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Abstract—Most of the software model checker tools do not scale well on complicated software. Our goal was
to develop a tool, which provides an adjustable balance between precise and slow software model checkers
and fast and imprecise static analyzers. The key idea of the approach is an abstraction over the precise thread
interaction and analysis for each thread in a separate way, but together with a specific environment, which
models effects of other threads. The environment contains a description of potential actions over the shared
data and synchronization primitives, and conditions for its application. Adjusting the precision of the envi-
ronment, one can achieve a required balance between speed and precision of the complete analysis. A formal
description of the suggested approach was performed within a Configurable Program Analysis theory.
It allows formulating assumptions and proving the soundness of the approach under the assumptions.
For efficient data race detection we use a specific memory model, which allows to distinguish memory
domains into the disjoint set of regions, which correspond to a data types. An implementation of the suggested
approach into the CPAchecker framework allows reusing an existed approaches with minimal changes.
Implementation of additional techniques according to the extended theory allows to increase the precision of
the analysis. Results of the evaluation allow confirming scalability and practical usability of the approach.
DOI: 10.1134/S0361768820080022

1. INTRODUCTION
Verification of a multithreaded program is always a

much more complicated task then verification of
sequential program. Precise computation of all possi-
ble interleavings leads to a state explosion. Thus, most
of the verification tools try to perform different kinds of
optimizations: partial order reduction [1, 2], counter
abstraction [3] and others. Anyway, most state-of-the-
art tools do not scale well on real-world software. That
is confirmed by the software verification competition
[4]. Concurrency benchmarks based on Linux device
drivers1 cause significant difficulties for any software
model checker tool.

The other side of model checking is static analysis
that is targeted on fast finding bugs without any confi-
dence in the final verdict. Such tools apply different
filters and unsound heuristics to speed up the analysis
and thus can not prove the correctness. Our goal was to
develop a tool, which becomes a golden mean between
precise and slow software model checkers and fast and
imprecise static analyzers. It should be easily config-
ured and targeted to a particular task.

The main idea of the suggested approach is follow-
ing. As the verification object is a large multithreaded
program, we do not consider all possible thread inter-
leavings and consider every thread separately. In this

case a state of every thread becomes partial, i.e. they
do not contain information about other threads and,
therefore, can not describe a complete state of the pro-
gram. A possible thread interaction is over approxi-
mated by a set of actions, which the threads can per-
form over the set of shared data, including synchroni-
zation primitives. Thus, an approximation of possible
actions, or effects is constructed simultaneously for all
threads. We will call it an environment. Though the
environment is single for all threads, it does not mean
that all its effects could be applied to a thread, as for
every effect there are conditions of its application. The
conditions depends on the analysis. Moreover, the
conditions may include requirements on certain oper-
ators of a program or thread states.

Precision of the environment defines precision and
speed of the whole tool. The precision may be
increased by combining different verification tech-
niques. An implementation was performed on the top of
CPAchecker [5] framework, which provides a rich set of
verification approaches. A thread-modular approach
[6–9] can also be implemented as a one more technique,
which will be integrated into CPAchecker framework,
appending the traditional set of techniques, i.e. CEGAR
algorithm [10] and predicate abstraction [11].

Software model checkers usually have the follow-
ing two stages:

(1) Constructing of a set of reachable states.1 sv-benchmarks/c/ldv-linux-3.14-races/ directory
712



ANALYSIS OF CORRECT SYNCHRONIZATION 713
(2) Check a property over the set of the reached
states.

The two steps may be performed sequentially or in
parallel and even the reached set construction may be
driven by the checked property. For example, some
static verification tools are checked a potential race
condition while adding a following reached state. Such
a tool may stop the analysis in case of detecting an
error. This approach is slow and not practical for data
race detection, but it is successfully used for solving a
reachability task or detecting memory leaks.

Data race detection approaches usually are based
on a Lockset algorithm [12]. We use a more intelligent
way to detect data races: a potential data race is a pair
of two compatible abstract transitions, which modifies
the same memory. Compatibility here means that two
partial abstract transitions may start from a single global
state. Thus, the precision of such definition corre-
sponds to a level of abstraction. So, a lock abstraction
leads to a classical Lockset algorithm. Predicate analysis
with BnB memory model [13–15] improves the preci-
sion for dealing with pointer accesses and allows to
keep soundness under reasonable assumptions.

We evaluate our approach on a set of benchmarks,
based on Linux device drivers. They are prepared by
Klever, a framework for verification of large software
systems [16, 17] which divides a large codebase into
separate verification tasks (usually, one or two Linux
modules) and prepares an environment model.

Our contribution is:

– CPA with transition abstractions – an extension
of CPA theory to be able to describe thread-modular
approach;

– Thread Modular CPA – an implementation of
thread-modular approach in terms of extended CPA
theory, which allows to combine a thread-modular
approach with other approaches, like predicate abstrac-
tion;

– a tool, which was successfully evaluated on
benchmarks, based on Linux device drives.

The rest of the paper is organized as follows. In Sec-
tion 2 we present challenges for the state-of-the-art veri-
fiers and our high-level solutions. Section 3. Section 4
introduce a program model and basic definitions. The
next 4 sections are related to the efficient computation
of abstraction of the program. Section 5 describes an
extension of CPA theory. Section 6 presents a thread
modular analysis in terms of CPA. Sections 7–12 con-
tain extended CPAs for thread modular approach:
predicate analysis and lock analysis. In Section 13 we
discuss some specifics of data race detection with our
approach. Section 14 presents the results of our
approach on two benchmark sets: software verification
competition (SV-COMP) and Linux device drivers. Sec-
tion 15 gives a brief overview of similar works.
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2. MOTIVATING EXAMPLE

Consider an example2 from SV-COMP’19 [4]. The
verification task is based on a real data race3. The task
is more than 7 kLOC and contains 4 artificially created
threads: one thread for basic platform callbacks, one
for interrupt handling, one for power management
operations of the driver and one main thread, which
performs init-exit operations. All kernel mutexes and
spinlocks are replaced by a pthread_mutexes. The
known data race is encoded as a reachability task in a
following way:
tmp = tspi->rst;
assert(tmp == tspi->rst);

The detailed results may be found on the SV-
COMP web-site4. Most of the state-of-the-art verifi-
ers faced with the problems:

– CBMC: “pointer handling for concurrency is
unsound – UNKNOWN”;

– CPAchecker: “Unsupported feature: BDD-
analysis does not support arrays”;

– SMACK: “Exception thrown in lockpwn”;
– yogar-cbmc: “out of memory”;
– Ultimate: “Ultimate could not prove your pro-

gram”.
The main challenge for a verifier in the example is a

large number of operations in all threads, many of them
are over the same data, which means they affect each
other. It leads to the set of following subproblems,
which are usually ignored for small artificial examples:

(1) Analysis of multithreaded programs should be
precise enough to produce a small number of false
alarms, but efficient enough to be able to solve the task.
Many efficient analyses do not support complicated data
structures (e.g. BDD analysis [18], analysis of explicit
values [19]). And vice versa precise approaches have
problems with long paths (e.g. Predicate analysis [20],
BMC approach [21]).

(2) Efficient encoding of synchronization primi-
tives. Many approaches encode locks as variables,
which are simultaneously checked and assigned (e.g.
[7, 9]). This encoding is mixed with other variables
and complicates the general analysis.

Note, the race condition in the benchmarks is
encoded as reachability task, thus it is a hint for veri-
fier, which memory accesses are buggy. In practice a
verifier does not know a precise location of the data
race, thus it has to check all potential memory
accesses. This complicates the task much more. That
is why we made efforts to develop an approach, which
will be able to solve the corresponding task.

