
ISSN 0361-7688, Programming and Computer Software, 2020, Vol. 46, No. 8, pp. 483–502. © Pleiades Publishing, Ltd., 2020.
Mitigating Uncertainty in Developing and Applying Scientific
Applications in an Integrated Computing Environment

A. Tchernykha,b,c,*, I. Bychkovd,**, A. Feoktistovd,***, S. Gorskyd,****, I. Sidorovd,*****,
R. Kostromin d,******, A. Edeleve,*******, V. Zorkalzevh,********, and A. Avetisyanc,*********

aCICESE Research Center Carr Tijuana-Ensenada 3918, Zona Playitas, Ensenada, B.C., 22860 Mexico
bSouth Ural State University, Chelyabinsk, Chelyabinsk, 454080 Russia

cIvannikov Institute for System Programming of RAS, Moscow, 109004 Russia
dMatrosov Institute for System Dynamics and Control Theory, SB of RAS, Irkutsk, 664033 Russia

eMelentiev Energy Systems Institute, SB of RAS, Irkutsk, 664033 Russia
hLimnological Institute, SB of RAS, Irkutsk, 664033 Russia

*e-mail: chernykh@cicese.mx
**e-mail: bychkov@icc.ru
***e-mail: agf65@icc.ru

****e-mail: gorsky@icc.ru
*****e-mail: ivan.sidorov@icc.ru
******e-mail: kostromin@icc.ru

*******e-mail: flower@isem.irk.ru
********e-mail: zork@isem.irk.ru
*********e-mail: arut@ispras.ru

Received April 10, 2020; revised May 20, 2020; accepted June 28, 2020

Abstract—Effective solving complex mathematical modeling problems is based on the use of high-perfor-
mance computing. Clouds, grids, and public access supercomputer centers are commonly used platforms.
Their integration into a unified environment provides possibilities for carrying out mass large-scale scientific
experiments and efficient scalable resource allocation at different stages of the application design and execu-
tion. However, end-users have to carefully select optimization criteria such as completion time, deadlines,
reliability, cost, etc. It is a complicated problem due to integrated resources differ significantly in their com-
puting capabilities, hardware and software platforms, system architectures, user interfaces, etc. The paper
presents new features of the Orlando Tools framework for the development of distributed applied software
packages (scalable scientific applications) that mitigates various types of uncertainties arising from the job
distribution in the integrated computing environment. It provides continuous integration, delivery, and
deployment of applied and system software to significantly mitigate the negative impact of uncertainty on
problem-solving time, computation reliability, and resource efficiency. An experimental analysis of the sus-
tainable design and development of the real energy sector clearly demonstrates the advantages of the tools.

DOI: 10.1134/S036176882008023X

1. INTRODUCTION
An analysis of current trends in the development of

high-performance computing towards mathematical
modeling of complex systems allows to draw several
important conclusions. Usually, mathematical model-
ing of such systems related to solving NP-hard prob-
lems that requires high-performance computing sys-
tems. However, such systems can significantly differ in
their computational capabilities, hardware and soft-
ware platforms, system architectures, interconnects,
user interfaces, and other components. Often, end-
users are faced with various difficulties of their use [1],
especially, when end-users switch to a new system:

• The need for considering the subject-domain
specifics features, including the use of weakly struc-
tured data, presence of different uncertainties, chang-
ing of a problem sizes, etc.

• Implementing experiments in a heterogeneous
systems, for example, the adaptation of problem-solv-
ing algorithms to different architectures,

• Predicting the performance and applications’
makespan.

It is extremely demanded the design of universal
information and computing environment that pro-
vides instrumental support of preparing and carrying
483

484 TCHERNYKH et al.
out large-scale experiment in a heterogeneous envi-
ronment and its specialization for a specific subject-
domain [2]. Such an environment must expand the
spectrum of models, algorithms, applications, and
subject databases used. In addition, it has to provide
the opportunity for the participation of various scien-
tific groups in the preparation and carrying out of
experiments using the necessary resources.

Clouds, grids, and public access supercomputing
centers are three organizational and functional plat-
forms of parallel and distributed computing that are
highly sought-after by the scientific community [3].

Grid-systems support standard software and ser-
vices for collaborative sharing and managing of feder-
ated and geographically distributed resources for com-
puting and data processing [4].

Cloud platforms provide elasticity and scalability of
computation resources, data storage, or network
bandwidth with the required quality [5]. However,
end-users are forced to deliver, deploy, and manage
necessary software and data on the top of the allocated
infrastructure. Moreover, the use of cloud resources
and services is often more expensive than carrying out
experiments in the grid-systems.

Public access supercomputer centers have the fol-
lowing distinctive advantages [6]:

• Provision of paid and free resources and services
according to administrative policies,

• Providing basic system and application software,
• Providing unified and tightly regulated access to

computing resources,
• Evaluation of the effectiveness of computing

resources,
• Technical and methodological support for the

end users.
In general, the resources of public access super-

computer centers are non-dedicated and shared by all
users of the center. However, users could want to use
grid and cloud resources together to solve complex
problems [7]. Differences in the methods of access to
above-listed resources and their use significantly limit
the scope of high-performance computing. Thus, the
integration of grid and cloud computing including
resources of public access supercomputing centers can
provide tremendous opportunities for the implemen-
tation of mass large-scale scientific experiments [8].

In the paper, we propose new features of the
Orlando Tools framework (OT) [9]. We apply OT as
the basis of an integrated computing environment for
developing and applying distributed applied software
packages. It is assumed that the environment unifies
three platforms discussed above: clouds, grids, and
public access supercomputing centers.

Distributed applied software packages represent a
special class of scientific applications [10]. In such
packages, the software has a modular structure. Pack-
PROGRAMMING A
age modules implement algorithmic knowledge about
solving problems.

An abstract program (problem-solving scheme)
describes the set of modules used to solve a problem
and order of their execution. Directed Acyclic Graph
(DAG) is applied to reflect relations and data f low
between modules.

The concept of a problem-solving scheme corre-
sponds to an abstract scientific workflow [11]. The
specification of a problem-solving scheme (computa-
tional job) for meta-schedulers describes information
about the used package modules, their input and out-
put data, requirements on computation resources,
data storages, and communication network.

In contrast with scientific workflow systems, the
packages are associated with solving a class of prob-
lems in a certain subject domain considering several
conditions. The important ones include the changes in
algorithmic knowledge, presence of various categories
of package users, and use of integrated heterogeneous
resources based on various parallel and distributed
computing paradigms.

New features of OT provide the processing of
weakly structured data, automation of the assembly,
debugging, and joint testing of package modules, pre-
diction of the modules runtimes, and their classifica-
tion on heterogeneous resources. As a result, it
improves the quality of resource allocation.

The advantages of this subsystem are demonstrated
and validated in practice by the development of two
versions of the package for solving the problem of the
sustainable development of the energy sector of Viet-
nam: with [12] and without this subsystem [13].

In the first case, the results show a significant
reduction of the overall time for preparing and con-
ducting experiments.

The remainder of the paper is structured as follows.
Section 2 provides a brief overview of approaches
related to the integration and virtualization of
resources with different computational characteristics
into the unified heterogeneous environment. In addi-
tion, we give the current state in the continuous inte-
gration field related to the development of scientific
applications. In Section 3, we consider OT for devel-
opment scientific applications. We discuss a new sub-
system for the continuous integration, delivery, and
deployment of applied and system software. The Sec-
tion 4 demonstrates mitigating uncertainty in mapping
jobs on resources based on the job classification and
administrative skills. Section 5 describes an example
of a job f low management for a scalable application to
solve the complex practical problem. The gained expe-
rience is discussed in Section 6. Finally, Section 7
concludes the paper.
ND COMPUTER SOFTWARE Vol. 46 No. 8 2020

MITIGATING UNCERTAINTY IN DEVELOPING 485
2. RELATED WORK

An integrated software environment to support
large-scale scientific experiments using various para-
digms of high-performance computing is not dis-
cussed in depth in the scientific literature. Neverthe-
less, we can distinguish several interesting projects of
great practical importance for the implementation of
collaborative computing.

The modular toolbox Distributed and Unified
Numeric Environment (DUNE) for solving partial
differential equations is presented in [14]. It provides
efficiency mechanisms in high-performance comput-
ing for scientific applications.

Integration of developed applications, for example,
Computer-Aided Engineering systems, into a distrib-
uted computing environment can be performed on the
basis of the service-oriented approach proposed in
[15].

A new algorithm for computation managing in
such an environment has been developed in [16].

The Project SPPEXA supports various studies in
integrated developing computational algorithms, sys-
tem software, applied software, data management and
exploration, programming environment, and software
tools [17]. A wide spectrum of scientific institutions
involved in the project.

Afgan et al. [18] propose the web-based Galaxy
platform for a scientific analysis of large biomedical
datasets in genomics, proteomics, metabolomics, and
imaging. Many scientists across the world actively use
it for large-scale experiments.

Ananthakrishnan et al. [19] provide the elastic
cloud platform Globus for the implementation,
deployment, and operation of services to support sim-
ilar experiments. Similar tools implemented using the
multi-agent approach are offered in [20].

