example 3. We have

Here, it may seem that there is an absolute constant M
such that the following estimate holds for any :

(11)

However, this is not the case because the expansion
coefficients depend on the parameter H, which can be
arbitrarily large. Indeed, if x = 1, then  for

. Thus, in the general case, we should specify
an explicit lower bound for  that would guarantee an
estimate of type (11) for . In this particular
case (Example 3), this bound is easy to set.

In conclusion, we outline future prospects for the ele-
mentary version of Runge’s method proposed in [11].

Apparently, in terms of algorithmic implementa-
tion, the most nontrivial case is the one where the
leading homogeneous part of Eq. (1) admits an expan-
sion of the form

With that said, we expect that radically new diffi-
culties in the implementation will not occur, which is
rather encouraging, whereas the problems described
above can be resolved.
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