2 https://github.com/sosy-lab/sv-benchmarks.git, sv-bench-
marks/c/ldv-linux-3.14-races/linux-3.14–drivers–spi–spi-teg-
ra20-slink.ko.cil.i

3 https://patchwork.kernel.org/patch/9915305/
4 https://sv-comp.sosy-lab.org/2019/results/results-veri-

fied/META_ConcurrencySafety.table.html
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Fig. 1. An example of code.

volatile int g = 0;
volatile int d = 0;
Thread1 {

g = 1;
d = 1;
...

}
Thread2 {

if (d==1) {
g = 2;

}
}

Fig. 2. An example of possible thread execution.

Thread1 Thread2
g = 1;
d = 1;

[d == 1]
g = 2;
3. OVERVIEW OF THE APPROACH
As we have already discussed, a data race detection

method may be divided into two stages: construction
of a set of reached states and checking of requirements,
particularly, searching of pairwise states, which form
the data race. An analysis of a program may be per-
formed by a sequential combination of the phases or
their parallel execution. Note, the requirement check
usually takes little time, as it represented by a condi-
tion over a state. An example of check may be absence
of states of a special kinds (reachability task), absence
of special pair of states (data race detection task). Con-
struction of the set of reached states usually leads to
problems related to efficiency. Thus, further we will
concentrate of this task.

Consider a simple program, which has only two
threads (Fig. 1). This is a model example, which con-
tains an implicit synchronization between threads: the
first thread initializes some data (in this case, a global
variable ), then sets a flag, encoding, that the data are
ready. The second thread can read the data only after the
flag was set, thus there is no data race in this example
(Fig. 2).

Classical methods of model checking have to check
all possible interleavings of two threads. A number of
states grows rapidly even in a simple example and with
different optimizations (Fig. 3). And so-called “combi-
natorial explosion” happens, which leads to resource
exhaustion. Thus, classical methods of model check-
ing can not prove the correctness of large real-world
software.

Simple methods of static analysis try to compute a
quick overapproximation of thread interaction, so-
called thread effect. However, they are not able to con-
sider complicated dependencies between shared vari-
ables. So, for the example in Fig. 1 there is only infor-
mation, that the global variable d may be set into one.
With such an approximation the simple kind of analy-
sis has to conclude, that there is a potential data race
in the example.

A suggested approach is based on a well known
thread-modular approach. The approach considers

g
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each thread separately but in a special environment,
which is constructed also during the analysis. The envi-
ronment computation is based on the analysis of all
threads, as every thread is a part of the environment for
other threads. For each thread, a set of its actions, which
may affect other threads, is collected. The actions
include modification of shared variables, acquiring syn-
chronization primitives and so on. Precision of the
environment strongly affects the precision of the
whole analysis. However, there is the main question,
how to compute and represent the environment effi-
ciently.

In sequential analysis, there is a successful tech-
nique, which allows reducing the number of consid-
ered program states – an abstraction. It allows to
abstract from minor details of a program and considers
general (abstract) state. Each abstract state may corre-
spond to a set of real (concrete) program states. This
idea allows to significantly increase the efficiency of
the analysis.

The key idea of the suggested approach is an exten-
sion of abstraction not only to the program states but
also to the operations of a thread. Adjusting the level of
the abstraction, it is possible to choose a balance
between speed and precision of the tool.

Figure 4 shows a part of the Abstract Reachability
Graph (ARG) for the first and the second threads
from the example (Fig. 1). There is no interaction con-
sidered, so this is not a final step of the analysis. The
transitions are based on a simple Value Analysis [19],
which tracks only explicit values of variables. A transi-
tion contains an abstract state and an abstract opera-
tion. The first abstract state in both threads contains
information that both global variables (d and g) are
equal to zero. After performing an operation g = 1
(transition #A1) the value of g is updated into 1 in the
second abstract state (transition #A2).

After constructing an ARG for two threads sepa-
rately, we need to consider the influence of threads to
each other, i.e. to construct an environment. For every
thread operation, we compute its projection – a repre-
sentation of operation in a thread for other threads as
an environment. For example, modification of local
variables can not affect on other threads, so the corre-
sponding projection is empty. Modification of a global
variable may affect other threads, so the projection
may be equal to the original transition or overapprox-
imate it, for example, by abstraction from a precise
assigned value. A projection may contain not only
ND COMPUTER SOFTWARE  Vol. 46  No. 8  2020
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information about an action but also a condition for
performing this action, so-called . Consider a
transition #A1. We may represent the corresponding
projection in the following way: if the value of g equals
zero, it may be changed to one. In other words, the
projection consists from two parts: a  ( )
and an  ( ). The guard corresponds to a
predecessor abstract state and an action corresponds
to an operation.

Let us return to the Example 4. After computation
of transitions in threads separately, we have to con-
struct the environment, i.e. set of projections. Figure 5
presents computed projections for the first thread.

There are two transitions, which may affect the
global variables: #A1 and #A2. We compute the corre-
sponding projections: #P1 and #P2. Then every pro-
jection has to affect the second thread, i.e. apply to all
possible (according to the guard) transitions of the
second thread. We apply the projection #P1 to the
transition #B1, as the state is compatible with the guard
of the projection. Only after that, we may apply the
projection #P2 to the new transition #B2, which
requires  to be equal to one. And only then the sec-
ond thread may go throw a new transition #B3, which
discovers new paths. Note, the figure presents only
projections for the first thread, in complete ARG there
should be also projections for the second thread as
well.

For data race detection we have to find two transi-
tions, which modify the same variable. The example
has potential candidates: #A1 and #B4. Now, we
should check, if the two transitions may be executed in
parallel. That means, that the corresponding abstract
states must be a part of one global state, i.e. they must
be . In this case, the partial states are con-
tradicting each other, as one has  and the other

. So, the corresponding transitions can not be
executed simultaneously. Thus, we conclude there is
no data race for g. Note, there is a data race for  (tran-
sitions #A2 and #B2), but it may be considered as
lock-free synchronization, and a potential race is a
part of its implementation.

The suggested approach provides a lot of possible
options and configurations for targeting to a particular
task. A projection may be represented by more or less
precise abstraction. Several projections may be joined
altogether or considered separately. An example of
more abstract transitions is presented in Fig. 6.

The two initial projections (#P1 and #P2) are
joined into a single one (#P3). Usually, it leads to los-
ing some information, for example, here we lost a pre-
cise value of variable g. The action of projection also
becomes more complicated. The second thread can
not identify a precise value of the variables, as both of
the variables are now equal to zero or one. The simple
kind of analysis operates only with single explicit val-
ues of variables and both variables are considered to be

guard

guard ==[ 0]g
action → 1g

g

compatible
→ 0g

→ 1g

d
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equal to any random value. Now, transitions #A1 and
#C3 become compatible, which means, that the race
is reported on variable g.

The level of abstraction strongly affects the preci-
sion of the analysis and its speed, but the analysis
always remains sound.

4. PRELIMINARY DEFINITIONS
In this section, we present preliminary definitions

of a parallel program and reachable concrete states in
the program.

We restrict the presentation to a simple imperative
programming language, where all operations are
assignments, assumptions, acquire/release synchroni-
zation operations and thread creates. We denote all
operations in a program as Ops.

A parallel program is represented by a Control Flow
Automaton (CFA) [22], which consists of a set  of pro-
gram locations (modeled by a program counter, pc), and
a set  of control-flow edges (modeling
the operation that is executed when control flows from
one program location to another). There is a thread cre-
ate operation in Ops which creates a thread with an iden-
tifier from the set  and the thread starts from some loca-
tion in L. The set of program variables that occur in
assignment and assumption operations from Ops is
denoted by  having values from . The parts of X, con-
taining local and global variables, are denoted by 
and  respectively. Acquire/release operations are
defined over a set of lock variables  having values from

, where  means that the lock is acquired
by a thread t and  means that the lock is not
acquired.