Often, scientists need to execute the composition
of various services with certain quality criteria. The
problem of creating such a composite combination of
services is NP-hard. QoS-aware cloud service compo-
sition using eagle strategy is presented in [21].

The concept and functioning principles of an inte-
grated computing environment are proposed in [2].
The authors provide the development tools for imple-
menting the main stages of large-scale computational
experiments and supporting a long-life cycle of
applied and system software. However, existing proj-
ects leave many problems unresolved. The most
important ones include [2, 17]:

• Study of application functioning in heteroge-
neous resources,

• Designing applications considering the architec-
ture of the environment,

• Applying middleware to support the interaction
between applications and operating systems,
PROGRAMMING AND COMPUTER SOFTWARE Vol.
• Integration of capabilities of middleware and
applications for managing jobs and resources,

• Intellectualization of job management,
• Development of f lexible interfaces for various

categories of users to access to application compo-
nents,

• Automation of the controlling, building, and
testing of system and application software,

• Elicitation, analysis, and transformation of sub-
ject data.

These problems are also relevant for scientific
workflows [22]. Their solution facilitates mitigating
the uncertainty of the workflow distribution.

Scientific workflow systems and distributed
applied software packages have several differences.
Usually, a scientific workflow applications such as
LIGO [23], Montage [24], CyberShake [25], SIPHT
[26] or Epigenomics [27] are oriented to solve a single
problem in some subject domain. A package is
designed to solve a class of problems. Problem-solving
schemes reflect the variety of algorithms used in the
package. Each workflow has no large variability [28].
Only the input data are usually changed. Thus, there is
no need to support the continuous integration of their
software.

On the contrary, packages are actively developing
by their users. The permanent changes of algorithmic
knowledge are expected.

In the packages, new problem-solving schemes can
be designed and existing schemes can be modified. In
[29], we provide an analysis of the state of the art in
this field. It shows that, currently, there are no tools,
which would allow us to implement the continuous
integration of software for distributed application
packages.

To solve this problem, the development of new spe-
cialized tools is required. Such tools should implement
special functions for continuous integration caused by
the package specifics and interact with existing con-
tinuous integration tools that implement traditional
functions. The provided comprehensive comparative
analysis of the possibilities of known tools for contin-
uous integration shows that the GitLab system is most
suitable for implementing such interaction [30].

There are various categories of package users
(developers, administrators, and end-users). Devel-
opers create and modify the package. End-users apply
it to solve a class of problems provided by the package.
They can formulate new problems and create various
schemes for their solving using existed, modified or
newly applied software. Administrators determine
resource use policies for running the package. Users
may have various affiliations and be in different geo-
graphically distant regions.

Unlike most modern scientific workflows [31],
packages are developed to run in a heterogeneous dis-
tributed computing environment that can integrate
46 No. 8 2020

486 TCHERNYKH et al.
resources of cloud platforms, grid-systems, and public
access supercomputing centers.

Resources that are integrated within such an envi-
ronment can be dedicated and non-dedicated. Scien-
tific workflow systems usually apply traditional virtu-
alization tools [32]. Their capabilities are not enough
to integrate the aforementioned resources into unified
virtual environment.

A detailed comparative analysis of virtualization
systems is represented in [12]. It showed that in a
dynamic environment it is necessary to apply middle-
ware to support effective interaction with various
hypervisors and container management systems. Such
a middleware that can be used in dedicated resources
is the OpenStack platform [33]. However, for non-
dedicated resources, it is necessary to develop a spe-
cialized tool for launching virtual machines (VM).

The aforementioned differences cause various
types of uncertainties that arise in computation plan-
ning and resource allocation. Among them are uncer-
tainties in the resource capabilities, jobs characteris-
tics, environment states, preferences of resource own-
ers and users, quality of services, etc. From
uncertainty point of view, the main challenges in scal-
able scientific applications while tackling applications
at scale are computation planning and resource allo-
cation. Studies of improving computation planning
and resource allocation through decreasing the above-
listed uncertainties are actively developing.

Methods for the analysis of workflow structures
and their decomposition are considered in [34–36].
The workflow analysis allows clarifying the compo-
nents properties. The decomposition is carried out in
order to rationally distribute the components on
resources.

In addition, automation of planning workflows
(problem-solving schemes) for non-procedural for-
mulations of problems enables significantly simplify
the selection of applications needed for solving prob-
lems if there is uncertainty in the software use [37].

A new algorithm for decreasing the jobs distribu-
tion uncertainty of problem-oriented applications is
proposed in [38]. It considers both the specifics of
problems being solved and features of available
resources.

Ramírez-Velarde et al. [39] study adaptive grid-
resource allocation under uncertainty. They propose a
special model of execution delay for job makespan
prediction and a new strategy for adaptive stochastic
allocation of jobs.

Tchernykh et al. [40] propose an approach to mod-
eling cloud computing with uncertainty addressing
resource provisioning in a hybrid public-private cloud
environment. This study provides improving the effi-
ciency of cloud resource provisioning considering
problems of their confidentiality, integrity, and avail-
ability.
PROGRAMMING A
Babenko et al. [41] proposed the arithmetic error
correction codes to reduce uncertainty completion
time, deadlines, reliability, and cost. This approach
focuses on redundant computing systems.

Uncertainty of quality of services associated with
the preference coordination for owners and users of
resources can be successfully provided using multi-
agent technologies. For example, Singh [42] describes
a Multi-Agent System (MAS) to support the scalabil-
ity in cloud computing by finding the clouds satisfied
to user’s requests when the currently used cloud
becomes overloaded. Kalyaev et al. [43] present the
multi-agent scheduling in cloud computing environ-
ments considering job completion deadlines. Improv-
ing multi-agent scheduling is due to emergent knowl-
edge arising in the process of local interactions of
agents.

Keeping order in computation planning and
resource allocation within an unspecialized heteroge-
neous distributed computing environment becomes
increasingly complex. Often, some practical situations
are complicated. Thus, they simply have no workable
deterministic solution that can be obtained in an
acceptable time.

At the same time, probabilistic methods provide
simple and effective prediction mechanisms using ret-
rospective statistic data and expert judgment for the
future. For example, Prieto et al. [44] demonstrate
that a probabilistic approach to the decentralized
management of a computing network allows them to
solve the challenges of the efficient resource usage,
scalability, robustness, and adaptability.

In this paper, we represent a new subsystem of the
OT framework. This framework is a foundation for an
integrated computing environment for packages. It
implements the necessary tools for mitigating uncer-
tainty in the job distribution on resources.

3. OT: FOUNDATION FOR INTEGRATED
COMPUTING ENVIRONMENT

The architecture of the integrated computing envi-
ronment is shown in Fig. 1. The OT subsystems repre-
sent its basis. External information and computation
systems and resources are used in developing and
applying distributed applied software packages.

The following main subsystems of are distin-
guished:

• A user interface that provides a variety of ways for
different user categories to access to the package com-
ponents, subsystems, and information and computa-
tion resources,

• Designer of a conceptual model of the environ-
ment that implements the knowledge specification
about the subject domain of solved problems,

• Designer of module libraries that supports the
development and modification of applied software for
packages,
ND COMPUTER SOFTWARE Vol. 46 No. 8 2020

MITIGATING UNCERTAINTY IN DEVELOPING 487

Fig. 1. The architecture of an integrated computing environment.
• Software manager, which implements automa-
tion of the version control, testing, delivery, and
deployment of both the applied software of packages
and system software of the environment,

• Computation manager that implements comput-
ing management on heterogeneous resources of the
environment,

• Environment state manager that observes
resources,

• API for access to external information and com-
putation systems, and resources.

Knowledge about the subject domains of packages,
information about environment resources and com-
putation systems are stored in the corresponding sec-
tions of the OT knowledge base. To elicit such knowl-
edge, various databases can be used. The source data
and computation results are stored in the computation
databases. In the process of computing, additional
storages can be used.
PROGRAMMING AND COMPUTER SOFTWARE Vol.
3.1. User Interface

Components of the OT subsystems are represented
by services. We implemented web-based access for
users to the operations. Services that represent com-
ponents accessed by other software entities (other
components, package modules, or external software
systems) have an additional description in the Web
Services Description Language (WSDL) [45].

3.2. Conceptual Model Designer

A conceptual model of the environment formed by
this designer consists of three parts. The first part
describes the algorithmic knowledge about solving
problems of the subject domain with the package. The
second part contains information about infrastruc-
tural objects of the environment. Knowledge about the
continuous integration, delivery, and deployment of
software on the environment resources forms the third
part of the model.
46 No. 8 2020

488 TCHERNYKH et al.
Traditionally, algorithmic knowledge is the result
of a structural analysis of the subject domain. In OT,
its description is formed using a special set of con-
cepts. Among them are such basic concepts as param-
eters, operations, modules, problem-solving schemes,
etc.

Parameters represent the characteristics of the sub-
ject domain necessary in the problem-solving process.
Operations are defined above a set of parameters.
They associate a subset of the input parameters, whose
values must be known, to another subset of the output
parameters, whose values need to be calculated. Infor-
mation relations between operations are determined
based on their input and output parameters. Produc-
tions determine the logical conditions of applying
operations in the problem-solving process. These con-
ditions take into account the intermediate results of
computations and environment resources state.