A concrete state of a parallel program is a quadruple
of , where

(1) A mapping  is a partial function
from thread identifiers to locations.

(2) A mapping  is a partial function
from thread identifiers to assignments to local variables

, where  assigns each local vari-
able its value.

(3)  is an assignment of values to
global variables.

(4)  is an assignment of values to
lock variables.

A set of all concrete states of a program is denoted
by C.

We define a (labeled) transition relation 
C × G × T × C, where an edge  and a thread t ∈ T.
Note, there is a special ε-transition from every state to
itself: , . This transition is

L

⊆ × ×G L Ops L

T

X Z

localX
globalX

S
∪ ⊥{ }TT ∈t T

⊥T

, , ,( )pc l g sc c c c

: →pcc T L

: → local
lc T C

localC : →local localC X Z

: →global
gc X Z

: → ∪ ⊥{ }s Tc S T

,⎯⎯⎯→ ⊆g t

∈g G

∀ ∈c C ε,∈ : ⎯⎯⎯→tt T c c
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Fig. 3. Construction of interleaving set.

pc = 1
g = 0  |  d = 0

pc = 4

pc = 2
g = 1  |  d = 0

pc = 4 pc = 2
g = 0  |  d = 0

pc = 6

pc = 3
g = 1  |  d = 1

pc = 4 pc = 2
g = 1  |  d = 0

pc = 6

pc = 3
g = 1  |  d = 1

pc = 5

pc = 3
g = 2  |  d = 1

pc = 6

Fig. 4. Abstract transitions for two threads without any
interaction.

g → 0
d → 0 ![d == 1]g → 0

d → 0 g = 1

g → 1
d → 0 d = 1

g → 1
d → 1

Thread 1 Thread 2

g → 0
d → 0

#A1:

#A2:

#B1:
used only to convenient description of the next state in
case there is no normal transition.

We define a set of concrete transitions as  × G × T.
An element  is a triple . We will write τ1 →
τ2 if . We denote

 =  → ... → τn = τ'}.

A transition  will be formally defined
later for each . Anyway, every correct
transition fulfills the following requirements:

(1) Transition starts in state c :  =
l.

(2) Program counter of thread  proceeds to :
.

(3) Each transition  may change local
parts of the state only for a thread t. Thus, local parts
for the other threads remain unchanged, formally

 :  ∧  ∩  ⇒  =
. Note, there are no restrictions

on changes in global parts of the state.
We denote by  a value of expression

expr over variables in  with values from
state c ∈ C and thread t ∈ T.

Further we will define semantics of operators in a
program: assignment, assumption, acquire/release of
locks and thread create operator. For every operator
we have to define how it changes a concrete state of a
program. We do not emphasize requirements 1–3,
which are hold for every transition.

4.1. Assumptions

For an assumption edge g = (l, assume(expr),
, ,  a transition , c,

 exists, if

–  – transition does not change the state.

=C7

τ ∈7 τ = , ,( )c g t
, ,∃ ∈ : ⎯⎯⎯→ ⎯⎯⎯→1 1 2 2

3 1 2 3
g t g tc C c c c

→ τ( )Reach τ ∃τ , , τ ∈ .τ → τ1 1{ ' | n… 7

,⎯⎯⎯→ 'g tc c
= ,⋅, ∈( ')g l l G

∈ ∧( ) ( )pc pct dom c c t

t 'l
∈ ∧ =' '( ) ( ) 'pc pct dom c c t l

,⎯⎯⎯→ 'g tc c

∀ ∈'t T ≠( ' )t t ∈( ( )pct dom c '( ))pcdom c ' ( ')pcc t
∧ ='( ') ( ') ( ')pc l lc t c t c t

, ,( )eval c t expr
∪local globalX X

∈')l G ∈t T , ∈'l l L ,⎯⎯⎯→ 'g tc c
∈'c C

= 'c c
PROGRAMMING A
–  – expressions evaluated to
non zero value.

4.2. Assignments
For an assignment edge g = (l, assign(expr), ,

,  a transition , c = (cpc, cl, cg,
cs),  exists, if

–  – transition does not change
the set of threads.

– If  then  and
 for . Otherwise

.

– If  then  and

 = cg(x') for . Otherwise  =
cg(t).

–  – locks stay unchanged.

4.3. Synchronization Operations
We define a synchronization primitives acquire/release.

We assume that  operation in a thread ,
where  is a lock variable, has a semantics: if 

, , ≠( ) 0eval c t expr

∈')l G
∈t T , ∈'l l L ,⎯⎯⎯→ 'g tc c

= , , , ∈' ' ' '' ( )pc l g sc c c c c C
=( ) ( ')dom c dom c

∈ localx X = , ,'( )( ) ( )lc t x eval c t expr
='( )( ') ( )( ')l lc t x c t x ∈ : ≠' 'localx X x x

' =( ) ( )l lc t c t

∈ globalx X ' = , ,( ) ( )gc x eval c t expr
' ( ')gc x ∈ : ≠' 'globalx X x x ' ( )gc t

' =s sc c

( )acquire s ∈t T
∈s S =⊥Ts
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Fig. 5. Application of projections to the second thread.

g → 0
d → 0 g = 1

g → 0
d → 0 ![d == 1]

g → 0
d → 0 g = 1

g → 0
d → 0 g = 1

g → 1
d → 0 d = 1

g → 1
d → 1

Thread 1 Thread 2

g → 0
d → 0

Projection

g → 1
d → 0 ![d == 1]

g → 1
d → 0

g → 1
d → 0 d = 1

g → 1
d → 0 d = 1

g → 1
d → 1 [d == 1]

g → 1
d → 1 g = 2

#A2:

#A1: #B1:

#B2:

#B3:

#B4:

#P2:

#P1:

Fig. 6. Application of projections to the second thread.

g → 0
d → 0

g = 1
d = 1

g → 0
d → 0 ![d == 1]g → 0

d → 0 g = 1

g → *
d → 0

g = 1
d = 1

g → 1
d → 0 d = 1

g → 1
d → 1

Thread 1 Thread 2

g → 0
d → 0

Projection

g → *
d → * [d == 1]

g → *
d → * g = 2

g
d

g
d

#A1:

#A2:

#B1:

#C2:

#C3:

#P3:
in previous state then s = t in the successor state and
the operation performed atomically in a single edge
(similar to [7]).

For an edge  and ,
, we have a transition , c = (cpc, cl,

cg, , , if  and (we
acquire a lock s by assigning a value t to s and changing
location in thread t to )

–  – transition does not change
the set of threads.

–  – local variables are unchanged.

–  – global variables are unchanged.

–  and .

We assume that release(s) operation in a thread 
has a semantics of assigning a value  to s if s = t.

For an edge  and , l,
, we have a transition , , cs),

, if  and

= , , ∈( ( ) ')g l acquire s l G ∈t T
, ∈'l l L ,⎯⎯⎯→ 'g tc c

)sc ' ' ' '= , , , ∈' ( )pc l g sc c c c c C = ⊥( )s Tc s

'l
=( ) ( ')dom c dom c

' =( ) ( )l lc t c t

' =g gc c

' =( )sc s t '∀ ∈ : ≠  =' ' ( ') ( ')s ss S s s c s c s

∈t T
⊥T

= , , ∈( ( ) ')g l release s l G ∈t T
∈'l L ,⎯⎯⎯→ 'g tc c = , ,( pc l gc c c c

' ' ' '= , , , ∈' ( )pc l g sc c c c c C =( )sc s t
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–  – transition does not change
the set of threads.

–  – local variables are unchanged.

–  – global variables are unchanged.

–  and .

4.4. Thread Creation

We define semantics of  such that
the current thread proceeds to the location after

 and new thread is created with the new
identifier  which is added to local parts of the
state. The starting location of thread ν is .

Note, that we consider programs with unbounded
thread creation, as  may occur in a loop.

For an edge , we have a
transition , , c' = ,

, , if

=( ) ( ')dom c dom c

='( ) ( )l lc t c t

='g gc c

= ⊥( )s Tc s ∀ ∈ : ≠  ='' ' ( ') ( ')s ss S s s c s c s

ν( )thread_create l

thread_create
ν ∈T

ν ∈l L

thread_create

ν= , ,( ( ) ')g l thread_create l l
,⎯⎯⎯→ 'g tc c = , , ,( )pc l g sc c c c c '( pcc

' ' ', , ∈)l g sc c c C ν ∈T
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718 ANDRIANOV
–  – a thread
ν is added to the set of threads.

–  – program counter proceeds to  in the
current thread.

–  – program counter of the new thread is lν.

–  – we inherit local part of the state
from t.

–  and  and  – all the other
variables stay unchanged.

We do not consider join operations, as they com-
plicate the theory description. Nevertheless, it is pos-
sible to add the operations into the theory.

5. CONFIGURABLE PROGRAM ANALYSIS 
WITH ABSTRACT TRANSITIONS

In the original CPA theory [5, 22], an abstract state
represents a set of concrete states of a program. In our
theory, an abstract state is a partial one, so it may not
represent any concrete state of a program. That is why
the concretization function in our theory differs from
the original one. Our concretization function is defined
on a set of elements.

As a consequence, an abstract transition is also a
partial one. Thus the analysis can not guarantee, that
succeeding concrete transitions are reachable by one
step of an abstract transition. In the general case, the
analysis needs k steps. In the thread-modular approach
k = 2: the analysis performs a usual transition in a thread
and then spread it to all others as a transition in an envi-
ronment. It takes two iterations of the algorithm.

Now we formally define a Configurable Program
Analysis with Transition Abstractions , Π, merge,
stop, prec, ). It consists from an abstract domain D
of abstract elements, a set of precisions Π, a merge
operator merge, a termination check stop, a precision
adjustment function prec and transfer relation .

(1) The abstract domain  is defined by
the set  of concrete transitions,  × T, the
semi-lattice  of abstract transitions and a concretiza-
tion function . The  consists of
the (possibly infinite) set E of abstract domain ele-
ments, a top element , a bottom element ,
a partial order  and a function  → E
(join operator). The function  yields the least upper
bound for two lattice elements, and symbols  and 
denote the least upper bound and greatest lower bound
of the set E respectively.

The concretization function  assigns
to each set of abstract transitions  its meaning,
i.e. the set of concrete transitions that it represents.
Note, that we use concretization on sets of transitions
instead of a single transition. Thus we have

ν ∉ ∧ = ∪ ν( ) ( ') ( ) { }dom c dom c dom c

' =( ) 'pcc t l 'l

' νν =( )pcc l

' ν =( ) ( )l lc c t

' =( ) ( )l lc t c t ' =g gc c ' =s sc c

= (DD

�

�

= , , ⋅� �( )D 7 %

7 ⊆ ×C G7
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⋅� � = , , ⊥, ,( )E% � � �

∈ E� ⊥∈ E
⊆ ×E E� : ×E E�
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� ⊥

⋅ : →� � 2 2E 7

⊆R E
PROGRAMMING A
meaning that the summary knowledge for the set of
partial transitions may be bigger than union of knowl-
edge for the single (partial) transition.

(2) The set  of precision determines the possible
precisions of the abstract domain. The program anal-
ysis uses precision elements to keep track of different
precisions for different abstract elements. A pair (e, π)
is called abstract element e with precision π. The oper-
ators on the abstract domain are parametric in the pre-
cision. For  we denote .

(3) The transfer relation  assigns
to each partial transition  with precision  possible
new abstract transition  which is abstract successor
of . Note, the result may depend on reached elements

. We write  if .
Let us denote Reachk as

(1)

The requirement on the transfer states that Reachk

over-approximates the concrete transitions:

(2)

The requirement 2 weakens the requirement on trans-
fer operator in the classical CPA theory. It means, that
we may produce corresponding concrete transitions
not after one step of abstract transition (classical the-
ory), but after k steps. For thread-modular approach
k = 2 as we will see later.

(4) The merge operator 
weakens the second parameter using the information
of the first parameter and returns a new abstract ele-
ment of the precision that is given as the third param-
eter. The merge operator has to fulfill the following
requirement:

(3)
(5) The termination check operator stop : E ×

 checks if the abstract element given as
the first parameter with the precision given as the third
parameter, is covered by the set of abstract elements
given as the second parameter. The termination check
can, for example, go through the elements of the set R
that is given as second parameter and search for a single
element that subsumes ( ) the first parameter. The ter-
mination check has to fulfill the following requirements:

(4)

∈
∀ ⊆ : ⊇� � � �∪ { }

e R

R E R e

Π

⊆ × ΠR E
,π ∈

=� � � �∪( )
{ }

e R
R e

�: × Π × ×2EE E
ê π

'e
ê

⊆R E , πˆ( ) 'Re e� , π, , ∈ˆ( )e R e �

+

∈

∀ ⊆ : =
∀ ≥ :

= ∪∪

0

1

( )

( )

1 ( )

{ ' | ' } ( )
k

k

k

e Reach R

R E Reach R R

k Reach R

e e e Reach R�

τ∈
∃ ≥ : ∀ ⊆ : ⊇ τ τ → τ� � ∪

[[ ]]

1 ( ) { ' | ' }k

R

k R E Reach R

: × × Π →merge E E E

∀ , ∈ , π ∈ Π : , , π' ' ( ' )e e E e merge e e�

×Π × Π →2E
B

�

∀ ∈ , ⊆ , π ∈ Π :
, , π ∀ ⊆ : ∪ ⊆ ∪� � � �ˆ ˆ ˆ( ) { }

e E R E

stop e R R E e R R R
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(6) The precision adjustment function prec : E × Π ×
 computes a new abstract element and a

new precision, for a given abstract element with preci-
sion and a set of abstract elements with precision. The
precision adjustment function may perform widening
of the abstract element, in addition to a change of pre-
cision. The precision adjustment function has to fulfill
the following requirement:

(5)

The precision domain Π, termination check stop,
merge operator merge, precision adjustment prec are
the same as in the original CPA theory. The main
algorithm, which computes a set of reached abstract
transitions, also stays the same except for the exten-
sion of the transfer operator.

Algorithm 1. Algorithm .
For the algorithm, the main Theorem 1 may be

proven even with weaker requirements. The proof rep-
licates the proof of the classical theorem.