Package developers and their end-users create
problem-solving schemes on the procedural or non-
procedural problem-formulations. These formula-
tions are based on information relations between oper-
ations. The procedural formulation is a list of opera-
tions required to solve the problem and partially
ordered within a tiered-parallel form of DAG. A non-
procedural formulation is represented in the following
form: “Using the initial subset of parameters, whose
values are known, calculate the parameter values of
the target subset”. In the case of such a problem-for-
mulation, the list of operations required to solve the
problem and their partial order are determined auto-
matically.

Modules are associated with software implementa-
tions of operations. Thus, each problem-solving
scheme through its operations determines a set of
modules necessary for the problem-solving process
implementation.

A module description can include the following
information: module source code; programming lan-
guage; type and purpose of input, output, and transit
parameters; methods for passing parameters, handling
the non-standard execution, required compiler and its
options, call format, etc.

We represent new features of OT for the automa-
tion of version control and testing of software. In this
regard, the module description is expanded with addi-
tional information. Now, the description includes the
following additions: links to repositories with source
and binary module files, scenarios for building and
testing modules, information about test data, and
methods of delivery and deployment.

OT supports testing the modules in both individu-
ally and as part of problem-solving schemes. The con-
ceptual model constructor of OT provides the devel-
opment of necessary scripts for external systems.
These scripts implement scenarios of continuous inte-
gration, delivery, and deployment of software.
PROGRAMMING A
Information about infrastructure objects of the
environment includes the characteristics of nodes,
network devices, network topology, and other facili-
ties. In addition, these characteristics include statistics
on software and hardware failures. Information about
administrative policies defined for resources is taken
into account. It includes data on users and their prob-
lems, access rights to resources and quotas for their
use, properties of resource management systems, their
characteristics, and disciplines of computation dis-
patching.

Information about the hardware and software
infrastructure and administrative policies is elicited
using various information and computation systems,
controlling and measuring means, and monitoring
systems. It is reflected in the conceptual model using
system parameters, operations, and modules.

A description of the conceptual model is stored in
the OT knowledge base. Sections of the knowledge
base are distributed between OT, a meta-monitoring
system, and external systems for continuous integra-
tion, delivery, and deployment of software.

3.3. Module Libraries Designer

The applied software of packages can be formed on
the basis of existing software libraries or created
directly by package developers. In both cases, the
module description is included in the conceptual
model of the environment. OT provides the text editor
of the module source code and tools of interaction
with external systems for the building, debugging, and
testing of modules.

The system software of packages is formed on the
basis of the OT system libraries.

3.4. Software Manager

The software manager is a new subsystem of OT. It
is designed to identify and partially eliminate potential
troubleshooting during the continuous integration,
delivery, and deployment of new versions of both the
applied and system software of packages. Its main
functions include the following operations:

• Interacting with repositories of source and binary
files of the applied and system software, including the
support of its version control,

• Automation of building and testing the applied
and system modules individually,

• Creating the VM images for executing modules,
• Automation of testing the applied modules as

part of problem-solving schemes,
• Predicting the runtime of the applied modules in

the environment nodes,
• Automation of the delivery and deployment of

the applied and system modules in the environment.
ND COMPUTER SOFTWARE Vol. 46 No. 8 2020

MITIGATING UNCERTAINTY IN DEVELOPING 489

Fig. 2. Scheme of the continuous integration, delivery, and deployment of software.
The general scheme of continuous integration,
delivery, and deployment of applied and system soft-
ware is shown in Figure 2.

New tools for a meta-description of performing all
the above-listed operations are first implemented in
the conceptual model designer. Information about
nodes performance obtained during the testing of
modules allows us to determine how much does
resource performance matches the module execution
criteria.

Such determining is implemented by the environ-
ment administrators in advance, before the start of the
resources allocation in the process of computational
experiments. This ensures significant mitigation of the
uncertainty in the subsequent process of the distribu-
tion of jobs to resources.

3.5. Computation Manager

A computation manager includes the components
for representing problem-formulations and creating
problem-solving schemes, generator of jobs for exe-
cuting the created schemes, scheduler, and interpreter.
The scheduler decomposes the initial problem-solving
schemes represented in jobs into subschemes in order
to optimize the distribution of computing and com-
munication loads on the environment resources.

The interpreter performs the implementation of
schemes and subschemes for solving problems.

In addition, the computation manager can transfer
jobs for processing to MAS [46]. It is implemented
PROGRAMMING AND COMPUTER SOFTWARE Vol.
using the Java Agent DEvelopment framework
(JADE) [47].

This MAS belongs to the class of meta-schedulers
such as GridWay [48] or Condor DAGMan [49]. At
the same time, unlike similar tools, it allows us to con-
trol the job f lows in an environment that integrates the
resources of the cloud platforms, grid systems and
public access supercomputer centers.

MAS includes agents for classifying jobs, monitor-
ing and dispatching environment resources, as well as
agents directly representing integrated resources
(resource agents). Resource agents come together in a
new virtual community to execute each job.

A condition for including an agent in a community
for executing the specific job is the agent has the
resources that have the necessary capabilities to exe-
cute the modules of this job.

The allocation of resources by agents is shown in
Fig. 3. The classification agent determines the class of
the job and forms a virtual community of resource
agents. The job classification system is discussed in
detail in [50]. The classified job is queued to the dis-
patching agent.

In processing the job queue, the dispatching agent
decomposes them into subjobs, which are then distrib-
uted among the segments of the integrated computing
environment, representing cloud platforms, grid sys-
tems, and public access supercomputer centers.

When modules of subjobs are executed, special
VMs are launched. Software manager previously cre-
ates the images of these VMs. Running VMs are com-
46 No. 8 2020

490 TCHERNYKH et al.

Fig. 3. Resource allocation by agents.
bined into a united virtual runtime environment for a
package.

Cloud resources are managed using the OpenStack
platform. To start VMs on the resources of grid-sys-
tems and public access supercomputer centres, new
jobs are formed for Local Resource Managers (LRMs)
installed on these resources. New jobs are sent to the
common queues of LRMs. To speed up the process of
executing jobs, nodes with free slots are searched in
their job service queues during the resources alloca-
tion. Each slot determines the number of cores that are
used or can be used to execute a job over a period of
time. Overall, agents provide mitigation of uncertainty
in the job distribution by resources. Such mitigation is
carried out automatically in four stages.

At the first stage, the primary classification of a job
is implemented by analyzing the job specification
using a special characteristic function. The formal
correspondence of job characteristics and their values
to the characteristics of the predefined classes and
their value domains is checked. In consequence of the
primary classification, a job may belong to several
classes.

The selection of resources corresponding to the job
classes is performed in the second stage.
PROGRAMMING A
In the third stage, the secondary classification of a
job is performed based on the analysis of statistical
information about the computational history of job
executions and their correspondence to the predefined
classes. The analysis results are used to adjust the out-
comes of the primary classification.

At the last stage, the results of the secondary classi-
fication are refined using the previously obtained data
in testing applied software by the software manager.
For this purpose, we can also use information about
the predicted runtime of modules.

The agent for classifying jobs performs the first two
stages. The agent for dispatching environment
resources carries out the last two stages. Preliminarily,
administrators define the necessary job classes in the
classification system. Then they establish the corre-
spondence of all their resources to the defined classes.
Administrators are made the decisions based on their
practical experience.

The final lob distribution by resources is performed
by resource agents using a tender of computational
works (jobs) [51]. Within the tender, bidding is based
on the closed second-price Vickrey auction [52]. It is
held in one round. During the bidding, additional
conditions for job execution are taken into account.
These include the preferences of resource owners and
ND COMPUTER SOFTWARE Vol. 46 No. 8 2020

MITIGATING UNCERTAINTY IN DEVELOPING 491
the criteria for the problem-solving efficiency, deter-
mined by users of the environment.

3.6. Environment State Manager

This manager receives information about the envi-
ronment state from a special meta-monitoring system
implemented by applying a multi-agent approach [46].
The meta-monitoring system collects information
about the state characteristics of environment infra-
structure objects using the controlling and measuring
means (Sensors, APC PowerChute, IPMI, SMART,
etc.) and local monitoring systems (Ganglia, Nagios,
Zabbix, ZenOSS, etc.). In addition, it observes the
performance parameters of control systems that oper-
ate on these objects.

Based on the information collected, the meta-
monitoring system assesses the current computing sit-
uation, predicts its development, and generates con-
trol actions on infrastructure objects and control sys-
tems in order to prevent or partially eliminate failures
of software and hardware. In case of a critical situa-
tion, when such actions cannot be performed auto-
matically, the meta-monitoring system sends a notifi-
cation to the environment administrator.

3.7. Access to Information and Computation Systems
and Resources

OT provides web-oriented access for users to infor-
mation and computations systems and resources of the
integrated computing environment. This framework
interacts with the systems and resources using the pro-
tocols supported by them.

4. MITIGATING UNCERTAINTY

We consider uncertainty in terms of a deficiency of
the available knowledge in relation to the knowledge
needed to make the near-optimal decision. In our
case, such necessary knowledge is information about
the module runtime in heterogeneous nodes of the
environment, job classification in accordance with
their characteristics, and correspondence of resource
capabilities to job classes.