Theorem 1. (Soundness) For a given configurable
program analysis with thread abstractions  and an ini-
tial abstract state e0 with precision π0, Algorithm CPA

Data: a configurable program analysis with partial states 
, initial abstract transition e0 with precision , a 

set reached of elements E, a set waitlist of elements E
Result: a set of reachable states reached

;

;
while  do

pop  from ;

for  in  do

;

for each  do

;

if  then

end
end

if  then

;

;
end

end
end

×Π → × Π2E E

∀ , ∈ , π, π ∈ Π, ⊆ × Π :
, π = , π,
' '

( ' ') ( ) '
e e E R E

e prec e R e e�

D π ∈Π0

:= , π0 0{( )}waitlist e

:= , π0 0{( )}reached e

≠ ∅waitlist
, π( )e waitlist

'e , π( ) ')
reached

e blue e�

, π = , π,ˆ ˆ( ) ( ' )e prec e reached

, π ∈( '' '')e reached

= , , πˆ ˆ( '' )newe merge e e

≠ ''newe e

:= , π ∪ , π\{( '' '')} {( '' )}newwaitlist waitlist e e

:= , π ∪ , π\{( '' '')} {( '' )}newreached reached e e

! , , πˆ ˆ( )stop e reached

:= ∪ , πˆ ˆ{( )}waitlist waitlist e

:= ∪ , πˆ ˆ{( )}reached reached e

, , π0 0( )CPA eD

D
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computes a set of abstract states that overapproximates
the set of reachable concrete states:

Note, several CPAs are used in practice for analysis
of source code. The set of CPAs has a tree structure,
where a root CPA provides its operators to Algorithm 7.
Different CPAs interact each other for increasing the
precision of the whole analysis. Section 6 presents
such a root CPA, which requires a nested CPA. Sec-
tion 7 presents a CPA, which implements a parallel
composition of analyzes. Examples of nested CPAs are
presented in Sections 8–12. Section 13 describes the
data race detection approach, which is based on the
considered CPAs.

Some auxiliary CPAs (CallstackCPA, Automaton-
CPA), which do not implement any kind of analysis,
may be applied without changes comparing to the ori-
gin version of the theory. Thus, they will not be
described further. CPAs, which implements different
kinds of analysis (analysis of explicit values, predicate
analysis, etc.) should be modified to support transi-
tions in environment. These CPAs will be described in
the corresponding sections.

6. THREAD-MODULAR ANALYSIS
In section, we present a CPA, which implements

thread-modular functionality. The main task of the
CPA is computation of a potential effect for environ-
ment, i.e. a projection, and also an application the
projections to the corresponding thread. ThreadMod-
ularCPA requires a nested CPA with extended set of
operators: an operator of projection, an operator of
compatibility check and and operator of composition.
Thus, first, we define an extended inner CPA with the
new operators.

6.1. Extended Inner CPA
for Thread-Modular Analysis

A definition of CPA for thread-modular analysis is
extended with three new operators:  

  ⋅|p, ).

An abstract domain  consists of a
set of concrete transitions , a semi-lattice of abstract
transitions  and a composition operator . Note, an
inner analysis is required to define not a concretization
function , but a composition operator  because the
thread-modular approach requires unified schema for
calculation of concrete states.

As we have already discussed all states and transi-
tions are partial, so they may not be directly related to
concrete states and transitions. To get a complete tran-
sition we should get a composition of a set of partial
transitions, which represent all available threads.
Compatible partial transitions can be composed into a

→, , π ⊇� � � �0 0 0( ) ( { } ).CPA e Reach eD

= ,( IDI Π , ,I I�

, ,I Imerge stop ,Iprec ,Icompatible Icompose

= , ,⊕( )I I I ID 7 %

I7

I% ⊕I

⋅� � ⊕
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720 ANDRIANOV
complete concrete transition with an operator  : E ×
. It returns a set of concrete transitions,

which is represented by given partial transitions.
 is required to be consistent with the semi-lattice.

So, if one abstract transition is less than the other, the
composition with the same set must not get a larger set
of concrete transitions.

A compatibility operator  : E × E
 checks if two partial transitions can be

started from a common complete predecessor.
Projection operator ⋅|p:  projects a transition

in a thread to another thread. For example, a projec-
tion may contain modifications of global variables and
misses changes of thread-local data.

 combines two abstract
transitions into a single one. It applies an abstract edge
from one transition to an abstract state of the other
transition.

Further we will use operator  as a combination
of the three operators: ⋅|p, composeI and :

(6)

Thus, apply means that the transitions may be
composed only if they are compatible. The operator
produces an applied transition, which is also called a
transition in the environment because it represents the
effect of the environment.

6.2. Thread-Modular CPA

Define a thread-modular CPA  ΠTM,
  , which is based on an

inner CPA    
 ⋅|p, ).

(1) The abstract domain .

A complete semi-lattice  is equal to inner
analysis one.

For thread-modular analyses a concretization func-
tion  means all possible compositions of partial transi-
tions:

(7)

(2) Transfer relation computes the next transitions,
after that it applies all reached transitions as transitions
in an environment to the new one and applies a new

⊕
×× →2 2E TT 7

⊕

Icompatible
→ ,{ }true false

→E E

: × →Icompose E E E

Iapply
Icompatible

∀ , ∈ : ,
, , ,= ⊥,

' ( ')
( ' | ) if ( ' | )

else.
I p I p

e e E apply e e
compose e e compatible e e

= ,( TMDTM

,TM� , ,TM TMmerge stop )TMprec
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0 1

0 11 k
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I

kk e e … e R
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e e e
…
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transition as a transition in an environment to all
reached transitions.

(3) 
(4) .
(5) .
(6) .

7. COMPOSITE ANALYSIS
A composite analysis is used to combine different

kinds of analysis altogether. Examples of the inner
CPAs will be present further.

CompositeCPA   
, , ) operates with inner

analyses    
, , )

(1) 

(2) 
(3) Transfer relation applies inner transfers to cor-

responding part of the state.

(4) Merge operator calls inner merge operators:
(e1, e2, π) = ,

π1), ..., , πn).
(5) Stop operator calls inner stop operators:

   :

, πi).

Data: preceding transition e0 with precision 

Result: a set of succeeding transitions 
;

for each  do

;
for each  do

;

;
end

end
return result

Algorithm 2. transferTM(e0, π0, reached)

π ∈ Π0

result
:= ∅result

: 0ˆ ˆR
Ie e e�

:= ∪ ˆ{ }result result e
∈'e reached

:= ∪ , ˆ{ ( ' )}result result apply e e

:= ∪ ,̂{ ( ')}result result apply e e
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(6) , ..., ,
R, πn)).

(7)  =  ...

.

(8) .

(9)  = , ...,

.

8. LOCATION ANALYSIS

This section presents a simple Location Analysis
    ,

·|p, ) which tracks abstract locations. The
analysis extends the origin LocationCPA to be able to
support thread-modular analysis.

(1) .
An abstract transition consists of an abstract state

 and an abstract edge .

 is a set of abstract program locations, which is
mapped to concrete CFA locations with function loc :

.  means, the analysis does not know what is
a particular program location. Formally,  = L. In
general case analysis is able to operate with abstract loca-
tions, which express several concrete locations, but fur-
ther we describe a simple version of analysis, which con-
siders only single locations:  =  =

. Defined  is a flat lattice, mean-
ing the two different locations are not comparable.

Abstract edge is based on a ordinary CFA edge, con-
taining only source location and destination location.

.

Define an auxiliary operator to check if partial abstract
transitions can be composed into a complete one.

Δ, , π = , , π
1

1
1( ) ( ( )prec e R prec e R# Δ (

n

E nprec e

,1 2( )compatible e e# Δ , ∧
1

1 1
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(8)

The requirement 8 claims that all partial transitions
may be related to the same concrete transitions: they
have the same source location and the same destina-
tion location.

The most complicated part is the definition of
composition operator.

(9)

(2) . The location state does not depend
from the precision, so there is only one dummy preci-
sion element.

(3) The transition  exists, if transition in a thread
changes the location according to the abstract edge. More
formally. Let , , q = , suc),

, suc'). ,  =
 ∈  ∈  and

.

(4) The merge operator does not join states:
 = e'.

(5) The termination check considers abstract states
individually: .

(6) The precision is never adjusted:  =
(e, π).

(7) .

(8) , e' = (s', q') : composeL(e, e') =
, where , as transition in thread do

not change the state.

(9) 
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9. THREAD ANALYSIS

We define a simple Thread Analysis  ΠT,
   , ⋅|p, )

which tracks thread identifiers.
The Thread Analysis inherits the limitations of [6]

and restricted to the programs with bounded thread cre-
ation. We suppose that the program has a finite number
of threads identified by the locations where they are cre-
ated, i.e.  and for  we always
create a thread with identifier . Note, that the other
analyses are not bounded.

(1) The domain DT is based on the flat lattice for
the set of threads T: , with

. , 
and  for all elements  (this

implies , ,  for all
elements , )

Define an auxiliary operator to check if partial
abstract transitions can be composed into a complete
one.

(10)

Now define a composition operator 

(11)

(2) There is only one empty precision: .
(3) The transfer relation  has the transfer ,

,  if
–  (the syntactical successor in the CFA

without considering the semantics of the operation
), , .

–  then , 
(4) The merge operator does not combine elements

when control f low meets: .
(5) The termination check considers abstract states

individually: .

= ,( TDT
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(6) The precision is never adjusted:  =
(e, π).

(7) Definition of the projection:

(8) , e' = (s', q') : composeP(e,
e') =  = (s, q').

(9) .

10. PREDICATE ANALYSIS
In section, we present a commonly used Predicate

Analysis [20] with transition abstraction. Predicate
transitions consist of two parts: a predicate state and a
predicate abstract edge, which can be expressed by a
normal CFA edge or a formula, encoding an opera-
tion. However, the formulas should be renamed to
avoid the local variables collision.

Let  be a set of formulas over program variables in
a quantifier-free theory . Let  be a set of pred-
icates. Let  is a mapping from variables to
values. Define , where  is called model of ϕ.

Let us define renaming of variables 
from the names  to  which is applicable to formu-
las . We denote as

Define  – the boolean predicate abstraction of
formula ϕ.

Define  – strongest postcondition of ϕ and
operation op.

We define Predicate Analysis  
, stopP,  , , )

which can tracks the validity of predicates over pro-
gram variables.

It consists of the following components.
(1) The abstract domain .

. . An
abstract transition consists of an abstract state 
and an abstract edge , so  and

.

, so a state is a quantifier free formula. The
top element  = true, and bottom element  = false.
The partial order  ×  is defined as  

, π,( )E
Tprec e R

, ∉∀ ∈ , = , : =  , ε ,

if
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. The join  yields the least
upper bound according to partial order.

Abstract edge  is an action, expressed by a
formula, or an ordinary CFA edge: .

We do not provide a formal definition of , as it
requires a lot of space. The basic idea is that it returns
a set of concrete transitions, which correspond to a
formula (strongest post-condition). The more tricky
part of definition is a check , whether the set of
partial transitions corresponds to a single concrete
one. For a transition in the thread e0 with normal CFA
edge  and transitions in environment 
the check consists of two parts:

(a) for the state s0 of e0 and all states of transitions
in environment  there exists a model ;

(b) the edge qp of projection  is covered by abstract
edges qj of transitions in the environment .

Formally,

(12)

(2) The set of precisions  models a preci-
sion for an abstract state as a set of predicates.

(3) Merge operator may have several modifica-
tions, for example,

(a)  merges both parts of the transition:

(13)

(b)  merges only abstract edges for equal
(or covered) states.

(c)  does not merge elements.
(4) The termination check if e is covered by another state

in the reached set:  = .
(5) The precision adjustment function constructs

predicate abstraction over predicates in precision π:
.

(6) The transfer relation , ,
. As Predicate analysis does not track relevant

edges, it returns all possible ones.
– For  we have the transfer  with

, if
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– For  the transfer computes a formula:
.

(7) Definition of the projection:

(14)

The projection represents how the transition looks
as an environment. The local variables are renamed to
avoid name collision. Thus, only predicates over
global variables stay valuable. The state (the first part
of the transition) represents an abstraction over global
part of a thread state. And the edge (the second part of
the transition) corresponds the concrete operation to
the global changes.

(8) , e' = (s', q') : composeP(e,
 = (s, q').

(9) ,  : ,
e2) = 

Compatibility check means that the transitions
may be composed into the global one. And this is
impossible, if the global predicates are inconsistent.
Thus, we should check, if there exists a single model of
two partial formulas.

11. VALUE ANALYSIS

Define a Value Analysis   ,
stopV,  , , , which tracks
explicit values. Unlike predicate analysis Value analy-
sis stores only explicit values of variables, so it can not
handle more complicated dependencies between vari-
ables, for example, inequalities.

The Value Analysis consists from the following
components:

(1) Abstract state of the analysis is a mapping from
a variables to their values: , where

. Thus, a set of abstract states  is a

flat lattice over integers. A top element  =
 =  is a mapping with each vari-

able has an arbitrary value. A bottom element  =
 is a mapping, where at least

one variable has no value. The state is unreachable for
real execution of a program. An order is trivial: any two
states (not equal to  or ) are not comparable.

An operator  checs if there a common map-
ping for global variables:  ∈ ({s0,

π ,
= = , ∨ =
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..., sn}) = ,  =
 = . Denote the mapping as .

Now, define a composition operator:

The definition of the operator  definitely satisfy the
requirements ?, ?, as an upper element ( ) means
only , and thus, widen the set of concrete states.

A set of abstract edges contains a set of normal CFA
edges and transitions in environment, which are defined
by changes of global variables: . An
identical transition  is an empty mapping, mean-
ing no variable changes its state.

(2) Precision of the Value analysis contains a set of
tracked variables: .

(3) The transfer relation  contains a transition

, with , , if
– 

Here  means an interpretation of the expression
expr over variables in X for an abstract assignment s. And
expression  means, that the value
of a of the variable x satisfies the interpretation.

– 

–  in other cases the state is not changed:
.

–  means that we have a transition,
which changes the definite variables. In the general
case the successor

(4) Merge operator does not join the states: ,
e', π) = e'. The condition 3is evidently fulfilled.
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(5) Stop operator consider states separately: stopS(e,
R, π) = .

(6) Precision adjustment computes a new abstract
state, limiting the assignments only by variables in a
precision: .

(7)  = , s2}).
(8) Operator  is a default one:

.
(9) A transition in environment may affect only on

global variables: ,  = , qglobal).

Here a mapping  means only a part, which is
related to a global variables.

12. LOCK ANALYSIS

We define Lock Analysis   ,
stopS,  , , ) which tracks
the set of acquired locks (synchronization variables)
for each thread.

It consists of the following components.
(1) The abstract domain 

uses semi-lattice .  is
a superset of synchronization variables, 
and  for all elements ls, 

(this implies  = ls, ,  =

 for all elements , ), and  =

.
(2) There is only one empty precision: .
(3) The transfer increases the number of stored

locks in case it goes via acquire operator and decreases
in case of release. Formally, the transfer relation 
has the transfer , ,  if

–  and , .
–  and , .
–  and , .
– otherwise, , .
(4) The merge operator does not combine ele-

ments: .
(5) The termination check is true if exists state

which contains less locks:

(6) The precision is never adjusted:  =
(e, π).

(7) Definition of the projection: , e =  :
e|p = (s, ε).

Note, the transitions in environment (ε transitions)
can not change the set of acquired locks, as the one
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thread can not affect the acquired locks of the other
thread. Thus, we have only one option for projection.
Anyway, the projection strongly affects for compatibil-
ity check, as the threads can not acquire the same lock
simultaneously.