4.1. Evaluating the Module Runtime

We developed a special model for evaluating the
runtime of modules in the problem-solving scheme.
In the process of testing, the module runs on the refer-
ence node from the software environment for profiling
programs. We execute the module and determine its
time spent on working with various components of the
node taking into account its computational character-
istics. The module runtime on the target node is pre-
dicted with some error by comparing the characteris-
tics of the reference and target nodes.
PROGRAMMING AND COMPUTER SOFTWARE Vol.
Within the developed model, the sets CR =
 and of character-

istics of the reference and target nodes are formed.
The «one-to-one» correspondence is set between cri

and , .
We form the set . The

element pj(d), reflects the computational load
of a node when the module is run. Among them are
the number of integer operations performed, the num-
ber of f loating point operations, the number of
accesses to main memory and cache memory of differ-
ent levels, the number of misses of such accesses, the
number of disks read and write sessions, etc. The load
depends on the data d processed by this module.

Then, the functions are defined.
They calculate the work-time of the lth component of
a node when it performs the computational load,

. The parameter g(d) is an interpolation func-
tion that determines the dependence of from the
amount of data d experimentally.

The module runtime on the reference node is eval-
uated by the following expression:

where g(d) is a manually fitted interpolation function
that determines the dependence of from the
amount of data d experimentally. The error of this
evaluation is determined from the difference in Tr(d)
and : . A theoretical evaluation
of the upper and lower bounds of the ε error is not
given since in each particular case it depend on the
implementation of the functions .

The time of the module run in the target
node is evaluated by the following expression:

To evaluate the module runtime in the target
node, we propose the algorithm that includes the fol-
lowing steps:

• Defining the reference and target nodes,
• Determining the characteristics of

the reference node based on the knowledge about
resources from the conceptual model of the environ-
ment,

• Determining the characteristics of
the target node based on the knowledge about

…1 2{ , , , }mcr cr cr { }= …1 2, , , mCT ct ct ct

ict = ´1,i m
() () (){ }= …1 2, , , nP p d p d p d

= ´1,j n

()(), ,lf CR P g d

= ´1,l k
()r̂T d

() ()()
=

=
1

,ˆ , ,
k

r l
l

T d f CR P g d

()r̂T d
ε

()r̂T d () ()ε = − ˆ
r rT d T d

()(), ,lf CR P g d

ˆ'()tT x

() ()
()

= + ε
ˆ

ˆ ˆ
ˆ

'() ,r
t t

t

T d
T x T d s

T d

() ()()
=

=
1

.ˆ , ,
k

t l
l

T d f CT P g d

ˆ'()tT x

…1 2, , , mcr cr cr

…1 2, , , mct ct ct
46 No. 8 2020

492 TCHERNYKH et al.
resources from the conceptual model of the environ-
ment,

• Preparing the data d in the computation database
of the OT,

• Deployment the profiler, module, and prepared
data on the reference node using the software man-
ager,

• Starting the profiler on the reference node,
• Launching the module from the profiler envi-

ronment,
• Executing the module on the reference node,
• Getting the values of profiler counters,
• Determining the real module runtime

using the obtained values,
• Calculating using the

obtained values,

• Evaluating the module runtime on the ref-
erence node,

• Evaluating the module runtime on the tar-
get node,

• Calculating the error ε,

• Evaluating the module runtime on the tar-
get node.

In the algorithm, the characteristics , , …, ,
, , …, , components of d, the module runtime

Tr, evaluation , evaluation , and error ε are the sys-
tem parameters. The functions , , …, , , …, ,

, and implementations of the expressions for calcu-
lating , , and are the system modules. The sys-
tem parameters and modules are described in the con-
ceptual model of the environment.

The evaluation of the module runtime obtained
with the help of the proposed algorithm is rather
approximate. In addition, the automatic selection of
the interpolation function g(d) is difficult to imple-
ment for some classes of modules. However, such an
evaluation in some cases can significantly improve
end-user evaluations and evaluations based on com-
putational history.

4.2. Mitigating Uncertainty
in the Job Distribution by Resources

To evaluate the degree of uncertainty mitigation in
the job distribution by resources, we apply an informa-
tional binary entropy. This parameter is often used to
measure the uncertainty of a complex system. It is
assumed that a decrease in entropy leads to mitigation
of uncertainty.

Let m classes be found from the results of the pri-
mary classification of a job that is satisfied with the
characteristics of these classes. The environment
includes n heterogeneous resources. One class can

()rT d

() () ()…1 2, , , np d p d p d

()r̂T d

()t̂T d

ˆ'()tT x

1cr 2cr mcr
1ct 2ct mct

r̂T ˆ'tT
1p 2p 1f 2f kf

g

r̂T ˆ'tT ε
PROGRAMMING A
correspond to k resources, . Information about
the correspondence between classes and resources is
represented by a Boolean matrix Y of dimension

. The matrix element () shows that
the jth resource corresponds (not corresponds) to the
ith class.

We define the entropy Ec, which reflects the
uncertainty degree in belonging the job to one of the
classes, as follows:

where xc is a random event that determines that the
job belongs to one of m classes, is the probabil-

ity of such an event relative to the ith class, =

1, is the entropy corresponding to this event.

The value of is calculated as follows:

In the same way, we define the entropy Er, which
reflects the uncertainty degree in belonging the job to
one of the classes. It will take the following form:

where xr is a random event that leads to allocate one of
n resources to the job, is the probability of such

an event relative to the jth resource, is the
entropy corresponding to this event. The values

and are calculated as follows:

Let us to consider an illustrative example of miti-
gating uncertainty in the job distribution by resources.

Suppose that a job was sent into the environment to
execute a module specified in this job. According to
the results of the primary classification, 8 classes were
found whose characteristics are satisfied by the job.
These classes differ among themselves in the value
domain of one characteristic that determines the
admissible job makespan. The value of this character-
istic is not specified in the job specification.

∈ ´1,k n

×n m = 1jiy = 0jiy

() () ()
=

=
1

,
m

c c
c i c i c

i

E x p x E x

()i cp x

=

1

()
m

i c
i

p x

()c
i cE x

()c
i cE x

== − 2

0, if () 0,
()

log () otherwise.
i cc

i c
i c

p x
E x

p x

() () ()
=

=
1

,
n

r r
r j r j r

j

E x p x E x

()j rp x

()r
rE x

()j rp x

()r
j rE x

() () ()

()

∀ = = ∀ =

=

=

∈ =

: 1 1 : 1

´

1

/ ,

1, 1,,

jl jl

n

j r l C l C
l y j l y

n

j r
j

p x p x p x

l m p x

() ()
()

== − 2

0, if 0,
log otherwise.

j rr
j r

j r

p x
E x

p x
ND COMPUTER SOFTWARE Vol. 46 No. 8 2020

MITIGATING UNCERTAINTY IN DEVELOPING 493

Table 1. Event probabilities and entropy parameters

No. p1(xc) p2(xc) p3(xc) p4(xc) p5(xc) p6(xc) p7(xc) p8(xc) Ec p1(xr) p2(xr) p3(xr) Er

1 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 3.00 0.333 0.333 0.333 1.06
2 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 3.00 0.444 0.556 0 0.99
3 0.115 0.741 0.132 0.012 0 0 0 0 1.14 0.988 0.012 0 0.09
4 0 0.936 0.064 0 0 0 0 0 0.34 1.000 0 0 0
The environment includes 3 heterogeneous
resources (3 clusters, the nodes of which differ in their
computational characteristics). The correspondence
of resources to classes is represented by a matrix

There is a computational history of performing
such a job on the environment resources.

Table 1 shows the number of stages, values ,
, …, , Ec, , …, , and Ec for

each stage of mitigating uncertainty in the job distribu-
tion by resources.

At the first stage, the probabilities of belonging the
to one of 8 classes are equal to each other, just as the
probabilities of allocating one of 3 resources to the job
are equal. In this case, and .

At the next stage, two resources were selected that
are most suitable for the job execution from the point
of view of expert experience of resource administra-
tors. In this case, the uncertainty degree in allocating
resources to the job decreases to .

The secondary classification of the job based on
the analysis of statistical information about the com-
putational history concretizes the probabilities of
belonging the job to classes obtained at the third stage.
The value of Ec becomes 1.14. In accordance with this
fact, the probabilities of allocating resources to the job
change. The uncertainty degree in allocating resources
to the job is significantly reduced to .

At the last stage, the results of the secondary classi-
fication are refined based on the predicted module
runtime or previously obtained data of its testing. As a
result, and . Thus, resource 1 is
allocated to execute the job.

It should be noted that according to the results of
the secondary classification of jobs, they could belong
to wider sets of classes in comparison with the refined
classification based on module testing. This is because
the computational history may contain information
about the execution of modules in debugging and
modules executed using incorrect data. In this case,
some job characteristics, for example, their makespan,

 =

1 1 1 1 0 0 0 0
0 0 0 1 1 1 1 1 .
0 0 0 0 0 0 0 0

Y

()1 cp x
()2 cp x ()8 cp x ()1 rp x ()3 cp x

= 3.00cE = 1.06rE

= 0.99rE

= 0.09rE

= 0.34cE = 0.09rE
PROGRAMMING AND COMPUTER SOFTWARE Vol.
may go beyond the boundaries of value domains in
classes that really correspond to these jobs.