(8) , , e' = (s', q') : composeS(e,
 = (s, q').

(9)  :  = .
The compatibility check is very close to basic Lockset
algorithm. If there is the same lock in both threads, the
operations can not be composed into the concrete one,
as the threads can not acquire the same lock twice.

13. DATA RACE DETECTION

As we have already discussed, an approach for data
race detection is divided into two steps: construction
of a reached set and detection of pairs, which from a
data race. The first subtask is solved by a set of consid-
ered CPAs.

Figure 7 presents an example of CPA configuration
for data race detection. The set of CPAs contains Thread-
ModularCPA (Section 6), as a root one. It includes
ARGCPA, which provides different relations between
states, including “parent-child”, “projected-projection”
and others. CompositeCPA (Section 7) implements a
parallel composition of nested CPA: LocationCPA
(Section 8) models program counter, CallstackCPA
provides interprocedural analysis, LockCPA (Section 12)
tracks acquired locks, ThreadCPA (Section 9) tracks
thread creation points, PredicateCPA (Section 10)
implements predicate analysis. Note, this is not the
only configuration. Moreover, different tasks require
different configuration of CPAs.

An Abstract Reachability Graph (ARG) is con-
structed with help of the set of CPAs. It consists from
the following transitions, which are reachable with a
particular level of an abstraction. Thus, they may be

∀ , ∈' Se e E = ,( )e s q
= �')e e

∀ , ∈1 2 Se e E ,( ')Scompatible e e ∩ =∅( ' )ls ls
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Fig. 7. An example of CPA configuration.

ThreadModularCPA

ARGCPA

CompositeCPA

LocationCPA CallstackCPA LockCPA

ThreadCPA PredicateCPA
not reachable in a real execution of a program. The
next step is to find pairs, which form data races.

Usually, data race is considered to be a situation
where simultaneous accesses to the same memory take
place from different threads, and one of the accesses is
a write one. Here are two main issues: how to detect
the same memory in a static way and how to detect
simultaneous accesses. Further, we will discuss the
two features of our approach.

The presented theory supports shared data, which
are expressed only by global variables. In real-world
software, there are a lot of operations with pointers,
structure fields and so on. We are using BnB memory
model, which divides memory into a disjoint set of
regions [13–15]. The region corresponds to a special
data type or to a special structure field in case of the
field was not addressed. The memory model has a cer-
tain number of limitations. First of all, it does not sup-
port address arithmetic and casting, which reduces the
soundness. Then, there may be false alarms for general
data types, like integer, as there are a lot of accesses to it.

In case of we found a pair of accesses to the same
memory region, we need to check a possibility of
simultaneous access to it. We use compatibility notion
here. Compatibility here means the two partial
abstract states may be a part of a single state. Or, in
other terms, one transition can be applied to another
and vice versa, which means the two operations may
be executed in parallel. Our approach for static race
detection is a generalization of Lockset [12], which
claims a data race as two accesses with disjoint sets of
locks. One of the limitations of the Lockset approach
is the absence of support of other synchronization
primitives. We use  operator to identify the
potentially parallel operations. As compatibility check
is based on different kinds of analyzes, including Lock
analysis, Predicate analysis, and others, it is more pre-
cise, than the Lockset.

The data race detection algorithm consists of the
following steps:

(1) compute a complete set of reached abstract
transitions (Algorithm 1);

(2) for every reached transition extract a memory
region it accesses to;

(3) for every memory region try to find a compati-
ble pair of transitions, which form a race condition;

(4) check every potential data race for feasibility
and refine a predicate abstraction if necessary [20].

Note, that algorithm of refinement the abstraction
(Counterexample Guided Abstraction Refinement,
CEGAR) was reused without significant modifica-
tions. However, it allows to perform refinement only
local transitions in a single thread. So, it can not detect
contradiction between different threads. It is not a
limitation of the approach, and in case of extending

compatible
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the CEGAR algorithm it is possible to obtain more
precise results.

14. EVALUATION
We have implemented Thread-Modular Analysis

with transition abstraction as a composition of follow-
ing analyses:

– Location Analysis  (Section 8),
– Callstack Analysis  (tracks function callstack),
– Thread Analysis  (Section 9),
– Lock Analysis  (Section 12),
– Predicate Analysis  (Section 10) with options:
•  – merge state and abstract edge of

abstract transition.
•  – merge abstract edges if states are equal.
•  – not merging.
– Value Analysis  (Section 11).
The benchmark sets were launched on a set of

machines with a GNU/Linux operating system
(x86_64-linux, Ubuntu 18.04), Intel Xeon E3-1230 v5,
3.40 GHz. We used default SV-COMP limits: 15 min
of CPU time and 15 GB of memory.

14.1. SV-COMP Benchmark Set
The approaches to compare:
(1) Variants of thread-modular analysis with

abstract transition.
(a) Variants of merge for Predicate Analysis.
(i) MergeJoin. ( , , , , ), .
(ii) MergeEq. ( , , , , ), .
(iii) MergeSep. ( , , , , ), .
(b) Value. Value Analysis. ( , , , , ).
(2) Threading. ThreadingCPA described in [18]

uses original CPA theory and considers all possible
interleavings.

L
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JoinMerge

EqMerge

SepMerge
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Table 1. Evaluation on SV-COMP benchmarks

Approach MergeJoin MergeEq

False verdicts 1026 1027
Correct false 805 806
Incorrect false 221 221
True verdicts 27 28
Correct true 27 28
Incorrect true 0 0
Unknowns 29 27
CPU time (s) 16800 15900
Wall time (s) 10200 9 630
Discussion. The thread-modular approach does not
produce incorrect true results that confirms the sound-
ness of the approach.

MergeJoin shows better performance than MergeSep
configuration. This is mostly because of a large number
of environment steps, which should be performed for
each transition in the environment. MergeJoin com-
bines them together and applies them at once. This
allows for saving a large amount of time. Anyway, the
MergeSep configuration allows avoiding some impre-
cision due to separate state exploration.

A simple value configuration is a fast analysis, but
sometimes it has to explore all possible values of a vari-
able, which are numerous, and thus it fails into a tim-
eout.

Classic analysis (Threading) is sound and precise,
so it does not produce incorrect verdicts at all. How-
ever it requires a lot of resources, this is the main dis-
advantage of the approach. Threading is able to solve
only 1 of 7 real-world benchmarks, which are based on
Linux device drivers. The thread-modular approaches
(MergeJoin,MergeEq, MergeSep) solve 5 of 7.

Most of the new true verdicts proved by the thread-
modular approach (26 of 27 for the MergeJoin) were
not proved by Threading. That is one of the contribu-
tions of the approach.

The thread-modular approach has many incor-
rect false verdicts. Most of them are due to unsup-
ported atomic constructions like compare-and-swap.
In some cases, we do not support happens-before
ordering by thread creation (the child thread can not
interfere parent before creation). One more minor
problem is the current limitation of a refinement pro-
cedure, which does not allow to discover of interpo-
lants to the other thread. A small number of bench-
marks are sensitive for exploring interleavings, which
is a limitation of the thread-modular approach.
ND COMPUTER SOFTWARE  Vol. 46  No. 8  2020

MergeSep Value Threading

763 963 720
548 752 720
215 211 0
28 30 165
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0 0 0
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14.2. Data Race Detection in Device Drivers
The set of benchmarks, based on Linux device driv-

ers, was prepared by Klever tool, a framework for verifi-
cation of large software systems [16, 17]. It divides a
large codebase into separate verification tasks. For the
Linux kernel, a verification task consists of one Linux
module. Then Klever automatically prepares an envi-
ronment model, which includes a thread model, a ker-
nel model, and operations over the module. After the
preparation of a verification task, Klever calls a verifi-
cation tool via a common interface – BenchExec [23].

The benchmarks are checked for data race condi-
tions as it was described in Section 13. Note, in SV-
COMP benchmarks are reachability tasks. Thus, we
can not evaluate SV-COMP participants on the new
set, because they do not support data race detection.

We chose the drivers/net/ subsystem of Linux ker-
nel 4.2.6, for which Klever prepared 425 verification
tasks. We compared the following configurations:

(1) Base. MergeJoin configuration from the previ-
ous subsection.

(2) Havoc. MergeJoin configuration from the pre-
vious subsection without any predicate over global
variables in predicate precision. It means, we abstract
from value of global variables and consider them to be
arbitrary changed.

Discussion. A false verdict means, that there is at
least one potential data race condition. Havoc config-
uration is a bit faster and less precise, as it can not
prove 8 true modules, but is able to find more unsafes.
6 of these false unsafes correspond to the missed true
verdicts and are spurious due to imprecision. And 13
unsafes corresponds to unknowns in Base configura-
tion, which means Havoc finds new unsafes.

We checked the 8 true modules, which are proved
as correct. The precise approach proves, that the
device can not be initialized in an appropriate way, and
thus there is no race. Actually, this is a problem of the
environment model (preparation of verification task),
as it missed semantics of the data.

We analyzed some part of produced unsafes. There
are several different race conditions per a verification
task, we call them warnings. The true positive rate is
about 42% (34 correct false and 47 incorrect false
warnings). The main cause of false alarms are prob-
lems with memory model (>90%). The rest of false
alarms are related to kernel specifics (for instance,
interrupts handling), function pointer analysis, differ-
PROGRAMMING AND COMPUTER SOFTWARE  Vol. 

Table 2. Evaluation on drivers/net/ of Linux 4.2.6

Approach Base Havoc

False verdicts 6 26
True verdicts 262 254
Unknowns 157 145
CPU time (s) 137000 125000
ent synchronization primitives, and other specific cases.
So, we have not faced problems due to imprecision in
the thread-modular approach, similar to SV-COMP
benchmarks. It confirms our thesis, that SV-COMP
benchmarks contain mostly complicated, but artificial
cases.

We reported most of the true race conditions and
they were confirmed by Linux maintainers. However,
most of the bugs were found in ancient drivers and
nobody wants to fix it. Only a couple of patches are
applied to the upstream as a part of Google Summer of
Code project.

15. RELATED WORK
The existing approaches to the analysis of multi-

threaded programs have different features and perfor-
mance. On the one side, there are precise approaches,
which can prove the correctness of the program under
certain assumptions. Starting from the bounded model
checking, most of the approaches investigate different
techniques to reduce state space. The examples of the
optimizations are partial-order reduction [1], context
bounding [24, 25], etc.

An attempt to abstract from an irrelevant environ-
ment is a thread-modular approach, which was first
suggested by [6]. This version does not use any
abstraction. A thread modular approach to formal ver-
ification was presented in [26]. The idea is to provide
invariants for every process, which together imply the
formal requirement. The evaluation is provided for two
protocols for mutual exclusion. A predicate abstraction
was composed of a thread-modular approach in [27].
The main distinction of the presented approach was
that there was only one thread in several copies. Thus,
the environment of the thread is formed by itself. Also,
there were no synchronization primitives considered.

An extension of the thread-modular approach,
which also uses an abstraction, is firstly presented in
[28] and then implemented in TAR [7]. Our approach
has the following main differences:

– TAR considers locks as ordinary variables. Our
tool has a special Lock Analysis, which is composed of
other analyses. That allows to avoid extra refinement
iterations, as the analysis already handles it.

– TAR applies thread effects, which are precisely
related to thread operators. Our tool provides a possibil-
ity to abstract (operator ⋅|p) and to join (operator merge)
different transitions. That may increase the speed of
analysis but decrease its precision.

– TAR supports a fixed number of threads, whereas
our approach supports unbound thread creation.

– For environment TAR uses under-approxima-
tion, and our tool – over-approximation.

A similar approach was also implemented in
Threader tool [29]. Threader uses over-approximation
for an environment, based on Horn closes. Similar to
our approach, Threader can provide modular proofs,
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but also it can search non-modular ones, in which
complete interaction between threads is considered.

Many techniques provide techniques for sequen-
tialization of the program to be able then to verify it
with the aid of sequential tools [30–32]. One of the
examples is WHOOP [33], which uses a sequentializa-
tion technique and does not consider thread interac-
tion. Moreover, it strongly applies Lockset algorithm
and has no way to extend the approach with other ana-
lyzes. The authors applied the tool as a front-end to a
more precise verifier CORALL [34].

On the other side there exist many lightweight
approaches, which can be applied to a large amount of
code. Such techniques are determined by weak require-
ments for resources and low precision. The examples
are RELAY [35] and Locksmith [36], which are evalu-
ated on the Linux kernel source code. RELAY found
thousands of warnings when analyzing the Linux ker-
nel, and then employs unsound post-analysis filters.
The tool does not consider the thread interaction at all.

In opposite to RELAY Locksmith considers thread
creation points, but it does not precisely identify shared
data and thread interactions. It computes a general
future effect related to the whole thread. An experimen-
tal evaluation shows the tool has problems with scal-
ability.

In [37] authors presented an extension of Andersen
points-to analysis for multithreaded programs. The
idea is similar to the thread-modular approach, they
compute a set of operators, which can be executed in
parallel, and apply the operators in other threads.

There are many specific approaches for efficient
data race detection for a particular software or a prop-
erty. For example, low-level software with nested inter-
rupts [38], data race detection in FreeRTOS [39, 40],
concurrent use-after-free bugs in Linux device drivers
[41]. Such approaches demonstrate good results, but
significantly base on property and code specifics. Our
approach is pretending to be more general, neverthe-
less, it also may be improved by targeting on a partic-
ular code and a specific property.

16. CONCLUSIONS

The paper presents an approach for practical data
race detection in complicated software. We extend an
existing CPA theory and implement it in a new tool.
The experiments show the benefit of the approach on
large examples. On the other hand, small and compli-
cated benchmarks are better solved with other
approaches. Anyway, the approach is sound and may be
improved and optimized in the future.

Thus, we may conclude, that the requirements to
the new tools are fulfilled, as it is successfully applied
to different software systems, including Linux device
drivers. As in classical model checker approaches,
there may be provided a guarantee of correctness
PROGRAMMING A
under a certain conditions: requirement on CPA oper-
ators and condition of disjoint BnB regions.

The extended CPA theory allows to describe com-
plicated kinds of analysis, including those ones, which
are not covered by a thread-modular approach. Nev-
ertheless, the theory does not cover all possible kinds
of analysis, and, for example, efficient description of
interleaving analysis will require an extension. How-
ever, this is a question for the further investigation.

One of the possible directions is to extend the
thread-modular approach in such a way, that it con-
siders some thread interaction. One of the ideas is to
implement analysis, which can keep an adjustable bal-
ance between interleaving analysis and thread-modu-
lar one.

The other interesting practical improvement is the
integration of different approaches into one tool. For
example, a combination of fast thread-modular analy-
sis as the first stage and precise classical analysis as the
second stage, which may be implemented according to
cooperative verification idea [42].

One of the weaknesses of the thread-modular
approach is difficulties with the computation of a real
path with interleaving. However, the path will be really
helpful for the investigation and refinement of the
abstraction. Thus, reconstruction of the full path from
a path with transitions in the environment is in our
future plans.
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