5. EXPERIMENTAL ANALYSIS
5.1. Package for Problem-solving the Search

for Directions of Sustainable Development
of the Energy Sector

The search for directions of sustainable develop-
ment of both the energy sector as whole and individual
energy systems is a typical problem. The need to solve
it repeatedly arises in the process of their operation
and development. To solve this problem, the Correc-
tive package was developed. It has been used to study
the sustainable development of the energy sector of
Vietnam [53].

We study the energy sector development taking into
account all combinations of large-scale disturbances
that can lead to insufficient provision of end-consum-
ers in energy resources. Such a study causes a large
number of possible states of the energy sector and dif-
ficulties in analyzing these states by the classical meth-
ods.

In this regard, in the package, we use a new
approach to the study of the energy sector through
combinatorial modeling. It is based on considering
various combinations of possible energy sector states
and transitions between them for the given period T.
Since the entire set of possible states is very large, a set
of admissible states is only examined.

We represent a set of states as directed graph
_x005F_x0001_, where _x005F_x-

0001_ is a set of vertices (possible states of the energy
sector), and _x005F_x0001_ is a set of edges (transi-
tions between states). Edges are directed from the state
s0 at the initial time towards states _x005F_x0001_at
the next time moment and further towards states at
the next time moment . (Figure 4). Each vertex
reflects a state of interconnected objects of the energy
sector. Such state includes the operation, reconstruc-
tion, modernization, and creation of objects. Each
object performs one or more technological work (stor-
ing, production, processing, transformation, and
transportation of energy resources).

The combinatorial analysis is carried out by exam-
ining various combinations of object states and transi-
tions between states for the period . The objective is

>=< ,G V E V

E

τ0

τ1

τ τ2 3, ,..

T

46 No. 8 2020

494 TCHERNYKH et al.

Fig. 4. Fragment of the graph .

... ...
...

s11 s21

s22s12s0

τ0 τ1 τ2

G

Fig. 5. Problem-solving scheme.
to search a subgraph of the graph that includes the
paths with a minimum cost of energy sector develop-
ment.

The general scheme for problem-solving is shown
in Figure 5.

The operation prepares these scenarios for the
development of the energy sector of Vietnam. It forms
the criteria for evaluating the energy sector function-
ing, list of actions for its development, set of organiza-
tional and functional constraints, simulated period,
and other initial parameters.

Then, based on the prepared data, the operation o1
selects a scenario and constructs a variant of the
appropriate sector development model. The operation
o2 decomposes the model into submodels taking into
account various logical and balance constraints. The
submodels are examined in parallel using instances of
the operation o3.

In each case, we solve the following linear pro-
gramming problem:

where the problem parameters are interpreted as fol-
lows:

• S is the generalized state of the energy sector,
• C is the vector of specific costs for the technolog-

ical methods of functioning the existing, recon-
structed, modernized, and newly constructed energy
sector objects,

• A is the matrix of technological coefficients of
production, processing, transformation, and trans-
portation of resources, ,

• D is a vector that determines the technically pos-
sible intensities of applying technological methods of
objects functioning (meaning production and trans-
port of resources), ,

• R is a vector that defines the required volume of
the resource consumption,

• P is the vector of specific losses due to lack of
resources,

G

5o

() ()= + − → min,f S CX P R Y

= >, , , , , , , , ,S A X Y C P D R U W

− ≥ ≤ ≤0, , ,AX Y X D Y R

()= ,ij ija q U W

()=i id h U
PROGRAMMING A
• U is the vector of actions for the energy sector
development,

• is the vector of disturbances.
The first term CX in the objective function shows

the costs associated with the energy sector function-
ing. At the same time, the second term
reflects the damage from insufficient resources supply
to consumers due to disturbances. Such disturbances
can include large-scale technological accidents, natu-
ral disasters, and terrorist acts.

The operation o4 integrates the simulation results,
performs their multicriteria analysis, and generates a
set of rational ways of the energy sector development
for each scenario.

Modules implement operations .
Their frequent modification is due to the evolution of
algorithmic knowledge of the package. In particular, it
is caused by the applying new criteria for evaluating
the energy sector functioning, expanding the list of
actions for its development, and using additional con-
straints on the processes of functioning and develop-
ment of this sector. In addition, the development of
hardware and software of the environment often leads
to the need for the recompilation, build, and testing of
modules with these updates.

In this regard, we consider two basic versions
[12] and [13] for solving the problem of searching
directions of the sustainable development of the
energy sector of Vietnam. The second version is devel-
oped using the new software manager developed for
OT.

5.2. Computational Resources
Problem-solving using both of the aforementioned

versions of the package was performed in the inte-

W

()−P R Y

−1 5m m −1 5o o

v1

v2
ND COMPUTER SOFTWARE Vol. 46 No. 8 2020

MITIGATING UNCERTAINTY IN DEVELOPING 495
grated computing environment that includes the fol-
lowing resources:

• Cloud-based virtualized resources under the
OpenStack management – 5 dedicated nodes (2x16
cores CPU AMD Opteron 6276, 2.3 GHz, 64 GB
RAM) of the HPC-cluster of the public access com-
puter center Irkutsk Supercomputer Center of SB RAS
[54],

• Non-dedicated nodes (2 × 18 cores CPU Intel
Xeon X5670, 2.1 GHz, 128 GB RAM) of the HPC-
cluster,

• Grid-resources – remote personal computers.
The dedicated resources are intended only for solv-

ing the problem under consideration. Non-dedicated
resources are shared by all users of the public access
computer center. They are used in accordance with
their administrative policies and quotas. Users who
have already been dedicated resources can use only
those non-dedicated resources on which there are free
slots in the LRM schedule. In the process of solving
the problem in an integrated computing environment,
its grid-resources can be used by their owners.

5.3. Preparation of a Computational Experiment
In general, software modification includes the fol-

lowing stages:
• Modification of the source code of applied and

system software, including searching for the correct
version in the repositories on the GitLab server, clon-
ing the necessary repository to the OT server or devel-
oper server, launching the programming environment,
editing the code, and saving the modified code to the
GitLab server,

• Automated build of software in accordance with
the scenarios predefined in the conceptual model
designer for external continuous integration systems,

• Modification of test data including its search on
the GitLab server or testing server, launching the data
processing system, and editing them,

• Modification of scenarios of continuous integra-
tion, delivery, and deployment of software using the
conceptual model designer,

• Automated software testing in accordance with
the predefined scenarios,

• Automated build of software installation pack-
ages in accordance with scenarios of its continuous
integration, delivery, and deployment,

• Modification of the conceptual model (parame-
ters, operations, modules, productions, problem-solv-
ing schemes, and relationships between them) of the
environment, translation of the resulting modification
into an XML-description, and verification of its com-
pleteness and correctness,

• Automatic deployment of software on resources
using installation packages,
PROGRAMMING AND COMPUTER SOFTWARE Vol.
• Automated testing of software on resources in
accordance with the predefined scenarios including an
evaluation of the resource performance during execu-
tion,

• Automated testing of package schemes in accor-
dance with the predefined scenarios.

Usually, these stages are repeated many times (up
to several times a day) in the process of modifying
applied and system software. When developing version

, all of them were executed in non-automated mode.

Evaluations of the average time taken to modify the
software of the package are represented in Fig. 6. They
include evaluations of overall time costs (Fig. 6a,c)
and the developer time costs (Fig. 6b,d) at the modifi-
cation stages for a one module using the software
manager (version) and without it (version).

Figure 6a and Figure 6c reflect the time spent on
the stages associated with the modification of the
algorithmic knowledge of the package. Their imple-
mentation is based on the joint use of OT and external
continuous integration systems. The remaining evalu-
ations related to modifying the package only with OT
are shown in Fig. 6b,d.

The results represented in Fig, 6 show that the use
of the software manager provides a significant
decrease in both the time spent by a software developer
and overall time taken to prepare the experiment. They
are due to the following factors:

• Reducing the time spent to search the software
source code in repositories,

• Automation of compilation, testing, and building
installation packages, deployment and testing of soft-
ware on resources, and testing problem-solving
schemes,

• Reducing compilation time, testing, and build-
ing installation packages by moving these stages to
more performance resources,

• Improving the computation reliability in the
problem-solving process by preliminary testing soft-
ware on heterogeneous resources,

• Partial automation of the process of modifying
the conceptual model of the environment when
changing software specifications in repositories.

Figure 7 shows evaluations of the time spent by the
software developer and the overall time taken to pre-
pare and carrying out experiments for version using
and without the software manager. The evaluations are
calculated on the basis of a cumulative total and shown
in minutes in accordance with the software modifica-
tion sequence. Obviously, the use of the software man-
ager provides a significant decrease in time of prepar-
ing and carrying out of experiments.

v1

v2 v1

v2
46 No. 8 2020

496 TCHERNYKH et al.

Fig. 6. Evaluations of the overall time (a, c) and developer time (b, d) in minutes at the modification stages for a one module using
and without the software manager respectively.

Testing

Test data modification

Scenarios modification

Source code modification

Building

Building installation packages

2 4 6 8 10 120

(a)

Without the software
manager
With the software
manager

TimeStages

Testing at resources

Testing the schemes

Model modification

Deployment

2 4 6 8 10 120

(c)

Without the
software manager
With the software
manager

TimeStages

Testing

Test data modification

Scenarios modification

Source code modification

Building

Building installation packages

2 4 6 8 10 120

(b)

Without the
software manager
With the software
manager

TimeStages

Testing at resources

Testing the schemes

Model modification

Deployment

2 4 6 8 10 120

(d)

Without the
software manager
With the software
manager

TimeStages

Fig. 7. Cumulative time evaluations.

1000

1500

2000

2500

500

0

Time

Overall time overhead of the experiment without the software manager

Overall time overhead of the experiment with the software manager

Developer time overhead without the software manager

Developer time overhead with the software manager

Building Testing Testing at
resources

Testing the
schemes

ComputingSource code
modification

Test data
modification

Scenarios
modification

Model
modification

DeploymentBuilding
installation

packages
Stages
5.4. Computational Experiment
We compare the module execution parameters of

the two versions and when solving typical prob-
lems characterized by the same computational com-
plexity. In the process of problem-solving, data of the
same structure were used. These data are obtained on
the basis of statistical information on the functioning
of the energy sector of Vietnam in different periods.

In Table 2, we show the following problem-solving
parameters for one scenario of the energy sector devel-
opment:

v1 v2
PROGRAMMING A
• is the number of module launches,

• is the average module runtime in seconds,

• is the number of module failures,

• is the number of module restarts,
• k is the coefficient of utilization of the node com-

ponents at the module execution.
The time of parallel processing of submodels for

the energy sector development by instances of module
 is the main part of the problem-solving makespan.

sn

avgt

fn

rn

3m
ND COMPUTER SOFTWARE Vol. 46 No. 8 2020

MITIGATING UNCERTAINTY IN DEVELOPING 497

Table 2. Module execution parameters

Module
nf Nr k

1 1 10.22 10.17 0 0 0 0 90.01 90.70

1 1 172.64 166.42 0 0 0 0 94.35 94.74

531442 531497 10.17 9.74 1371 0 1678 0 88.27 98.46

1 1 130.04 129.23 0 0 0 0 30.00 30.02

1 1 11.62 10.55 0 0 0 0 27.27 30.63

sn avgt

v1 v2 v1 v2 v1 v2 v1 v2 v1 v2

1m

2m

3m

4m

5m

Runs of module
The results are represented in Table 2 show that the
number of failures for the module instances of ver-
sion has decreased. Accordingly, the number of
restarts has reduced.

The optimization of the module operation of
the version and elimination of failures in its func-
tioning led to a significant improvement in the coeffi-
cient k for this module by 10.19%. The resource utili-
zation coefficients for the execution of the remaining
modules of version are also improved.

Figure 8 shows the time and of computations in
minutes when using modules of versions and to
solve the problem. In both cases, dedicated and non-
dedicated resources were used jointly. The jobs distri-
bution was carried out under the MAS management.

In addition, the evaluated time for problem-solv-
ing only on dedicated resources when using modules
of version is given. In this case, the distribution of
jobs was carried out under the OpenStack manage-
ment.

In the case of version , the use of additional non-
dedicated resources made it possible to reduce the
time it took to solve the problem by 18% in compari-
son with the evaluated time of problem-solving on
non-dedicated resources only. The use of version
reduced this time by an additional 5%.

3m
v2

3m
v2

v2

2t 3t
v1 v2

1t

v1

v1

v2
PROGRAMMING AND COMPUTER SOFTWARE Vol.

Fig. 8. Problem-solving makespan.

200
300
400
500
600

100
0

Time

t1 t2 t3
5.5. The Non-dedicated Resource Use

In this section, we consider the advantages of
multi-agent management of distributed computing in
the joint applying dedicated and non-dedicated
resources.

The module m3 evaluates states every 10 seconds on
average. Figure 9 shows the distribution density of the
module m3 runtime for both package versions respec-
tively. In both cases, these results show that the mod-
ule m3 runtime in most cases is about from 5 to 10 sec-
onds. This fact enables to provide a good balance of
the resources load by agents.

The estimated problem-solving makespan on one
core is more than 60 days. The makespan provided by
applying only virtualized resources with 160 VMs is
about 9 hours for both package versions. This is
achieved by starting VMs in non-dedicated resources.
A part of the computational load is re-allocated to
non-dedicated nodes.

Figure 10 demonstrates numbers of free and used
slots for every hour in the problem-solving for both
versions of packages.

The numbers of free slots in the LRM schedule of
non-dedicated resources are represented by the green
color. The numbers of used slots are reflected by the
light green color.
46 No. 8 2020

Fig. 9. The distribution density of the execution time.

400 000

300 000

200 000

100 000

0
5−10

v1 v2

15−2010−15 20−25 25−30 30−40
Execution time intervals for module m3 in seconds

498 TCHERNYKH et al.

Fig. 10. A number of slots vs. an hour.

6
8

10
12
14
16
18
20

2
4

0

Number of slots

Number of used slots
Summary number of slots

1 2

v1

v1

v1

v1
v1

v1

v1

v1

3 4 5 6 7 8
Hours

Fig. 11. The distribution density of a number of processors
in slots.

10

15

20

25

5

0

Number of slots

2

v1 v2

4 8 16 32
Number of cores

Fig. 12. The distribution density of slot time intervals.

10

15

20

25

30

5

0

Number of slots

1−15

v1 v2

15−60 60−360 360−720
Slot time intervals in minutes
Distribution densities of the number of cores are
demonstrated in Fig. 11. We can see that most of the
slots have 32 cores.

Time intervals for the used slots are represented in
Fig. 12. It shows the insufficient time intervals in many
PROGRAMMING A
slots for the effective launch of VMs. At the histo-
grams, we use the exponential fit.

We used 16 slots from 55 free slots for and 17 slots
from 56 free slots for . For (), 15 (18) free slots
occurred in the nodes in which jobs are already exe-
cuted. The VMs startup could negatively affect the
execution time. 24 (21) slots exist a short time. The
efficiency of running machines in these slots would be
extremely low. In the best case, we use three slots at a
time and the maximum number of additional cores is
equal to 96 in each scenario. At the same time, the
average processor utilization rate in non-dedicated
resources for both cases is equal to about 90%.

For jobs of the module m3 execution, we have cre-
ated the special class. It includes characteristics for
jobs that can be executed both in dedicated and non-
dedicated resources. The information about these
characteristics is represented in Table 3.

It shows the following data: job characteristic, its
types, domain, unit, attributes “mandatory” or
“optional”, specialized domain for the class, and
example of characteristic values in the job specifica-
tion. In this specification, characteristics 1-3 represent
information about the executed file.

Characteristics 4-6 describe requested resources. A
selection of the right VM image is provided by charac-
teristics 7 and 8. Middleware in VM is determined by
the system variable “framework”. This variable
“framework” was equal to “DISCOMP” for . Sub-
sequently, it was equal to “OT” for . Characteristics
9 and 10 determine restrictions of slots in LRM sched-
ule. Let us note that characteristics 11-13 are optional.
Therefore, their values may not be defined in a job
specification.

The job classification determines restrictions of
slots in the job class specification, in advance. Further,
using this knowledge, agents automatically select slots
that ensure efficient use of resources.

For dedicated virtualized nodes, we speed up com-
putations close to linear. In the case of job re-allo-
cation to non-dedicated resources reduces the prob-
lem-solving time by about 18% in comparison with
OpenStack platform that cannot provide dynamic
elasticity of VM provisioning in non-dedicated
resources. At the same time, in the case of these
indicators were improved by 5% in comparison to .

6. PRACTICAL USE

OT is applied in Irkutsk Supercomputer Center of
SB RAS. Usually, it is used for supporting large-scale
computational experiments within initiative scientific
research.

v1

v2 v1 v2

v1

v2

v1

v2

v1
ND COMPUTER SOFTWARE Vol. 46 No. 8 2020

MITIGATING UNCERTAINTY IN DEVELOPING 499

Table 3. Job Class Characteristics

No. Characteristic Type Domain Unit Mandatory/
Optional

Specialized
domain Job specification

1 Job name String 1-255 Char Mandatory 1-255 Corrective_solver

2 Path to executed file String 1-255 Char Mandatory 1-255 ~/ framework /correc-
tive/failsets

3 Parameters of executable file String 1-65535 Char Mandatory 1-65535 -input_file input.xml -
output_file output.xml

4 Number of requested nodes Integer 1-20 Node Mandatory 1 1

5 Number of requested cores per
node

Integer 1-36 Core Mandatory 32 32

6 Number of VMs that will be
launched in a one node

Integer 1-36 VM Mandatory 32 32

7 Guest operating system in VM String 1-256 Char Mandatory ReactOS ReactOS

8 Middleware in VM String 1-256 Char Mandatory framework framework

9
Number of free cores in a slot of
LRM Schedule in non-dedi-
cated resources

Integer 1-36 Core Mandatory 32 32

10
Minimum time interval for a slot
of LRM Schedule in non-dedi-
cated resources

Integer 1-1728000 Second Mandatory 900-
1728000

900

11 Maximum job execution time Integer 1-1728000 Second Optional 1-1728000 None

12 RAM size Integer 8-128 GB Optional 8 None

13 HDD size Integer 1-2048 GB Optional 1 None
At the same time, OT has been also successfully
used to solve many practical problems. Among them
are the following important problems:

• Studying the development scenarios of the
energy sector of Vietnam [13, 53],

• Analysis of the vulnerability of critical infrastruc-
tures in the energy sector of Russia [9],

• Optimization of warehouse logistics [55],
• A search of global minima of multiextremal

functions [56].
In addition, students of the Irkutsk State University

actively use OT within training course Parallel Com-
puting. Students receive both the group training in
solving typical problems using traditional parallel pro-
gramming technologies and individual training in
solving specialized problems using the OT technolo-
gies.

The community of the OT users includes the fol-
lowing groups:

• A team of scientists developing and supporting
the framework,
PROGRAMMING AND COMPUTER SOFTWARE Vol.
• Developers, administrators, and end-users of
distributed applied software packages that were devel-
oped for solving the aforementioned practical prob-
lems,

• Students.

7. CONCLUSIONS

OT provides unified environment that integrates
clouds, grids, and public access supercomputer cen-
ters. It includes tools for development and use of dis-
tributed applied software packages using modern
methods and means within the paradigms of parallel,
distributed, and virtual computing.

In this paper, we present new tools of the frame-
work for mitigating uncertainty of the job allocation
on resources. Our contribution is multifold.

We define uncertainty in terms of a deficiency of
the available knowledge in relation to the knowledge
needed to make the near-optimal decision of the job
distributing.
46 No. 8 2020

500 TCHERNYKH et al.
We provide eliciting the additional necessary
knowledge about the module runtime estimation in
different nodes of a heterogeneous integrated comput-
ing environment.

We propose methods for job classification in accor-
dance with their characteristics and matching resource
capabilities to job classes.

We extend the systems for continuous integration,
delivery, and deployment of software for scalable sci-
entific applications (distributed applied software
packages) with workflows.

However, some problems cannot be solved with the
help of such systems. To this end, we have imple-
mented our own tools for the meta-description of all
processes of continuous integration, delivery, and
deployment of both the applied and system software.
In comparison with existed systems, these tools sup-
port modification the conceptual model of the inte-
grated computing environment and automation of
planning and testing problem-solving schemes.

We have provided the results of a comprehensive
comparative analysis of two modifications of the dis-
tributed applied software package. The versions of this
package were developed for solving the problem of
studying directions of the sustainable development of
the energy sector of Vietnam with the use of the devel-
oped tools and without them. These results show the
benefits of using the developed tools. In particular, the
reliability of distributed computing and problem-solv-
ing time are significantly improved.

Our further studies are related to the use of OT in
creating digital twins of important infrastructure
objects of the Baikal natural territory. The aim of the
study is to optimize the applying advanced environ-
mentally friendly technologies at the objects.

OT is based on the technology of creating applied
software packages, which has been developing at the
institute since the 80s of the last century. It is pro-
moted by the Matrosov Institute for System Dynamics
and Control Theory of SB RAS.

ACKNOWLEDGMENTS

The study is supported by the Russian Foundation of
Basic Research, projects nos. 19-07-00097 and 18-07-
01224. The development of meta-monitoring and resource
allocation agents was supported in part by the Basic
Research Program of SB RAS, project no. IV.38.1.1.

REFERENCES
1. Inggs, G., Thomas, D.B., and Luk, W., A domain spe-

cific approach to high performance heterogeneous
computing, IEEE Trans. Parallel Distrib. Syst., 2017,
vol. 28, no. 1, pp. 2–15.

2. Il’in, V., Artificial intelligence problems in mathemati-
cal modeling, Commun. Comput. Inf. Sci., 2019,
vol. 1129, pp. 505–516.
PROGRAMMING A
3. Seinstra, F.J., Maassen, J., van Nieuwpoort, R.V.,
Drost, N., van Kessel, T., and van Werkhoven, B., Jun-
gle computing: distributed supercomputing beyond
clusters, grids, and clouds, in Grids, Clouds and Virtual-
ization. Computer Communications and Networks, Lon-
don: Springer, 2011, pp. 167–197.

4. Wang, L., Jie, W., and Chen, J., Grid Computing: Infra-
structure, Service, and Applications, CRC Press, 2018.

5. Varshney, S., Sandhu, R., and Gupta, P.K., QoS based
resource provisioning in cloud computing environ-
ment: a technical survey, in Proc. Int. Conf. on Advances
in Computing and Data Sciences, Singapore: Springer,
2019, pp. 711–723.

6. Voevodin, Vl.V., Antonov, A.S., Nikitenko, D.A.,
Shvets, P.A., Sobolev, S.I., Sidorov, I.Yu., Stefanov, K.S.,
Voevodin, V.V., and Zhumatiy, S.A., Supercomputer
Lomonosov-2: large scale, deep monitoring and fine
analytics for the user community, Supercomput. Front.
Innovations, 2019, vol. 6, no. 2, pp. 4–11.

7. Shabanov, B.M. and Samovarov, O.I., Building the
software-defined data center, Program. Comput. Soft-
ware, 2019, vol. 45, no. 8, pp. 458–466.

8. Mateescu, G., Gentzsch, W., and Ribben, C.J., Hybrid
computing – where HPC meets grid and cloud com-
puting, Future Gener. Comput. Syst., 2011, vol. 27, no. 5,
pp. 440–453.

9. Feoktistov, A., Gorsky, S., Sidorov, I., Kostromin, R.,
Edelev, A., and Massel, L., Orlando tools: energy re-
search application development through convergence
of grid and cloud computing, Commun. Comput. Inf.
Sci., 2019, vol. 965, pp. 289–300.

10. Feoktistov, A., Kostromin, R., Sidorov, I., and Gorsky, S.,
Development of distributed subject-oriented applications
for cloud computing through the integration of concep-
tual and modular programming, in Proc. 41st Int. Con-
vention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO-2018), Riej-
ka: IEEE, 2018, pp. 256–261.

11. Yu, J. and Buyya, R., A taxonomy of workflow man-
agement systems for grid computing, J. Grid Comput.,
2005, vol. 3, no. 3–4, pp. 171–200.

12. Feoktistov, A., Sidorov, I., Tchernykh, A., Edelev, A.,
Zorkalzev, V., Gorsky, S., Kostromin, R., Bychkov, I.,
and Avetisyan, A., Multi-agent approach for dynamic
elasticity of virtual machines provisioning in heteroge-
neous distributed computing environment, Proc. IEEE
Int. Conf. on High Performance Computing and Simula-
tion (HPCS-2018), Orleans, 2018, pp. 909–916.

13. Bychkov, I., Oparin, G., Feoktistov, A., Sidorov, I.,
Gorsky, S., Kostromin, R., and Edelev, E., Subject-
oriented computing environment for solving large-scale
problems of energy security research, J. Phys.: Conf.
Ser., 2019, vol. 1368, pp. 052030-1–052030-12.

14. Burri, A., Dedner, A., Klofkorn, R., and Ohlberger, M.,
An efficient implementation of an adaptive and parallel
grid in DUNE, Comput. Sci. High Perform. Comput. II:
Notes Num. Fluid Mech. Multidiscipl. Des., 2006,
vol. 91, pp. 67–82.

15. Radchenko, G. and Hudyakova, E., A service-oriented
approach of integration of computer-aided engineering
systems in distributed computing environments, Proc.
UNICORE Summit, Dresden, 2012, pp. 57–66.
ND COMPUTER SOFTWARE Vol. 46 No. 8 2020

MITIGATING UNCERTAINTY IN DEVELOPING 501
16. Shamakina, A., Brokering service for supporting prob-
lem-oriented grid environments, Proc. UNICORE Sum-
mit, Dresden, 2012, pp. 67–75.

17. Software for Exascale Computing-SPPEXA 2013-2015,
Bungartz, H.J., Neumann, P., and Nagel, W.E., Eds.,
Cham: Springer, 2016, vol. 113.

18. Afgan, E., et al., The Galaxy platform for accessible, re-
producible and collaborative biomedical analyses: 2018
update, Nucl. Acids Res., 2018, vol. 46, no. W1,
pp. W537–W544.

19. Ananthakrishnan, R., Blaiszik, B., Chard, K., and
Chard, R., Globus platform services for data publica-
tion, Proc. ACM Conf. of the Practice and Experience on
Advanced Research Computing, Pittsburgh, 2018, pp. 1–7.

20. Sukhoroslov, O., Supporting efficient execution of
workflows on Everest Platform, Commun. Comput. Inf.,
2019, vol. 1129, pp. 713–724.

21. Gavvala, S.K., Chandrasheka, J., Gangadharan, G.R.,
and Buyya, R., QoS-aware cloud service composition
using eagle strategy, Future Gener. Comput. Syst., 2019,
vol. 90, pp. 273–290.

22. Deelman, E., Peterka, T., Altintas, I., and Carothers, C.D.,
The future of scientific workflows, Int. J. High Perform.
Comput. Appl., 2018, vol. 32, no. 1, pp. 159–175.

23. Abramovici, A., et al., LIGO: the laser interferometer
gravitational-wave observatory, Science, 1992, vol. 256,
no. 5005, pp. 325–333.

24. Berriman, G.B., et al., Montage: a grid enabled engine
for delivering custom science-grade mosaics on de-
mand, Proc. SPIE – Int. Soc. Opt. Eng., 2004, vol. 5493.
https://doi.org/10.1117/12.550551

25. Maechling, P., et al., SCEC CyberShake workflows-
automating probabilistic seismic hazard analysis calcu-
lations, in Workflows for e–Science, Springer, 2006.
https://doi.org/10.1007/978-1-84628-757-2_10

26. Livny, J., Teonadi, H., Livny, M., and Waldor, M.K.,
High-throughput, kingdom-wide prediction and anno-
tation of bacterial non-coding RNAs, PLoS One, 2008,
vol. 3, no. 9, pp. e3197.
https://doi.org/10.1371/journal.pone.0003197

27. USC Epigenome Center. http://epigenome.usc.edu.
Accessed 08.12.2019.

28. Wangsom, P., Lavangnananda, K., and Bouvry, P.,
Multi-objective scientific-workflow scheduling with
data movement awareness in cloud, IEEE Access, 2019,
vol. 7, pp. 177063–177081.

29. Feoktistov, A., Gorsky, S., Sidorov, I., and Tchernykh, A.,
Continuous integration in distributed applied software
packages, Proc. 42st Int. Convention on Information and
Communication Technology, Electronics and Microelec-
tronics (MIPRO-2019), Riejka: IEEE, 2019, pp. 1775–
1780.

30. Gruver, G., Start and Scaling Devops in the Enterprise,
BookBaby, 2016.

31. Talia, D., Workflow systems for science: concepts and
tools, ISRN Software Eng., 2013, art. ID 404525.
https://doi.org/10.1155/2013/404525

32. Deelman, E., et al., Pegasus, a workflow management
system for science automation, Future Gener. Comput.
Syst., 2015, vol. 46, pp. 17–35.

33. Bumgardner, V.K., OpenStack in Action, Shelter Island:
Manning Publ., 2016.
PROGRAMMING AND COMPUTER SOFTWARE Vol.
34. Spruth, I.W.G., Discovering and classifying regions in
workflow graphs, Diploma Thesis in Computer Science,
Publ. of the University of Tubingen, 2005.

35. Bharathi, S., Chervenak, A., Deelman, E., Mehta, G.,
Gaurang, S., and Mei-Hui, V.K., Characterization of
scientific workflows, Proc. 3rd Workshop on Workflows
in Support of Large-Scale Science (WORKS 2008), Aus-
tin, 2008, doi 1-10.
https://doi.org/10.1109/WORKS.2008.4723958

36. Hirales-Carbajal, A., González-García, J.L., and Tch-
ernykh, A., Workload generation for trace based grid
simulations, in Proc. 1st Int. Supercomputer Conf. in
Mexico (ISUM–2010), Guadalajara University Publ.,
2010, pp. 1–10.

37. Bychkov, I., Oparin, G., Tchernykh, A., Feoktistov, A.,
Bogdanova, V., and Gorsky, S., Conceptual model of
problem-oriented heterogeneous distributed comput-
ing environment with multi-agent managemen, Proce-
dia Comput. Sci., 2017, vol. 103, pp. 162–167.

38. Sokolinsky, L.B. and Shamakina, A.V., Methods of re-
source management in problem-oriented computing
environment, Program. Comput. Software, 2016, vol. 42,
no. 1, pp. 17–26.

39. Ramírez-Velarde, R., Tchernykh, A., Barba-Jimenez, C.,
Hirales-Carbajal, A., and Nolazco, J., Adaptive re-
source allocation with job runtime uncertainty, J. Grid
Comput., 2017, vol. 15, no. 4, pp. 415–434.

40. Tchernykh, A., Schwiegelshohn, U., Talbi, E.-g., and
Babenko, M., Towards understanding uncertainty in
cloud computing with risks of confidentiality, integrity,
and availability, J. Comput. Sci., 2019, vol. 36, p. 100581.
https://doi.org/10.1016/j.jocs.2016.11.011

41. Babenko, M., Chervyakov, N., Tchernykh, A.,
Kucherov, N., Shabalina, M., Vashchenko, I., Rad-
chenko, G., and Murga, D., Unfairness correction in
P2P grids based on residue number system of a special
form, Proc. 28th IEEE Int. Workshop on Database and Ex-
pert Systems Applications (DEXA), Lyon, 2017, pp. 147–
151.

42. Singh, A. and Malhotra, M., Agent based framework
for scalability in cloud computing, Int. J. Comput. Sci.
Eng., 2012, vol. 3, no. 4, pp. 41–45.

43. Kalyaev, A.I. and Kalyaev, I.A., Method of multiagent
scheduling of resources in cloud computing environ-
ments, J. Comput. Syst. Sci. Int., 2016, vol. 55, no. 2,
pp. 211–221.

44. Prieto, A.G., Gillblad, D., Steinert, R., and Miron, A.,
Toward decentralized probabilistic management, IEEE
Commun. Mag., 2011, vol. 49, no. 7, pp. 80–86.

45. Walsh, A., UDDI, SOAP, and WSDL: the Web Services
Specification Reference Book, Pearson Education, 2002.

46. Bychkov, I.V., Oparin, G.A., Feoktistov, A.G., Sidorov, I.A.,
Bogdanova, V.G., and Gorsky, S.A., Multiagent control
of computational systems on the basis of meta-monitor-
ing and imitational simulation, Optoelectron., Instrum.
Data Process., 2016, vol. 52, no. 2, pp. 107–112.
46 No. 8 2020

502 TCHERNYKH et al.
47. Java Agent DEvelopment Framework. https://jade.ti-
lab.com. Accessed 08.12.2019.

48. Herrera, J., Huedo, E., Montero, R., and Llorente, I.,
Porting of scientific applications to grid computing on
GridWay, Sci. Program., 2005, vol. 13, no. 4, pp. 317–331.

49. Tannenbaum, T., Wright, D., Miller, K., and Livny, M.,
Condor – a Distributed Job Scheduler. Beowulf Cluster Com-
puting with Linux, The MIT Press, 2002, pp. 307–350.

50. Feoktistov, A., Tchernych, A., Kostromin, R., and
Gorsky, S., Knowledge elicitation in multi-agent sys-
tem for distributed computing management, Proc. 40th
Int. Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO-
2017), Riejka: IEEE, 2017, pp. 1350–1355.

51. Feoktistov, A., Kostromin, R., Sidorov, I., Gorsky, S.,
and Oparin, G., Multi-agent algorithm for re-allocat-
ing grid-resources and improving fault-tolerance of
problem-solving processes, Procedia Comput. Sci.,
2019, vol. 150, pp. 171–178.

52. Vickrey, W., Counterspeculation, auctions, and competi-
tive sealed tenders, J. Finance, 1961, vol. 16, no. 1, pp. 8–37.

53. Edelev, A., Zorkaltsev, V., Gorsky, S., Doan, V.B., and
Nguyen, H. N., The combinatorial modelling approach
to study sustainable energy development of Vietnam,
Commun. Comput. Inf. Sci., 2017, vol. 793, pp. 207–218.

54. Irkutsk Supercomputer Centre of SB RAS.
http://hpc.icc.ru. Accessed 08.12.2019.

55. Tchernykh, A., Feoktistov, A., Gorsky, S., Sidorov, I.,
Kostromin, R., Bychkov, I., Basharina, O., Alexan-
drov, A., and Rivera-Rodriguez, R., Orlando tools: de-
velopment, training, and use of scalable applications in het-
erogeneous distributed computing environments, Commun.
Comput. Inf. Sci., 2019, vol. 979, pp. 265–279.

56. Bychkov, I.V., Oparin, G.A., Tchernykh, A.N., Feokti-
stov, A.G., Gorsky, S.A., and Rivera-Rodriguez, R.,
Scalable application for the search of global minima of
multiextremal functions, Optoelectron., Instrum. Data
Process., 2018, vol. 54, no. 1, pp. 83–89.
PROGRAMMING AND COMPUTER SOFTWARE Vol. 46 No. 8 2020

	1. INTRODUCTION
	2. RELATED WORK
	3. OT: FOUNDATION FOR INTEGRATED COMPUTING ENVIRONMENT
	3.1. User Interface
	3.2. Conceptual Model Designer
	3.3. Module Libraries Designer
	3.4. Software Manager
	3.5. Computation Manager
	3.6. Environment State Manager
	3.7. Access to Information and Computation Systems and Resources

	4. MITIGATING UNCERTAINTY
	4.1. Evaluating the Module Runtime
	4.2. Mitigating Uncertainty in the Job Distribution by Resources

	5. EXPERIMENTAL ANALYSIS
	5.1. Package for Problem-solving the Search for Directions of Sustainable Development of the Energy Sector
	5.2. Computational Resources
	5.3. Preparation of a Computational Experiment
	5.4. Computational Experiment
	5.5. The Non-dedicated Resource Use

	6. PRACTICAL USE
	7. CONCLUSIONS
	REFERENCES

		2020-12-11T22:49:13+0300
	Preflight Ticket Signature

